
10666 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 10, OCTOBER 2023

SketchNE: Embedding Billion-Scale Networks
Accurately in One Hour

Yuyang Xie , Yuxiao Dong , Senior Member, IEEE, Jiezhong Qiu , Wenjian Yu , Senior Member, IEEE,
Xu Feng , and Jie Tang , Fellow, IEEE

Abstract—We study large-scale network embedding with the
goal of generating high-quality embeddings for networks with
more than 1 billion vertices and 100 billion edges. Recent attempts
LightNE and NetSMF propose to sparsify and factorize the (dense)
NetMF matrix for embedding large networks, where NetMF is
a theoretically-grounded network embedding method. However,
there is a trade-off between their embeddings’ quality and scalabil-
ity due to their expensive memory requirements, making embed-
dings less effective under real-world memory constraints. There-
fore, we present the SketchNE model, a scalable, effective, and
memory-efficient network embedding solution developed for a sin-
gle machine with CPU only. The main idea of SketchNE is to avoid
the explicit construction and factorization of the NetMF matrix
either sparsely or densely when producing the embeddings through
the proposed sparse-sign randomized single-pass SVD algorithm.
We conduct extensive experiments on nine datasets of various sizes
for vertex classification and link prediction, demonstrating the con-
sistent outperformance of SketchNE over state-of-the-art baselines
in terms of both effectiveness and efficiency. SketchNE costs only 1.0
hours to embed the Hyperlink2012 network with 3.5 billion vertices
and 225 billion edges on a CPU-only single machine with embedding
superiority (e.g., a 282% relative HITS@10 gain over LightNE).

Index Terms—Memory-efficient, network embedding, network
representation learning, randomized matrix factorization.

I. INTRODUCTION

R EPRESENTATION learning on graphs has recently pro-
vided a new paradigm for modeling real-world net-

works [1]. Learning structural representations for networks, i.e.,
network embedding, aims to map network entities into a latent
space. The learned entity embeddings have been used to power
various billion-scale online services, such as DeepWalk [2] in
Alibaba [3], LINE [4] in LinkedIn [5], metapath2vec [6] and
NetSMF [7] in Microsoft Academic [8], PinSage in Pinterest [9].

Manuscript received 26 May 2022; revised 7 December 2022; accepted 23
February 2023. Date of publication 1 March 2023; date of current version 15
September 2023. This work was supported by NSFC under Grant 61872206, in
part by the National Key R&D Program of China under Grant 2018YFB1402600,
in part by NSFC for Distinguished Young Scholar under Grant 61825602, in
part by NSFC under Grants 61836013 and 62276148, and in part by Zhipu.AI.
The work of Jiezhong Qiu was supported in part by Zhejiang Lab under Grant
2022PE0AC04. Recommended for acceptance by Z. Guan. (Corresponding
author: Wenjian Yu.)

The authors are with the Department of Computer Science and Technology,
BNRist, Tsinghua University, Beijing 100084, China (e-mail: xyy18@mails
.tsinghua.edu.cn; ericdongyx@gmail.com; xptree@foxmail.com; yu-wj@
tsinghua.edu.cn; fx17@mails.tsinghua.edu.cn; jietang@tsinghua.edu.cn).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TKDE.2023.3250703, provided by the authors.

Digital Object Identifier 10.1109/TKDE.2023.3250703

Take Facebook for example, it leverages the word2vec [10]
based graph embedding system [11] to learn structural embed-
dings for its 3 billion user base. These embeddings are then
consumed in various downstream applications. To maintain
the quality of these embeddings, it is required to periodically
embed such networks as its underlying structure consistently
evolves, ideally as frequently as possible, e.g., every few hours in
Alibaba [3]. However, according to our estimates, state-of-the-
art (SOTA) graph embedding systems, i.e., GraphVite [12]—a
DeepWalk [2] based system—and PyTorch-BigGraph [11]—
would cost days if not weeks by using powerful CPU and GPU
clusters to embed a network of 3B users.

Though skip-gram based embedding models, e.g., Deep-
Walk [2], LINE [4], and metapath2vec [6], have been widely
adopted in large-scale solutions. They are still limited to handle
billion-scale networks at speed, as discussed above. Recently, a
theoretical study demonstrates that these models can be trans-
formed as implicit factorization of a closed-form matrix [13].
Based on this discovery, the NetMF model is proposed to
explicitly construct and factorize the matrix that is implicitly
factorized by DeepWalk, i.e., the NetMF matrix1 f ◦(M), in
which M can be approximated by L and R—the two matrices
formed by the eigen-decomposition over the graph Laplacian
of a given network—and f ◦(·) is an element-wise logarithm
function. Additionally, addressing the matrix form f ◦(LR)
can benefit various machine learning scenarios, such as the
attention mechanism in Transformer [14]—softmax(·), the lin-
ear layer with ReLU [15] activation—ReLU(·), and the kernel
method [16].

Despite its outperformance over skip-gram based methods,
it is computationally prohibitive for NetMF to handle million-
scale networks as it needs to construct and factorize f ◦(M),
which is an n× n dense matrix with n being the number
of vertices. To address this, one recent attempt NetSMF [7]
proposes to construct a sparse version of f ◦(M) by a graph
spectral based sampling technique and then leverage sparse
matrix factorization to produce vertex embeddings. More re-
cently, LightNE [17] advances NetSMF by further reducing its
sampling cost, utilizing other system-wise optimizations, and
borrowing the spectral propagation strategy from ProNE [18].
In doing so, LightNE outperforms SOTA systems, including
NetSMF, ProNE, GraphVite, and PyTorch-BigGraph, in terms
of both computational cost and embedding effectiveness.

1The detailed NetMF matrix f◦(M) can be found in Table I

1041-4347 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on September 19,2023 at 12:47:55 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3152-1936
https://orcid.org/0000-0002-6092-2002
https://orcid.org/0000-0001-9514-0708
https://orcid.org/0000-0003-4897-7251
https://orcid.org/0000-0002-3150-715X
https://orcid.org/0000-0003-3487-4593
mailto:xyy18@mails.tsinghua.edu.cn
mailto:xyy18@mails.tsinghua.edu.cn
mailto:ericdongyx@gmail.com
mailto:xptree@foxmail.com
mailto:yu-wj@tsinghua.edu.cn
mailto:yu-wj@tsinghua.edu.cn
mailto:fx17@mails.tsinghua.edu.cn
mailto:jietang@tsinghua.edu.cn
https://doi.org/10.1109/TKDE.2023.3250703

XIE et al.: SKETCHNE: EMBEDDING BILLION-SCALE NETWORKS ACCURATELY IN ONE HOUR 10667

Fig. 1. The overview of SketchNE versus NetMF and NetSMF/LightNE. The symbols used are listed in Table I.

However, the performance of LightNE and NetSMF heavily
relies on the number of samplings that directly corresponds to
the memory cost, that is, more samplings make the sparse matrix
more close to f ◦(M) and thus yield better embeddings, while
consuming more memory. For example, to generate competitive
embeddings for the OAG data [17] of 67 M vertices and 895 M
edges, LightNE requires 1493 GB memory space to have a
sufficient number of samples. In order to embed larger networks,
such as those of billions of vertices, LightNE has to sacrifice
the quality of the embeddings under the real-world memory
constraint.

Contributions. In light of the limitations of existing large-
scale graph embedding solutions, the goal of this work is to
learn effective embeddings for billion-scale networks efficiently
under certain memory constraints, e.g., to embed networks with
3B vertices and 200B edges within 1 h by using a single machine
with 1500 GB memory. To achieve this, we present the SketchNE
2 model, an effective, scalable, and memory-efficient method for
billion-scale network embedding. Fig. 1 illustrates the two tech-
nical components in SketchNE—a fast eigen-decomposition
algorithm and a sparse-sign randomized single-pass SVD, each
of which addresses the computational challenges in NetMF
correspondingly.

First, we propose to factorize the target matrix f ◦(M)without
explicitly constructing it, avoiding the direct or sparse construc-
tion and factorization in NetMF or NetSMF/LightNE. To achieve
this, we present the sparse-sign randomized single-pass SVD
algorithm by leveraging the concept of the randomized sketch
matrix.

Second, the step above still requires L and R, though the
explicit construction of f ◦(M) is not demanded anymore. Thus,
we further introduce a fast randomized eigen-decomposition
algorithm to approximate the computation of L and R and
give an upper bound of the approximation error. Empirical tests
show that we can achieve about 90× speedup over the original
eigen-decomposition module in NetMF without performance
loss on (small) networks that NetMF can actually handle.

Third, we combine the spectral propagation strategy which
is proposed in [18] to further improve the quality of the inital
embedding. We optimize our system for shared-memory ar-
chitectures with Graph Based Benchmark Suite (GBBS) [19],

2The code is publicly available at https://github.com/xyyphant0m/SketchNE

TABLE I
SYMBOL USED THROUGHOUT THIS PAPER

which has already shown its superiority when handling real-
world networks with hundreds of billions of edges on a single
machine. Intel Math Kernel Library (MKL) is used in SketchNE
for basic linear algebra operations.

We conduct extensive experiments to examine the perfor-
mance of SketchNE, including its effectiveness, efficiency, and
memory cost. Specifically, we test SketchNE and other SOTA
models/systems on five datasets for vertex classification and four
datasets for link prediction. The results show that by using the
least running time and memory among SOTA models/systems,
SketchNE can consistently outperform nine large-scale base-
lines across five datasets for vertex classification and also offers
significant improvements over LightNE on three billion-scale
networks for link prediction. Notably, SketchNE can embed the
Hyperlink2012 network with 3.5 billion vertices and 225 billion
edges in 1.0 hours by using 1,321 GB memory on a single
machine, and the learned embeddings offer a 282% relative
HITS@10 improvement over LightNE on the link prediction task.

II. NETMF AND ITS CHALLENGES

Given an undirected network G = (V,E,A) with n vertices,
m edges, adjacency matrix A, degree matrix D and volume
vol(G) =

∑
i

∑
j Aij , the goal of network embedding is to

learn an embedding matrix E ∈ R
n×d so that row i captures

the structural property of vertex i [2], [4], [13], [20]. The
embeddings can be then fed into downstream applications. The
symbols are listed in Table I.

Many network embedding algorithms are based on random
walk and skip-gram techniques, such as DeepWalk [2], LINE [4],

Authorized licensed use limited to: Tsinghua University. Downloaded on September 19,2023 at 12:47:55 UTC from IEEE Xplore. Restrictions apply.

https://github.com/xyyphant0m/SketchNE

10668 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 10, OCTOBER 2023

Algorithm 1: NetMF Under the new Formulation.
Input: adjacency matrix A, rank k, embedding dimension
d

Output: An embedding matrix E ∈ R
n×d

1 [Uk,Λk] = eigs(D−1/2AD−1/2, k) //
Eigen-decomposition

2 L= vol(G)
bT D−1/2Uk, R=(

∑T
r=1 Λ

r
k)U

�
kD

−1/2

3 [Ud,Σd,V d] = svds(f ◦(LR), d) // Rank-d
truncated SVD

4 return E = UdΣ
1/2
d as network embedding

and node2vec [20]. Take DeepWalk for example, the vertex
sequences traversed by random walkers are fed into the skip-
gram model, which is usually parameterized by the context
window size T and the number of negative samples b. Notably,
these techniques are later shown to be theoretically equivalent
to matrix factorization [13]. Based on this result, the NetMF
algorithm is proposed to explicitly construct and factorize the
matrix that is implicitly factorized by DeepWalk, namely the
NetMF matrix:

trunc_log◦
(

vol(G)

bT

T∑
r=1

(D−1A)rD−1

)
, (1)

where trunc_log◦ denotes the element-wise truncated loga-
rithm, i.e., applying trunc_log(x)=max(0, log(x)) to each en-
try of a matrix. However, the explicit construction and factor-
ization of this matrix usually consumes O(n3) time as it tends
to be a dense matrix even with a small T . To reduce time com-
plexity, NetMF conducts truncated eigen-decomposition such
that D−1/2AD−1/2 ≈ UkΛkU

�
k , and factorizes the following

approximate matrix of (1):

trunclog
◦
(

vol(G)

bT
D−1/2Uk

(
T∑

r=1

Λr
k

)
U�

kD
−1/2

)
. (2)

Reformulate the Goal of NetMF. With the above description, we
can reformulate and generalize the goal of NetMF as follows:

Problem 1. Truncated SVD for element-wise function of a
low-rank matrix.

Given: Two low-rank matrices L ∈ R
n×k and R ∈ R

k×n, a
function f : R → R applied to each entry of LR, and desired
dimensionality d.

Goal: Compute the rank-d truncated SVD for f ◦(LR) such
that:

[Ud,Σd,V d] = svds(f ◦(LR), d). (3)

In NetMF, L= vol(G)
bT D−1/2Uk, R=(

∑T
r=1 Λ

r
k)U

�
kD

−1/2

and f(·)=trunc_log(·).
Algorithm 1 describes NetMF under the above new formu-

lation. Unfortunately, it is still not capable of handling large
networks, even the YouTube dataset with 1.1 million vertices
used in DeepWalk [2], [21], mainly due to the following two
challenges presented in Problem 1.

Challenge One: How to Solve svds(f ◦(LR), d) Efficiently?
The major challenge lies in the requirement to explicitly con-
struct and factorize f ◦(LR), even after NetMF’s attempt to per-
form the truncated eigen-decomposition. In fact, its construction
and factorization in Algorithm 1 Line 3 demand O(n2) memory
cost andO(n2 k) time cost, making it computationally infeasible
for large networks. It is worth noting that the element-wise
truncated logarithm is very important to embedding quality and
cannot be omitted [7], [13], [17], [22]. Otherwise, the embed-
dings can be realized without constructing the dense form, as in
NRP [23], RandNE [24], and FastRP [25].

Challenge Two: How to Factorize D−1/2AD−1/2

Efficiently? Although one may think the truncated eigen-
decomposition of D−1/2AD−1/2 (Line 1 of Algorithm 1) is
a simple and efficient step, previous work [26], [27] and our
analysis show that it is in fact computationally very expensive. In
particular, Cohen-Steiner et al. [26] shows it is very difficult
to obtain the spectrum of a large graph, and the eigen-
decomposition of a large graph Laplacian [27] is practically
very slow. The cost of the truncated eigen-decomposition [28]
is O(βmk), where β ≥ 1 and its value depends on the
convergence speed. The convergence, in turn, depends on the
relative eigenvalue gap, making this constant term very big and
this operation practically very expensive. This problem seems
not prominent in NetMF because the datasets in its paper [13]
are relatively small (the largest one is Flickr with 80 K vertices).
However, for a slightly larger dataset YouTube with 1.1 M
vertices, we observe that the SciPy implementation eigsh
cannot finish the computation in three days, not to mention for
billion-scale networks.

III. THE SKETCHNE MODEL

In this section, we present SketchNE for embedding billion-
scale networks at speed. In Section III-A, we propose a
spare-sign single-pass SVD algorithm to resolve challenge
one—factorizing f ◦(LR) without constructing its dense
form. In Section III-B, we introduce a fast randomized
eigen-decomposition algorithm to resolve challenge two—
accelerating the computation of L and R. Section III-C com-
bines the two sketching techniques and presents the overall
algorithm.

A. Sketching-Based svds(f ◦(LR), d) Without Explicitly
Computing and Factorizing f ◦(LR)

In this part, we formally introduce a sketch-based solution to
svds(f ◦(LR), d) without explicitly computing and factorizing
it.

Basic Randomized SVD. To solve the computational challenge
of svds(f ◦(LR), d), we first revisit the randomized SVD in
Algorithm 2, where Ω (Line 2) is a Gaussian random matrix,
s (Line 2) is the oversampling parameter for better accuracy,
q (Line 5) is the power iteration index, and orth(·) (Lines 4,
6 and 7) is the orthonormalization operation which is usually
implemented with QR factorization. The random projection in
Line 3 generates a sketch matrix Y , which identifies a sub-
space that captures dominant information of the input matrix

Authorized licensed use limited to: Tsinghua University. Downloaded on September 19,2023 at 12:47:55 UTC from IEEE Xplore. Restrictions apply.

XIE et al.: SKETCHNE: EMBEDDING BILLION-SCALE NETWORKS ACCURATELY IN ONE HOUR 10669

Algorithm 2: The Basic Randomized SVD.

X=f ◦(LR). Then, with the subspace’s orthonormal basis
matrix Q computed in Line 4, one obtains the approximation
X ≈ QQ�X [29]. Lines 5∼8 are the power iteration scheme
which is optional to improve the approximation accuracy. Next,
Line 9 constructs a reduced matrix B by projecting the input
matrix X to the subspace with orthonormal basis Q. Finally,
the approximate truncated SVD of X is obtained through per-
forming SVD on matrix B in Lines 10-11.

We can see that there are four places in Algorithm 2 (Lines 3,
6, 7 and 9) requiring the explicit construction of X=f ◦(LR).
For Lines 6-7, we can avoid them by skipping the optional power
iteration. We discuss how to deal with issues raised by Lines 3
and 9, respectively.

Issue One (Algorithm 2 Line 3). Sketching f ◦(LR). Com-
puting sketch matrix Y requires matrix multiplication between
X=f ◦(LR) and a random matrixΩ. However, f ◦(LR) cannot
be explicitly computed due to its O(n2 k) time complexity and
O(n2) memory cost.

Solution: The Sparse-Sign Matrix for Sketching. We introduce
the concept of the sparse-sign matrix to help solve the multipli-
cation XΩ=f ◦(LR)Ω. The sparse-sign matrix, with similar
performance to the Gaussian matrix, is another type of ran-
domized dimension reduction map [30]. Algorithm 3 describes
how to generate a sparse-sign matrix. To have a sparse-sign
matrix S ∈ R

n×h with sketch size h = d+ s, where d is the
embedding dimension, and s is the oversampling parameter,
we fix a column density parameter z in the range 2 ≤ z ≤ n.
We independently generate the columns of the matrix at random.
For each column, we draw z i.i.d random signs and place them in
z uniformly random coordinates as shown in Algorithm 3 Lines
5∼6. Line 8 is to get the unique row coordinates. According
to [30], z = min(n, 8) will usually be a good choice.

After generating the sparse-sign matrix S, we can use it as
the random matrix, which multiplies f ◦(LR) on its right side
to obtain the sketch matrix Y . Considering that a column of the
sparse-sign matrix S only has z nonzeros, it will generate at
most z × h coordinates in the range of [1, n] and z × h
 n.
Therefore, we can perform column sampling according to these
unique coordinates p. Assuming that v = size(p, 1), then v sat-
isfyv ≤ z × h
 n. Based on the fact thatS has onlyv non-zero

Algorithm 3: Generate a Sparse-Sign Matrix.

rows, we can immediately observe that we can have a sampling
matrix R(:, p). Therefore, computing Y = f ◦(LR)S is ex-
actly equivalent to

Y = f ◦ (LR(:, p))S. (4)

The time cost of (4) is O(nvk + nvh) and the memory cost
is O(nk + nv). However, when calculating LR(:, p) for a net-
work with billions of vertices, it will introduce O(nv) memory
cost, which is still infeasible. To solve this, we adopt the batch
matrix multiplication by selecting the fixed-size rows of L in
turn to complete the multiplication, which further reduces the
memory cost to O(nk).

Issue Two (Algorithm 2 Line 9). Form the Reduced Matrix
B. According to Algorithm 2 Line 9, the reduced matrix B is
constructed byB = Q�f ◦(LR), whereQ is a dense matrix and
f ◦(LR) is implicitly stored, making it too expensive to obtain
B.

Solution: The Randomized Single-Pass SVD. We leverage the
idea of randomized single-pass SVD [30] to solve this issue.
The basic idea is to obtain the approximate SVD results by
visiting the target matrix f ◦(LR) only once. The process of
single-pass SVD is as follows: First, we draw multiple sketch
matrices that capture the row and column dominant informa-
tion of matrix f ◦(LR) and compute SVD based on these
sketch matrices. In [30], four sparse-sign random matricesC ∈
R

n×h,S ∈ R
n×h,H ∈ R

n×l,O ∈ R
n×l are drawn for target

matrix f ◦(LR). Then three sketch matrices

K = f ◦(LR)�C,Y = f ◦(LR)S,Z = H�f ◦(LR)O (5)

are generated respectively. Second, we obtain the orthonormal
matrices

P = orth(K),Q = orth(Y), (6)

which capture the row and column dominant information of
f ◦(LR), respectively. Then we get a great approximation as

f ◦(LR) ≈ QQ�f ◦(LR)PP�. (7)

By updating Z with (7), we can have

Z = H�f ◦(LR)O ≈ (H�Q)(Q�f ◦(LR)P)(P�O). (8)

Third, we get the reduced matrix

W =
(
H�Q

)†
Z
(
P�O

)† ≈ Q�f ◦(LR)P (9)

Authorized licensed use limited to: Tsinghua University. Downloaded on September 19,2023 at 12:47:55 UTC from IEEE Xplore. Restrictions apply.

10670 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 10, OCTOBER 2023

Algorithm 4: Sparse-Sign Randomized Single-Pass SVD.

by solving the least-squares problem. Finally, it will form a low
rank approximation of the target matrix f ◦(LR) via

f ◦(LR) ≈ QWP�, (10)

and the approximate truncated SVD of f ◦(LR) can be derived
from performing SVD on W . Therefore, f ◦(LR) is required
only in the sketching process, and the reduced matrix W is
constructed only by sketch matrices and random matrices.

In addition, we note that f ◦(LR) is symmetric in NetMF,
thus the row dominant information is equal to column dominant
information which means we can omit K and H . This enables
us to replace P with Q in (7)–(10) and replace H with O
in (5), (8), and (9). In other words, we can further simplify
and improve the above randomized single-pass SVD process:
When the multiplication Y = f ◦(LR)S is performed, we can
simultaneously draw another sketch matrix Z = O�f ◦(LR)O
with a sparse-sign random matrix O ∈ R

n×l.
Overall: Sparse-Sign Randomized Single-Pass SVD. By com-

bining the sparse-sign random matrix with single-pass SVD, we
propose a sparse-sign randomized single-pass SVD algorithm
to avoid the explicit construction and factorization of f ◦(LR)
as Algorithm 4.

In Algorithm 4, Line 8 generates the reduced matrix W ,
which involves solving the least-squares problem twice. The
first is to solve (O�Q)T = Z for the temporary matrix T
and the second is to solve (O�Q)W� = T� for the reduced
matrix W . The matrix O�Q ∈ R

l×h is well-conditioned when
l � hwhich suggests choosing s2 � s1. Lines 3 and 6 generate
two sparse-sign random matrices. Considering that s1 and s2
are small numbers, the time cost of Line 4 is O(nv(k + d))
and Line 7 costs O(v2(k + d) + vd2). Line 5 costs O(nd2),
Lines 8∼9 cost O(d3), and Line 10 costs O(nd2). Therefore,
the time complexity of Algorithm 4 is O(n(vk + vd+ d2)),
linear to the number of vertices n, which is much more effi-
cient than the explicit construction and factorization in NetMF
(O(n2 k)).

Overall, we present the sparse-sign randomized single-pass
SVD to address the computational challenges in NetMF, which is
the first attempt to introduce single-pass low-rank matrix factor-
ization into network embedding. It not only solves the challenges
of NetMF, but also gives a solution to the general problem of fac-
torizing f ◦(LR). Recently, Han et al. [31] proposes polynomial

Algorithm 5: Fast Randomized Eigen-Decomposition.

tensor sketch for this problem, which combines a polynomial
approximation of f (e.g., Taylor and Chebyshev expansion) with
tensor sketch for approximating monomials of entries of LR.
We will see an ablation study which applies polynomial tensor
sketch to NetMF in Section IV-D.

B. Fast Eigen-Decomposition Via Sketching

By now, we bypass the major bottleneck of Algorithm 1 (Lines
3) without explicitly computing f ◦(LR). However, the solution
in Algorithm 4 still requires the separateL andR as input, which
are computed by the eigen-decomposition onD−1/2AD−1/2 in
Algorithm 1 Line 1. Though the truncated eigen-decomposition
costs only O(βmk) FLOPs in theory (β ≥ 1) [28], it is in
practice almost infeasible to handle large networks due to the
big constants in its complexity. In fact, the computation of this
step for the YouTube dataset with 1.1 million vertices cannot
complete within three days by using the commonly-usedeigsh
implementation, while the goal of this work is to embed billion-
scale networks efficiently, e.g., in one hour.

To address this practical challenge, we introduce a fast
randomized eigen-decomposition method to approximate
D−1/2AD−1/2. According to [29], the symmetric approxima-
tion formula should be X ≈ QQ�XQQ� and the truncated
eigen-decomposition result of X can be derived by performing
eigen-decomposition on the small matrix Q�XQ. By combin-
ing the techniques of the power iteration scheme and acceleration
strategy [32], the fast randomized eigen-decomposition can be
described as Algorithm 5.

Practically, a good decomposition of D−1/2AD−1/2 by
freigs requires a large q, increasing the time cost (see the
experiment in Section IV-D). To balance the trade-off between
effectiveness and efficiency, we propose to perform Algorithm
5 on a modified Laplacian matrix D−αAD−α, where α ∈
(0, 0.5]. Therefore, we haveUkΛkU

�
k ≈ D−αAD−α. It means

D−1/2AD−1/2 is computed as D−1/2+αUkΛkU
�
kD

−1/2+α

approximately. We give an upper bound of the approximation
error by Lemma 4 and its proof both in Appendix A, which
can be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TKDE.2023.3250703. In
doing so, (1) can be approximated by

Authorized licensed use limited to: Tsinghua University. Downloaded on September 19,2023 at 12:47:55 UTC from IEEE Xplore. Restrictions apply.

http://doi.ieeecomputersociety.org/10.1109/TKDE.2023.3250703
http://doi.ieeecomputersociety.org/10.1109/TKDE.2023.3250703

XIE et al.: SKETCHNE: EMBEDDING BILLION-SCALE NETWORKS ACCURATELY IN ONE HOUR 10671

f ◦(L′R′)

= f ◦
(

vol(G)

bT
D−1+αUkΛk

(
T∑

r=1

Kr−1

)
U�

kD
−1+α

)
,

(11)

where L′ = vol(G)
bT D−1+αUk, K = U�

kD
−1+2αUkΛk, R′ =

Λk(
∑T

r=1 K
r−1)U�

kD
−1+α and f(·) = trunc_log(·). K is a

k × k matrix, making the computation of
∑T

r=1 K
r−1 cheap.

We further give an upper bound of the approximation error
between the NetMF matrix and f ◦(L′R′) by the following
theorem. We can see the approximation is better with a larger k.

Theorem 1. Suppose f ◦ denotes trunc_log◦, i.e., the element-
wise truncated logarithm, f ◦(M) is the matrix in (1), and
f ◦(L′R′) is defined by (11) which includes the quantities ob-
tained with Algorithm 5. Then,

‖f ◦(M)−f ◦(L′R′)‖F ≤ (1 + ε)d−1+2α
min B

(c− 1)bT

with high probability. Here |λj | is the jth largest absolute value

of eigenvalue of D−αAD−α, B =
√∑n

j=k+1 |λj |2((cT −
1)(1 + n

c−1)−nT)vol(G), c = n(dmax

dmin
)1−2α. dmin and dmax

are the minimum and maximum vertex degrees, respectively.
Proof. See Appendix A, available in the online supplemental

material. �
In Algorithm 5, the “eigSVD” is used as the orthonormaliza-

tion operation. Compared with the QR factorization, eigSVD
is much faster especially when n � (k + s) [32]. Since the
oversampling parameter s is smaller than k, Lines 4∼5 cost
O(mk + nk2). According to [32], Lines 6∼8 cost O(q(mk +
nk2)), Line 9 costs O(mk + nk2), Line 10 costs O(k3), and
Line 11 costs O(nk2). Overall, the time complexity of Algo-
rithm 5 is O(q(mk + nk2)). However, the actual FLOPs of
Algorithm 5 is far fewer than that of eigsh. In practice, our
empirical tests suggest that by setting α=0.4, Algorithm 5 with
a small q shows on average ∼90X speedup to eigsh on the
small datasets that can be handled by eigshwithout noticeable
impacts on the eigenvalues computed and by extension on the
embeddings learned (See Fig. 3(a)).

C. The Overall Algorithm

In Section III-A, we develop a sparse-sign randomized single-
pass SVD algorithm (Algorithm 4) to solve svds(f ◦(LR), d)
without the explicit computation and factorization of the full
matrix f ◦(LR). In Section III-B, we propose a fast randomized
eigen-decomposition method to get L and R for large networks.
Empowered by these two techniques, we address the two com-
putational challenges faced by NetMF, respectively. To this end,
we present the SketchNE algorithm to learn embeddings for
billion-scale networks in Algorithm 6.

In Algorithm 6, Line 1 computes the fast randomized eigen-
decomposition for the modified Laplacian matrix D−αAD−α.
Lines 2∼3 form the approximations of matrices L and R.
Line 4 is to compute the SVD of f ◦(L′R′) by L′ and R′

Algorithm 6: SketchNE.

Input: A network G = (V,E,A); Normalized parameter
α; rank parameter k; power parameter q; Embedding
dimension d;

Output: An embedding matrix E ∈ R
n×d

1 [Uk,Λk] = freigs(D−αAD−α, k, q)
// Algorithm 5

2 K = U�
kD

−1+2αUkΛk

3 L′ = vol(G)
bT D−1+αUk,R

′ =
Λk(

∑T
r=1 K

r−1)U�
kD

−1+α

4 [Ud,Σd,∼]=
sparse_sign_rand_single_pass_SVD(L′,R′, d) //
Algorithm 4

5 E = UdΣ
1/2
d // inital embedding

6 E =
∑p

r=0 crLrE // spectral propagation
7 return E as network embedding

through the sparse-sign randomized single-pass SVD. Then we
form the inital embedding in Line 5. Line 6 conducts spectral
propagation, which is a commonly-used and computationally-
cheap enhancement technique [17], [18] that further improves
embedding quality. cr in Line 6 is the coefficients of Chebyshev
polynomials,p is spectral propagation steps (the default setting is
10) and L = I −D−1A is normalized graph Laplacian matrix
(I is the identity matrix).

Complexity of SketchNE. For Line 1, the input matrix
D−αAD−α is still an n× n sparse matrix and has 2m nonze-
ros. According to Section III-B, it requires O(q(mk + nk2))
time and O(m+ nk) space. As for Lines 2∼3, O(nk2) time
and O(nk) space are required. The time cost of Line 4 is
O(n(d2 + vk + vd)) and its space cost is O(n(k + d)). Lines
5∼6 demand O(pmd+ nd) time and O(m+ nd) space. In
total, the SketchNE has the time complexity of O(q(mk +
nk2) + nd2 + nvk + nvd+ pmd) and the space complexity of
O(m+ nk). Therefore, there is a trade-off between efficiency
and effectiveness on the choice of q. In practice, we can easily
find q that offers clear superiority on both efficacy and effi-
ciency, including both memory cost and computing time, over
existing large-scale network embedding techniques. Consider
that q, k, d, v, p are all very small compared to m and n, the
overall time complexity of SketchNE is linear to the number of
edges m and the number of vertices n.

D. Implementation Details

Memory Reduction. Considering the memory cost of
SketchNE is O(m+ nk), while NetSMF/LightNE ties per-
formance to memory cost. Therefore, we consider to further
optimize the memory cost of SketchNE by the Graph Based
Benchmark Suite (GBBS) [19], which is an extension of the
Ligra [33] interface. We optimize the memory cost of SketchNE
with the Graph Based Benchmark Suite (GBBS) [19], which is
an extension of the Ligra [33] interface. The GBBS is easy to
use and has already shown its practicality for many large scale
fundamental graph problems. LightNE [17] introduces GBBS

Authorized licensed use limited to: Tsinghua University. Downloaded on September 19,2023 at 12:47:55 UTC from IEEE Xplore. Restrictions apply.

10672 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 10, OCTOBER 2023

to network embedding problems and shows its superiority to
real-world networks with hundreds of billions of edges. The
main benefit of GBBS to SketchNE is the data compression.
A sparse adjacency matrix is usually stored in the compressed
sparse row (CSR) format, which is also regarded as an excellent
compressed graph representation [34]. However, the CSR format
still incurs a huge memory overhead for the networks with
hundreds of billions of edges. For example, storing a network
with 1 billion vertices and 100 billion edges costs 1121 GB
memory. Therefore, we need to compress it further and reduce
memory cost. The GBBS can be regarded as a compressed
CSR format for the graph from Ligra+ [35], which supports
fast parallel graph encoding and decoding.

Parallelization. Two major computational steps of the
SketchNE are sparse matrix-matrix multiplication (SPMM) and
matrix-matrix product (GEMM), which are well supported by
the Intel MKL library. SPMM operation is well supported by
MKL’s Sparse BLAS Routine. However, MKL’s Sparse BLAS
Routine requires the sparse matrix in CSR format as the input,
which contradicts the original intention of using GBBS. Fortu-
nately, GBBS supports traversing all neighbors of a vertex u for
the compressed CSR format, and we can propose an SPMM
operation with the help of GBBS. In order to use GBBS to
save memory cost, we propose a parallel GBBS-based SPMM
operation to replace the SPMM operation in MKL’s sparse
BLAS routine. The parallel GBBS-based SPMM is implemented
as follows. First, we traverse n vertices parallelly. Then, we
traverse neighbor vertex v of vertex u to compute the quantity
D(u, u)−αD(v, v)−α corresponding to the sparse matrix. Fi-
nally, with the support of cblas_saxpy in MKL, we multiply
the vth row of the row-major matrix with the quantity and add the
result to the uth row of the target matrix. The SPMM operation
based on GBBS is slightly slower than MKL’s SPMM opera-
tion, but ensuring memory-efficient. The “eigSVD”, “eig” and
other operations in SketchNE are well supported by Intel MKL
routines. Line 4 and Line 7 of the Algorithm 6 involve matrix
column sampling and batch GEMM operation. They are easily
parallelized with the “parallel for” derivative in OpenMP [36].

In conclusion, SketchNE is implemented in C++. We use
GBBS to reduce memory usage and implement a GBBS-based
SPMM operation. For better efficiency, we use the Intel MKL
library for basic linear algebra operations and the OpenMP
programming.

IV. EXPERIMENTS

In this section, we evaluate SketchNE on multi-label vertex
classification and link prediction tasks, following exactly the
same experimental settings as existing studies [2], [4], [7], [11],
[12], [13], [17], [20]. We introduce datasets in Section IV-A
our experimental settings and results in Section IV-B and
Section IV-C, respectively. The ablation and case studies is in
Section IV-D.

A. Datasets

We employ five datasets for the multi-label vertex classifica-
tion task. BlogCatalog and YouTube are small graphs with less
than 10 million edges, while the others are large graphs with

more than 10 million but less than 10 billion edges. For the link
prediction task, We have four datasets in which vertex labels are
not available. Livejournal is the large graph, while the others
are very large graphs with more than 10B edges. These datasets
are of different scales and but have been widely used in network
embedding literature [7], [17]. The statistics of datasets are listed
in Table II.

BlogCatalog [37] is a network of relationships of online users.
The labels represent the interests of the users.

YouTube [21] is a video-sharing website, which allows user to
upload, view, rate and share videos. The vertex labels represent
the user’s taste in the video.

Friendster-small [38] is a sub-graph induced by all the labeled
vertices in Friendster. The vertex labels in this network are the
same as those in Friendster.

Friendster [38] is a large social network in an online gaming
site. For some of the vertices, they have labels representing the
groups the user joined.

OAG [39] is a publicly available academic graph opened by
Microsoft Academic [39] and AMiner.org [40]. The vertex labels
represent the study fields of each author.

Livejournal [41] is an online blogging site, where users can
follow others to form a large social network.

ClueWeb [42] was created to support research on information
retrieval and related human language technologies. The links
between webs form the very large graphs.

Hyperlink2014 [43] was extracted from the Common Crawl
Corpus released in April 2014, covering 1.7 billion web pages
and 124 billion hyperlinks between these pages.

Hyperlink2012 [43] was extracted from the 2012 Common
Crawl Corpus covering 3.5 billion web pages and 225 billion
hyperlinks between these pages.

B. Experimental Settings

Baselines and Hyper-Parameters Setting. We compare
SketchNE with nine SOTA network embedding methods,
including PyTorch-BigGraph (PBG) [11], GraphVite [12],
NetMF [13], NetSMF [7], ProNE [18], LightNE [17],
RandNE [24], FastRP [25] and NRP [23]. We also com-
pare SketchNE with four GNN methods, including DGI [44],
GraphCL [45], GCC [46] and GraphSAGE [47]. For all the
baselines originally run on CPU and SketchNE, we test them
with all the datasets with 88 threads on a server with two Intel
Xeon E5-2699 v4 CPUs (88 virtual cores in total) and 1.5 TB
memory. For GraphVite, we present the results obtained from the
original paper (if existed), which uses a 4×P100 GPU server, and
otherwise run it on a 4×V100 GPU server to get the results. For
GNN methods, we run it on a server with a GeForce GTX 1080
Ti GPU to get the results. All the baselines are evaluated with the
hyperparameters set default in the corresponding paper’s GitHub
Repository or tuned for the best performance. Their settings are
as follows.

NetMF [13]. We download the authors’ official source codes3,
and run experiments with default setting: T = 10, k = 256.

3https://github.com/xptree/NetMF

Authorized licensed use limited to: Tsinghua University. Downloaded on September 19,2023 at 12:47:55 UTC from IEEE Xplore. Restrictions apply.

https://github.com/xptree/NetMF

XIE et al.: SKETCHNE: EMBEDDING BILLION-SCALE NETWORKS ACCURATELY IN ONE HOUR 10673

TABLE II
STATISTICS OF DATASETS

RandNE [24]. We download the authors’ official source
codes4, and follow the default hyper-parameter setting for Blog-
Catalog. For other datasets, we follow the suggestion of tuning
hyper-parameters from the source codes. The order is from 1 to
3, and the weights are searched according towi+1 = βiwi where
βi is from {0.01, 0.1, 1, 10, 100}.

FastRP [25]. We download the authors’ official source codes5,
and follow the authors’ suggestion for hyper-parameter setting.
α1, α2 and α3 are set to 0, 0 and 1, respectively. We use the
official tuning script to tune α4 and the normalization strength
β. The search ranges for β and α4 are [−1, 0] and [2−3, 26],
respectively.

NRP [23]. We download the authors’ official source codes6,
and follow setting in [23]: l1 = 20, l2 = 10, α = 0.15, ε = 0.2,
and λ = 10.

PBG [11]. We download the authors’ official source codes7,
and run the example script for Livejournal. For other datasets,
we run the codes with default 30 iterations and report the best
result.

GraphVite [12]. We adopt the reported results for YouTube,
Friendster-small and Friendster in the original paper [12]. For
other datasets, we run the authors’ official source codes8 with
default setting. For Livejournal, other methods select d = 1024,
while the official implementation of GVT9 only allows the
selection of d up to 512.

NetSMF [7]. We download the authors’ official source
codes10, and run with the default hyper-parameter setting.

ProNE [18]. We use the high-performance version of
ProNE released by the LightNE GitHub Repository11, and
keep the hyper-parameters the same as those in [18]: p = 10,
θ = 0.5, μ = 0.2.

LightNE [17]. We download the authors’ official source
codes12, and run experiments with the default scripts and the
parameter setting according to its original paper.

SketchNE. We set parameters b = 1, z = 8, s1 = 100, s2 =
1000 for all datasets and choose T equal 2, 5 or 10, except on the
very large graphs where we set s1 = 0. We follow the embedding
dimension d setting in [11], [12], [17], and let the other baselines
follow the same setting. The eigen-decomposition rank k should
be larger than d. The parameters α and q affect the experimental

4https://github.com/ZW-ZHANG/RandNE
5https://github.com/GTmac/FastRP
6https://github.com/AnryYang/NRP-code
7https://github.com/facebookresearch/PyTorch-BigGraph
8https://github.com/DeepGraphLearning/graphvite
9https://graphvite.io/docs/0.2.1/api/solver.html#graphvite.solver.

GraphSolver
10https://github.com/xptree/NetSMF
11https://github.com/xptree/LightNE
12https://github.com/xptree/LightNE

TABLE III
HYPER-PARAMETERS FOR SKETCHNE

results to a larger extent. The bigger q, the more accurate the
eigen-decomposition and thus the better the performance. We
tune α and q in the experiments, choosing α in the range
[0.35, 0.5] with step 0.05 and q in the range [5,30] with step
5. All parameter settings for SketchNE are listed in Table III.

The Setting for GNN Methods. To compare SketchNE with
GNN methods, we choose DGI [44], GraphCL [45], GCC [46]
and GraphSAGE [47] as the baselines. We download the of-
ficial source codes released in the original papers, and run
with the default hyper-parameter setting. Considering the fact
that most GNNs require vertex features as input, we follow
the experimental setting in [48], which is to generate random
features for vertices. Specifically, for DGI and GraphCL, we
generate a 128-dimensional random vector following the Xavier
uniform or normal distribution [49] for each vertex. However,
for GraphSAGE, we use its “identity features” as suggested in its
original paper (See Section III-B of [47]) where each vertex has
a learnable representation. DGI, GraphCL and GraphSAGE are
trained on each dataset in an unsupervised way, we obtain the
embedding matrix after the training process of these methods
converges. GCC is a pretrained GNN model which does not
require training-from-scratch on downstream tasks, thus we
download the pretrained model and then encode every vertex
on our datasets to a 64-dimensional embedding.

The Setting for Vertex Classification. To facilitate a fair com-
parison, we follow the training ratio setting in [2], [7], [12],
[17]. A portion of labeled vertices are sampled for training and
the remaining are used for testing. We complete the task by
using one-vs-rest logistic regression implemented by LIBLIN-
EAR [50]. The prediction procedure is repeated five times and
the average performance is evaluated in terms of both Micro-F1
and Macro-F1 [51].

Authorized licensed use limited to: Tsinghua University. Downloaded on September 19,2023 at 12:47:55 UTC from IEEE Xplore. Restrictions apply.

https://github.com/ZW-ZHANG/RandNE
https://github.com/GTmac/FastRP
https://github.com/AnryYang/NRP-code
https://github.com/facebookresearch/PyTorch-BigGraph
https://github.com/DeepGraphLearning/graphvite
https://graphvite.io/docs/0.2.1/api/solver.html#graphvite.solver.GraphSolver
https://graphvite.io/docs/0.2.1/api/solver.html#graphvite.solver.GraphSolver
https://github.com/xptree/NetSMF
https://github.com/xptree/LightNE
https://github.com/xptree/LightNE

10674 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 10, OCTOBER 2023

Fig. 2. Vertex classification performance (Micro-F1 and Macro-F1) w.r.t. the ratio of training data. For methods that cannot handle computation or cannot finish
job in one day, the results are not available and thus not plotted in this figure.

The Setting for Link Prediction. For Livejournal, we follow
the exactly same settings in Pytorch-BigGraph. For other three
billion-scale graphs, we follow LightNE to set up the link
prediction evaluation. We randomly excludes 0.00001% edges
from the training graph for evaluation. When training SketchNE
on these three graphs, the spectral propagation step is omitted
due to memory cost and we set d = 32 except Hyperlink2012,
where we use d = 16. We rank positive edges among randomly
sampled corrupted edges to get the ranking metrics on the test
set after training. We evaluate the link prediction task with four
metrics—mean rank (MR), HITS@10, HITS@50, and AUC.

C. Experimental Results

Vertex Classification Results. We summarize the multi-label
vertex classification performance in Fig. 2. In BlogCatalog,
SketchNE achieves significantly better Micro-F1 and Macro-F1
than the second best method LightNE (by 3.5% on average).
In YouTube [21], SketchNE show comparable performance to
LightNE and GraphVite, while show significantly better results
than others. In OAG [39], SketchNE achieves better performance
than LightNE—the second best baseline on this data (Micro-F1
improved by 5.4% on average). In Friendster-small, and Friend-
ster [38], SketchNE achieves the best performance among all
baselines. To illustrate the effectiveness of SketchNE versus
GNN methods, we test them on the BlogCatalog and YouTube
datasets. The non-informative features with Xavier uniform
distribution or Xavier normal distribution show almost the same
performance and we retain the better results between the two
distributions in Fig. 2. On BlogCatalog, SketchNE achieves sig-
nificantly better Micro-F1 and Macro-F1 than all of them—DGI,
GraphCL, GCC, and GraphSage. On YouTube, GraphSAGE and
GCC can complete the training, while GraphCL and DGI fail
due to the limitation of GPU memory size. A recent work [52] re-
vealed that DGI cannot scale to large graphs. Because GraphCL
is built on top of DGI, it also cannot scale to large graphs.
For very large graphs, all the GNN baselines cannot finish the
training with its original code implementation due to either the

TABLE IV
LINK PREDICTION COMPARISON. LJ, CW, HL14 AND HL12 STANDS FOR

LIVEJOURNAL, CLUEWEB, HYPERLINK2014 AND HYPERLINK2012,
RESPECTIVELY

limitation of GPU memory size or unconvergence within a rea-
sonable time. Specifically, SketchNE outperforms GraphSAGE
on YouTube (28.9% improvement for Micro-F1 and 44.6% for
Macro-F1 on average). SketchNE achieves significantly better
performance than GCC on YouTube (71.5% improvement for
Micro-F1 and 197.4% for Macro-F1 on average).

Overall, SketchNE has significantly better or comparable
classification results compared to other methods. Compared
to RandNE, FastRP and NRP, which omit element-wise
function for scalability, SketchNE shows significantly better
performance. It proves that the element-wise function is crucial
for learning high quality embedding and that the method in
Section III-A to factorize element-wise function of low rank
matrix is practical. Overall, the vertex classification results
illustrate the effectiveness superiority of SketchNE.

Authorized licensed use limited to: Tsinghua University. Downloaded on September 19,2023 at 12:47:55 UTC from IEEE Xplore. Restrictions apply.

XIE et al.: SKETCHNE: EMBEDDING BILLION-SCALE NETWORKS ACCURATELY IN ONE HOUR 10675

TABLE V
EFFICIENCY COMPARISON AMONG SKETCHNE AND OTHER NETWORK EMBEDDING BASELINES

Link Prediction Results. Table IV lists the link prediction
performance. For Livejournal, SketchNE outperforms all base-
lines in terms of MR, HITS@10, and HITS50. For the three
billion-scale networks—ClueWeb, Hyperlink2014, and Hyper-
link2012, we only report the results of LightNE and SketchNE,
while other network embedding methods cannot finish running
due to excessive memory or/and time cost, and GNN methods
fail due to either the limitation of GPU memory size or un-
convergence within a reasonable time. The results of LightNE
are reported by choosing edge sample parameters to reach
1.5 TB memory bound. On these datasets, SketchNE produces
significant outperformance over LightNE as measured by all four
metrics. Take Hyperlink2012—the largest one with 3.5 billion
vertices and 225 billion edges—for example, SketchNE achieves
relative gains of 278%, 282%, 130%, and 24% over LightNE (the
second best baseline on Livejournal) in terms of MR, HITS@10,
HITS@50, and AUC.

More Discussion on the Performance of GNNs. It is inter-
esting to see that network embedding (NE) methods (not only
our SketchNE, but also other NE methods such as FastRP,
NRP and ProNE) significantly outperform GNN methods in
vertex classification on BlogCatalog and YouTube datasets, as
well as link prediction on Livejournal dataset. We attribute
the poor performance of GNNs to the nature of the three
datasets themselves. These datasets (and corresponding tasks)
are mainly proximity-based, so the inductive bias of NE methods
that proximal vertices should have similar representations can
significantly boost their performance. However, GNN methods
usually consider more complex and general information such as
structure and attributes, which may limit their performance in
proximity-based tasks.

Time and Memory Efficiency. We report the running time and
memory cost of SketchNE and other eight network embedding

TABLE VI
TIME COMPARISON AMONG SKETCHNE AND GNN BASELINES. “×” INDICATES

THAT THE CORRESPONDING ALGORITHM IS UNABLE TO HANDLE THE

COMPUTATION DUE TO THE LIMITED-SIZE GPU MEMORY. LARGER DATASETS

ARE NOT LISTED DUE TO THE SCALABILITY ISSUE OF GNN MODELS

baselines on all nine datasets in Table V. Time-wise, on small
datasets with millions of edges, the running time of SketchNE is
relatively comparable to other baselines. However, on networks
of billions of edges, e.g., Friendster, ClueWeb, Hyperlink2014
and Hyperlink2012, it takes SketchNE the least time to embed
them. The GNN baselines, DGI and GraphCL are limited by
GPU memory for the full-graph training and difficult to scale to
large graphs, while GCC and GraphSAGE show slow conver-
gence because it is based on graph sampling. For example, the
training of GraphSAGE (trained via neighborhood sampling, a
popular graph sampling method) on BlogCatalog (the smallest
graph which consists of 10,312 vertices and 333,983 edges)
using a GeForce GTX 1080 Ti GPU costs more than six hour,
while it costs only 2 seconds for SketchNE to run the same
task. We list all the time comparison among SketchNE and
GNN baselines in Table VI. Memory-wise, we can observe
that SketchNE demands less memory than all baselines on all
datasets except using slightly more memory than NetSMF and
ProNE on the small Livejournal data, empowering it to go for

Authorized licensed use limited to: Tsinghua University. Downloaded on September 19,2023 at 12:47:55 UTC from IEEE Xplore. Restrictions apply.

10676 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 10, OCTOBER 2023

Fig. 3. The validation of the effectiveness of freigs.

the largest networks considered and beyond. For example, the
running time of SketchNE on ClueWeb [42] is 37.7 minutes
and the peak memory cost is 612 GB, which is 2× faster than
LightNE and saves more than 59% memory. The results on
Hyperlink2014 and Hyperlink2012 [43] further demonstrate the
efficiency of SketchNE. It is worth noting that SketchNE can
embed the Hyperlink2012 network with 3.5 billion vertices and
225 billion edges in 1.0 hours by using 1,321 GB memory
on a single machine. In conclusion, the results on the three
very large-scale graphs demonstrate that SketchNE can achieve
consistently and significantly better efficiency than LightNE in
terms of both running time and memory cost.

D. Ablation and Case Studies

Efficiency and Effectiveness of Each Step of SketchNE.
First, we focus on the fast randomized eigen-decomposition
(freigs, Algorithm 6 Line 1). Halko et al. [29] has shown
that it is challenging to perform eigen-decomposition on
D−1/2AD−1/2. We choose YouTube as an example, whose
related eigenvalues are shown in Fig. 3(a). The eigenvalues of
D−1/2AD−1/2 with power iteration q = 20 and q = 100 are
far from correct, as the correct largest eigenvalue should be 1.
The eigsh [28] is not able to complete this job in three days.
The results illustrate the requirement to use modified Lapla-
cian matrix for fast randomized eigen-decomposition. When
we choose α = 0.4, the eigenvalues of fast randomized eigen-
decomposition (q = 20) on D−0.4AD−0.4 is indistinguishable
from the eigenvalues computed by eigsh when k < 140. The
running time of fast randomized eigen-decomposition is 20
seconds while eigsh costs 31 minutes, which proves the ac-
curacy and efficiency of fast randomized eigen-decomposition.
Then, we replace the eigen-decomposition (eigsh) of NetMF
with Algorithm 5 and evaluate the Micro-F1 result of Blog-
Catalog between NetMF and NetMF (w/ freigs) in Fig. 3(b).
The results show the effectiveness of freigs. Next, we focus
on the effects of sparse-sign randomized single-pass SVD and
spectral propagation. SketchNE (w/o spectral) and SketchNE
(w/ spectral) represent the result of initial and enhanced em-
beddings, respectively. The vertex classification result is shown
in Fig. 4. The performance of model (w/o spectral) has been
satisfactory, which proves the effectiveness of the sparse-sign

Fig. 4. The embedding performance comparison.

Fig. 5. The trade-offs between efficiency and performance.

randomized single-pass SVD. Combining with spectral propaga-
tion, SketchNE (w/ spectral) shows better results, demonstrating
the effect of spectral propagation.

The Effects of Parameter q. Here we need to pay attention
to q, which determines the accuracy of the fast randomized
eigen-decomposition. Thus, we make a trade-off between the
quality of the learned embeddings and the overall running
time. The peak memory cost is constant when we fix the over-
sampling parameters, column density z, eigen-decomposition
rank k, and embedding dimension d. By fixing other param-
eters for OAG, we enumerate q from {10, 15, 20, 25, 30}, the
efficiency-effectiveness trade-off of OAG is shown as Fig. 5. We
also add LightNE results with different edge samples M from
{1Tm, 5Tm, 7Tm, 10Tm, 13Tm, 17Tm}. The peak memory
of SketchNE is still 283 GB while that of LightNE is 553 GB,
682 GB, 776 GB, 936 GB, 1118 GB and 1391 GB, respectively.
Fig. 5 shows that SketchNE can learn more effective embeddings
than LightNE when the running time is constant with less mem-
ory cost. The experiment proves that users can adjust SketchNE
flexibly according to time/memory budgets and performance
requirements.

The Effects of Parameter α. We also analyze the influence of
parameter α, which balances the accuracy of fast randomized
eigen-decomposition on modified Laplacian matrix and the ap-
proximation error of (11). We select here YouTube and OAG as
example datasets for the ablation study. We vary the parameter
α from {0.25, 0.3, 0.35, 0.4, 0.45, 0.5} and fix other parameters.
The change of SketchNE’s performance as the α varies can be
shown in Fig. 6. From it we can see that when settingα = 0.5, the
eigen-decomposition on the Laplacian matrix has a bad accuracy

Authorized licensed use limited to: Tsinghua University. Downloaded on September 19,2023 at 12:47:55 UTC from IEEE Xplore. Restrictions apply.

XIE et al.: SKETCHNE: EMBEDDING BILLION-SCALE NETWORKS ACCURATELY IN ONE HOUR 10677

Fig. 6. The performance change when varying parameter α.

Fig. 7. Runtime of SketchNE v.s. the number of threads.

and therefore causes a loss of performance in Fig. 6. Fig. 6 also
shows that SketchNE can learn almost the best embeddings when
setting α in the range [0.35, 0.45].

The Sketching Method. We download the official source
codes13 of Polynomial Tensor Sketch [31], and set k = 10, r =
11,m = 12, which makes dimension m× r + 1 slightly big-
ger than SketchNE’s d = 128 for BlogCatalog. We replace the
sparse-sign randomized single-pass SVD in SketchNE with the
polynomial tensor sketch algorithm, which is an alternative
solution to factorize f ◦(LR). Experiments on BlogCatalog
show that SketchNE with sparse-sign randomized single-pass
SVD performs much better than SketchNE with polynomial
tensor sketch, achieving a 44%/67.8% relative improvement on
Micro-F1/Macro-F1 with 10% of training data.

The Number of Threads. In this work, we use a single-machine
shared memory implementation with multi-threading accelera-
tion. We set the number of threads to be 1, 3, 5, 10, 20, 40, 60,
88, and report the corresponding running time of SketchNE in
Fig. 7. SketchNE takes 22.8 hours to embed the Hyperlink2012
network with 1 threads and 1.9 hours with 40 threads, achieving
a 12× speedup ratio (with ideal being 40×). This relatively good
sub-linear speedup supports SketchNE to scale up to networks
with hundreds of billions of edges.

V. RELATED WORK

In this section, we first review the related work of network em-
bedding and graph neural networks, and dicuss their difference

13https://github.com/insuhan/polytensorsketch

from a vertex similarity perspective. Then we review related
work on randomized matrix factorization.

Network Embedding (NE). Network embedding has been
comprehensively studied over the past decade. Recent work
about network embedding can be divided into two cate-
gories. The first category is based on skip-gram methods in-
spired by word2vec [10], including DeepWalk [2], Line [4],
node2vec [20]. These methods rely on stochastic gradient de-
scent to optimize a logistic loss. The second category method
is based on matrix factorization, using SVD or other matrix
decomposition techniques to generate the best low-rank approxi-
mation [53]. GraRep [54], HOPE [55], NetMF [13], NetSMF [7],
ProNE [18], NRP [23], LightNE [17] and PANE [56] are
methods in this category. There are several high performance
embedding systems for large graphs have been developed.
GraphVite [12], a CPU-GPU hybrid network embedding system,
is developed based on DeepWalk [2] and LINE [4]. In GraphVite,
CPU is used to perform graph operation, and GPU is used
to compute linear algebra. Nevertheless, the GPU memory is
a disadvantage when processing billion scale networks, lim-
iting widespread use. Based on DeepWalk [2] and LINE [4],
PyTorch-BigGraph [11] has been proposed for distributed mem-
ory machines. It achieves load balancing by graph partition and
synchronization through a shared parameter server. In this work,
we propose SketchNE, which leverages the merit of NetSMF and
LightNE, and addresses their limitation in speed and memory
overhead.

Graph Neural Networks (GNNs). GNNs introduce deep neural
networks into graph learning, including GCN [57], GAT [58],
GIN [59], ie-HGCN [48], GCC [46], GraphCL [45], DGI [44]
and GraphSAGE [47]. In practice, scaling GNN models to
large graphs can be time consuming. The training process of
GNN models can be classified into two main types. The first
type is full-graph training where each gradient descent step
requires traversing the full graph and thus the time complexity
is proportional to the graph size. The second type is graph
sampling-based where each gradient descent step only involves
sampled subgraphs. Although the time complexity for each
gradient descent step is significantly reduced by sampling, the
number of gradient descent steps required for convergence is
empirically proportional to the graph size, which makes the
overall time complexity proportional to the graph size. There-
fore, training GNNs on billion-scale graphs relies on distributed
computing supports with both CPUs and GPUs, such as the
one used for the PinSage [9], Psgraph [60], AGL [61] and
Neugraph [62] systems, while the premise of SketchNE is to
embed billion-scale graphs into latent embeddings with only a
CPU server efficiently.

In this work, we also compare several GNNs with our pro-
posed network embedding solution, SketchNE. For a fair com-
parison with network embedding methods which mainly conduct
unsupervised learning on graphs without attributes, we focus
on GNNs which can be trained (1) in an unsupervised/self-
supervised way and (2) without additional vertex and edge
features, including GraphSAGE [47], DGI [44], GCC [46],
GraphCL [45] and ie-HGCN [48]. GraphSAGE and DGI
propose loss functions which can be used to train GNNs

Authorized licensed use limited to: Tsinghua University. Downloaded on September 19,2023 at 12:47:55 UTC from IEEE Xplore. Restrictions apply.

https://github.com/insuhan/polytensorsketch

10678 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 10, OCTOBER 2023

models in an unsupervised manner. GCC proposes a framework
to capture the universal network topological properties in a
self-supervised way. GraphCL improves the performance of
graph self-supervised learning by data augmentations. ie-HGCN
replaces vertex attributes in GNNs with random initialized fea-
tures.

Randomized Matrix Factorization. As the amount of data
continues to increase, the popularity of randomized matrix
computations has grown significantly. Randomized SVD can
be an alternative to conventional SVD methods, because it
involves the same or fewer floating-point operations and is
more efficient for truly large high-dimensional data, by ex-
ploiting modern computing architectures [29]. As an applica-
tion, frPCA [32] is developed for large-scale sparse data with
better performance than conventional PCA algorithms. Ran-
domized SVD has shown superiority in recent network em-
bedding methods such as NetSMF, ProNE, and LightNE. Over
the past few years, several single-pass SVD algorithms [30],
[63] based on randomized matrix sketch have been intro-
duced for streaming data scenarios. The efficiency and mem-
ory limitation of NetMF will be solved by randomized matrix
factorization.

VI. CONCLUSION

In this work, we propose SketchNE, a fast, memory-efficient,
and scalable network embedding method. We formulate the
computation goal of NetMF as factorizing an element-wise
function of low-rank matrix and then analyze its computational
challenges. SketchNE resolves these challenges by leveraging
various randomized linear sketch techniques, including but not
limited to sparse-sign matrix, single-pass SVD, and fast eigen-
decomposition. We use sparse-sign random projection matrix to
solve the matrix multiplication challenge between f ◦(LR) and
random projection matrix, and generate a sketch that can capu-
ture the dominant information of f ◦(LR). Then, we solve the
challenge in constructing reduced matrix by single-pass SVD.
Second, we propose a fast randomized eigen-decomposition
algorithm for modified Laplacian matrix. To enhance the per-
formance of embedding, spectral propagation is adopted and
a high-performance parallel graph processing stack GBBS is
used to achieve memory-efficiency. The main computation steps
of SketchNE are highly parallelizable, which is thus well sup-
ported by the MKL library and OpenMP. With the help of
these techniques, SketchNE achieves the best performance on
vertex classification and link prediction among state-of-the-art
methods across diverse datasets. Notably, SketchNE can learn
high-quality embeddings for a network with 3.5 billion vertices
and 225 billion edges in 1.0 h by using 1,321 GB memory on
a single machine, and the learned embeddings offer a 282%
relative HITS@10 improvement over LightNE on the link pre-
diction task. In the future, we plan to extend the method to handle
dynamic and heterogeneous networks. Since the sparse-sign ran-
domized single-pass SVD is proposed for solving the problem
f ◦(LR), it is foreseeable that Algorithm 4 may have advan-
tages in approximating the basic compoents in deep learning
network.

REFERENCES

[1] W. L. Hamilton, “Graph representation learning,” Synth. Lectures Artif.
Intell. Mach. Learn., vol. 14, no. 3, pp. 1–159, 2020.

[2] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of
social representations,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discov.
Data Mining, 2014, pp. 701–710.

[3] J. Wang, P. Huang, H. Zhao, Z. Zhang, B. Zhao, and D. L. Lee, “Billion-
scale commodity embedding for e-commerce recommendation in Al-
ibaba,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining,
2018, pp. 839–848.

[4] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “LINE: Large-
scale information network embedding,” in Proc. 24th Int. Conf. World
Wide Web, 2015, pp. 1067–1077.

[5] R. Ramanath et al., “Towards deep and representation learning for talent
search at linkedin,” in Proc. Conf. Inf. Knowl. Manage., 2018, pp. 2253–
2261.

[6] Y. Dong, N. V. Chawla, and A. Swami, “metapath2vec: Scalable represen-
tation learning for heterogeneous networks,” in Proc. ACM SIGKDD Int.
Conf. Knowl. Discov. Data Mining., 2017, pp. 135–144.

[7] J. Qiu et al., “NetSMF: Large-scale network embedding as sparse ma-
trix factorization,” in Proc. 24th Int. Conf. World Wide Web, 2019,
pp. 1509–1520.

[8] M. Academic, “Multi-sense network representation learning in microsoft
academic graph,” 2020. Accessed: Nov. 21, 2022. [Online]. Available:
https://www.microsoft.com/en-us/research/project/academic/articles/
multi-sense-network-representation-learning-in-microsoft-academic-
graph/

[9] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J.
Leskovec, “Graph convolutional neural networks for web-scale recom-
mender systems,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data
Mining, 2018, pp. 974–983.

[10] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation
of word representations in vector space,” in Proc. Int. Conf. Learn.
Representations, 2013. [Online]. Available: http://arxiv.org/abs/1301.
3781

[11] A. Lerer et al., “PyTorch-BigGraph: A large-scale graph embedding sys-
tem,” in Proc. Mach. Learn. Syst., 2019, pp. 120–131.

[12] Z. Zhu, S. Xu, J. Tang, and M. Qu, “GraphVite: A high-performance CPU-
GPU hybrid system for node embedding,” in Proc. 24th Int. Conf. World
Wide Web, 2019, pp. 2494–2504.

[13] J. Qiu, Y. Dong, H. Ma, J. Li, K. Wang, and J. Tang, “Network embedding
as matrix factorization: Unifying deepwalk, LINE, PTE, and node2vec,”
in Proc. 11th ACM Int. Conf. Web Search Data Mining, 2018, pp. 459–467.

[14] A. Vaswani et al., “Attention is all you need,” in Proc. Int. Conf. Neural
Inf. Process. Syst., 2017, pp. 5998–6008.

[15] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural net-
works,” in Proc. 14th Int. Conf. Artif. Intell. Statist., 2011, pp. 315–323.

[16] T. Hofmann, B. Schölkopf, and A. J. Smola, “Kernel methods in machine
learning,” Ann. Statist., vol. 36, no. 3, pp. 1171–1220, 2008.

[17] J. Qiu, L. Dhulipala, J. Tang, R. Peng, and C. Wang, “LightNE: A
lightweight graph processing system for network embedding,” in Proc.
Int. Conf. Manage. Data, 2021, pp. 2281–2289.

[18] J. Zhang, Y. Dong, Y. Wang, J. Tang, and M. Ding, “ProNE: Fast and
scalable network representation learning,” in Proc. Int. Joint Conf. Artif.
Intell., 2019, pp. 4278–4284.

[19] L. Dhulipala, G. E. Blelloch, and J. Shun, “Theoretically efficient parallel
graph algorithms can be fast and scalable,” in Proc. Symp. Parallelism
Algorithms Architectures, 2018, pp. 393–404.

[20] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining,
2016, pp. 855–864.

[21] L. Tang and H. Liu, “Scalable learning of collective behavior based on
sparse social dimensions,” in Proc. Conf. Inf. Knowl. Manage., 2009,
pp. 1107–1116.

[22] V. Ivashkin and P. Chebotarev, “Do logarithmic proximity measures out-
perform plain ones in graph clustering?,” in Proc. Int. Conf. Netw. Anal.,
2016, pp. 87–105.

[23] R. Yang, J. Shi, X. Xiao, Y. Yang, and S. S. Bhowmick, “Homogeneous
network embedding for massive graphs via reweighted personalized pager-
ank,” Proc. VLDB Endowment, vol. 13, pp. 670–683, 2020.

[24] Z. Zhang, P. Cui, H. Li, X. Wang, and W. Zhu, “Billion-scale network
embedding with iterative random projection,” in Proc. Int. Conf. Des.
Mater., 2018, pp. 787–796.

[25] H. Chen, S. F. Sultan, Y. Tian, M. Chen, and S. Skiena, “Fast and accurate
network embeddings via very sparse random projection,” in Proc. Conf.
Inf. Knowl. Manage., 2019, pp. 399–408.

Authorized licensed use limited to: Tsinghua University. Downloaded on September 19,2023 at 12:47:55 UTC from IEEE Xplore. Restrictions apply.

https://www.microsoft.com/en-us/research/project/academic/articles/multi-sense-network-representation-learning-in-microsoft-academic-graph/
https://www.microsoft.com/en-us/research/project/academic/articles/multi-sense-network-representation-learning-in-microsoft-academic-graph/
https://www.microsoft.com/en-us/research/project/academic/articles/multi-sense-network-representation-learning-in-microsoft-academic-graph/
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781

XIE et al.: SKETCHNE: EMBEDDING BILLION-SCALE NETWORKS ACCURATELY IN ONE HOUR 10679

[26] D. Cohen-Steiner, W. Kong, C. Sohler, and G. Valiant, “Approximating
the spectrum of a graph,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discov.
Data Mining, 2018, pp. 1263–1271.

[27] J. Liu, C. Wang, M. Danilevsky, and J. Han, “Large-scale spectral cluster-
ing on graphs,” in Proc. Int. Joint Conf. Artif. Intell., 2013, pp. 1486–1492.

[28] R. B. Lehoucq, D. C. Sorensen, and C. Yang, Arpack Users’ Guide:
Solution of Large-Scale Eigenvalue Problems With Implicitly Restarted
Arnoldi Methods. Philadelphia, PA, USA: SIAM, 1998.

[29] N. Halko, P.-G. Martinsson, and J. A. Tropp, “Finding structure with
randomness: Probabilistic algorithms for constructing approximate matrix
decompositions,” SIAM Rev., vol. 53, no. 2, pp. 217–288, 2011.

[30] J. A. Tropp, A. Yurtsever, M. Udell, and V. Cevher, “Streaming low-rank
matrix approximation with an application to scientific simulation,” SIAM
J. Sci. Comput., vol. 41, no. 4, pp. A2430–A2463, 2019.

[31] I. Han, H. Avron, and J. Shin, “Polynomial tensor sketch for element-wise
function of low-rank matrix,” in Proc. IEEE Int. Conf. Mach. Learn. Appl.,
2020, pp. 3984–3993.

[32] X. Feng, Y. Xie, M. Song, W. Yu, and J. Tang, “Fast randomized PCA for
sparse data,” in Proc. Asian Conf. Mach. Learn., 2018, pp. 710–725.

[33] J. Shun and G. E. Blelloch, “Ligra: A lightweight graph processing
framework for shared memory,” ACM Sigplan Notices, vol. 48, no. 8,
2013, pp. 135–146.

[34] J. Kepner and J. Gilbert, Graph Algorithms in the Language of Linear
Algebra. Philadelphia, PA, USA: SIAM, 2011.

[35] J. Shun, L. Dhulipala, and G. E. Blelloch, “Smaller and faster: Parallel
processing of compressed graphs with ligra+,” in Proc. Data Compression
Conf., 2015, pp. 403–412.

[36] L. Dagum and R. Menon, “OpenMP: An industry-standard API for shared-
memory programming,” IEEE Comput. Sci. Eng., vol. 5, no. 1, pp. 46–55,
First Quarter 1998.

[37] L. Tang and H. Liu, “Relational learning via latent social dimensions,”
in Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2009,
pp. 817–826.

[38] J. Yang and J. Leskovec, “Defining and evaluating network communities
based on ground-truth,” Knowl. Inf. Syst., vol. 42, no. 1, pp. 181–213, 2015.

[39] A. Sinha et al., “An overview of microsoft academic service (MAS) and
applications,” in Proc. 24th Int. Conf. World Wide Web Companion, 2015,
pp. 243–246.

[40] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su, “Arnetminer: Ex-
traction and mining of academic social networks,” in Proc. ACM SIGKDD
Int. Conf. Knowl. Discov. Data Mining, 2008, pp. 990–998.

[41] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, “Community
structure in large networks: Natural cluster sizes and the absence of large
well-defined clusters,” Internet Math., vol. 6, no. 1, pp. 29–123, 2009.

[42] P. Boldi and S. Vigna, “The WebGraph framework I: Compression tech-
niques,” in Proc. 24th Int. Conf. World Wide Web, 2004, pp. 595–601.

[43] R. Meusel, S. Vigna, O. Lehmberg, and C. Bizer, “The graph structure in
the web – analyzed on different aggregation levels,” J. Web Sci., vol. 1,
pp. 33–47, 2015.

[44] P. Velickovic, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and R. D.
Hjelm, “Deep graph infomax,” in Proc. Int. Conf. Learn. Representations,
2019. [Online]. Available: https://openreview.net/forum?id=rklz9iAcKQ

[45] Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen, “Graph contrastive
learning with augmentations,” in Proc. Adv. Neural Inf. Process. Syst.,
2020, pp. 5812–5823.

[46] J. Qiu et al., “GCC: Graph contrastive coding for graph neural network pre-
training,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining,
2020, pp. 1150–1160.

[47] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning
on large graphs,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2017,
pp. 1024–1034.

[48] Y. Yang, Z. Guan, J. Li, W. Zhao, J. Cui, and Q. Wang, “Interpretable
and efficient heterogeneous graph convolutional network,” IEEE Trans.
Knowl. Data Eng., vol. 35, no. 2, pp. 1637–1650, Feb. 2023.

[49] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in Proc. 13th Int. Conf. Artif. Intell. Statist.,
2010, pp. 249–256.

[50] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin, “LIB-
LINEAR: A library for large linear classification,” J. Mach. Learn. Res.,
vol. 9, pp. 1871–1874, 2008.

[51] G. Tsoumakas, I. Katakis, and I. Vlahavas, “Mining multi-label data,”
in Data Mining and Knowledge Discovery Handbook. Berlin, Germany:
Springer, 2009, pp. 667–685.

[52] Y. Zheng, S. Pan, V. C. Lee, Y. Zheng, and P. S. Yu, “Rethinking and
scaling up graph contrastive learning: An extremely efficient approach
with group discrimination,” in Proc. Int. Conf. Neural Inf. Process. Syst.,
2022, pp. 10809–10820.

[53] C. Eckart and G. Young, “The approximation of one matrix by another of
lower rank,” Psychometrika, vol. 1, no. 3, pp. 211–218, 1936.

[54] S. Cao, W. Lu, and Q. Xu, “GraRep: Learning graph representations with
global structural information,” in Proc. Conf. Inf. Knowl. Manage., 2015,
pp. 891–900.

[55] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu, “Asymmetric transitivity
preserving graph embedding,” in Proc. ACM SIGKDD Int. Conf. Knowl.
Discov. Data Mining, 2016, pp. 1105–1114.

[56] R. Yang, J. Shi, X. Xiao, Y. Yang, J. Liu, and S. S. Bhowmick, “Scaling at-
tributed network embedding to massive graphs,” Proc. VLDB Endowment,
vol. 14, no. 1, pp. 37–49, 2020.

[57] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc. Int. Conf. Learn. Representations, 2017.
[Online]. Available: https://openreview.net/forum?id=SJU4ayYgl

[58] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio,
“Graph attention networks,” in Proc. Int. Conf. Learn. Representations,
2018. [Online]. Available: https://openreview.net/forum?id=rJXMpikCZ

[59] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural
networks?,” in Proc. Int. Conf. Learn. Representations, 2019. [Online].
Available: https://openreview.net/forum?id=ryGs6iA5Km

[60] J. Jiang et al., “PSGraph: How tencent trains extremely large-scale
graphs with spark?,” in Proc. IEEE 36th Int. Conf. Data Eng., 2020,
pp. 1549–1557.

[61] D. Zhang et al., “AGL: A scalable system for industrial-purpose
graph machine learning,” in Proc. VLDB Endowment, vol. 13, no. 12,
pp. 3125–3137, 2020.

[62] L. Ma et al., “Neugraph: Parallel deep neural network computation on
large graphs,” in Proc. USENIX Conf. Usenix Annu. Techn. Conf., 2019,
pp. 443–457.

[63] W. Yu, Y. Gu, J. Li, S. Liu, and Y. Li, “Single-pass PCA of large
high-dimensional data,” in Proc. Int. Joint Conf. Artif. Intell., 2017,
pp. 3350–3356.

Yuyang Xie currently working toward the PhD degree
in the Department of Computer Science and Technol-
ogy, Tsinghua University. His main research interests
include network embedding, representation learning
and matrix computation.

Yuxiao Dong (Senior Member, IEEE) is an Assistant
Professor of computer science with Tsinghua Univer-
sity. His research focuses on data mining, graph rep-
resentation learning, foundation models, and social
networks, with an emphasis on developing machine
learning models to addressing problems in Web-scale
systems. He received the 2017 SIGKDD Dissertation
Award Honorable Mention, 2022 IJCAI Early Career
Spotlight, and 2022 SIGKDD Rising Star Award.

Jiezhong Qiu received the PhD degree from
Tsinghua University, in 2022. He is a principal in-
vestigator of Research Center for Intelligent Com-
puting Platforms, Zhejiang Lab. His research in-
terests include algorithm design for large-scale in-
formation networks and representation learning for
graph-structured data. He received the 2022 SIGKDD
Dissertation Award Runner-up.

Authorized licensed use limited to: Tsinghua University. Downloaded on September 19,2023 at 12:47:55 UTC from IEEE Xplore. Restrictions apply.

https://openreview.net/forum?id=rklz9iAcKQ
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=ryGs6iA5Km

10680 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 10, OCTOBER 2023

Wenjian Yu (Senior Member, IEEE) received the BS
and PhD degrees in computer science from Tsinghua
University, Beijing, China, in 1999 and 2003, respec-
tively. He is currently a professor with the Depart-
ment of Computer Science and Technology with Ts-
inghua University. He has authored/coauthored three
books and about 200 papers in refereed journals and
conferences. His current research interests include
high-performance numerical algorithms, big-data an-
alytics, machine learning, and electronic design au-
tomation.

Xu Feng currently working toward the PhD degree
in the Department of Computer Science and Technol-
ogy, Tsinghua University. His main research interests
include randomized matrix decomposition and data
analysis for large-scale matrix.

Jie Tang (Fellow, IEEE) is a professor of the Depart-
ment of Computer Science with Tsinghua University.
He is a Fellow of the ACM and Fellow of AAAI. His
interests include artificial general intelligence, data
mining, social networks, and machine learning. He
was honored with the SIGKDD Test-of-Time Award
and SIGKDD Service Award.

Authorized licensed use limited to: Tsinghua University. Downloaded on September 19,2023 at 12:47:55 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

