Fast and Accurate Tensor Completion With Total Variation Regularized Tensor Trains

Ching-Yun Ko, Kim Batselier, Luca Daniel, Senior Member, IEEE, Wenjian Yu, Senior Member, IEEE, and Ngai Wong, Senior Member, IEEE

Abstract—We propose a new tensor completion method based on tensor trains. The to-be-completed tensor is modeled as a low-rank tensor train, where we use the known tensor entries and their coordinates to update the tensor train. A novel tensor train initialization procedure is proposed specifically for image and video completion, which is demonstrated to ensure fast convergence of the completion algorithm. The tensor train framework is also shown to easily accommodate Total Variation and Tikhonov regularization due to their low-rank tensor train representations. Image and video inpainting experiments verify the superiority of the proposed scheme in terms of both speed and scalability, where a speedup of up to 155% is observed compared to state-of-the-art tensor completion methods at a similar accuracy. Moreover, we demonstrate the proposed scheme is especially advantageous over existing algorithms when only tiny portions (say, 1%) of the to-be-completed images/videos are known.

Index Terms—Tensor completion, tensor-train decomposition, total variation, image restoration.

I. INTRODUCTION

Tensors are a higher-order generalization of vectors and matrices and have found widespread applications due to their natural representation of real-life multi-way data, such as images and videos [1]–[5]. Tensor completion generalizes the matrix completion problem, which aims at estimating missing entries from partially revealed data. For example, grayscale images are matrices (two-way tensors) that are indexed by two spatial variables, while color images are essentially three-way tensors with one additional color dimension. Grayscale and color videos are extensions of grayscale and color images by adding one temporal index. Thus image/video recovery tasks are indeed tensor completion problems. Although one can always regard a tensor completion task as multiple matrix completion problems, state-of-the-art matrix completion algorithms such as [6] have rather high computational costs and poor scalability. Moreover, the application of matrix completion methods to tensorial data overlooks a key insight in tensor completion, namely, the low tensor-rank assumption [4], [7]–[9] inherent to the data. For example, normally every two adjacent frames of a video are shot with a very short time interval, implying that only limited changes are allowed between two adjacent video frames. Similarly, the values among neighboring pixels in an image usually vary slowly. These intuitive low rank ideas have been successfully utilized in research areas such as collaborative filtering [10], multi-task learning [11], image/video recovery [4], [5], [7] and text analysis [12], [13].

A. Related Work

Most existing tensor completion methods are generalizations of matrix completion methods. Traditional matrix completion problems are generally formulated into the construction of a structurally low-rank matrix E that has the same observed entries:

$$\min_{E} \text{rank}(E), \quad \text{s.t.} \quad (E - O)_{\Omega} = 0,$$

where O represents the observed matrix with zero fillings at the missing entries, and Ω is the mapping that specifies the locations of known entries. Directly solving the above optimization problem is NP-hard, which resulted in extensive research on solving alternative formulations. Two popular candidates are to minimize the nuclear norm (being the convex envelope of the matrix rank-operator [14], [15]), or to use a factorization method [16] that decomposes the matrix E as the product of two small matrices. The nuclear norm approach has been generalized to tensor completion problems by unfolding the tensor along its k modes into k matrices and summing over their nuclear norms [4], [12], [17]. Total variation (TV) terms have also been integrated into this method in [18]. Correspondingly, the factorization method has also been generalized to tensors [7], [19], [20].

Another way to tackle tensor completion is based on the tensor multi-rank and tubal rank [21]–[23], which are intrinsically defined on three-way tensors such as color images and grayscale videos. It is remarked that multi-rank and tubal rank inspired methods are only applicable when the data are compressible in a t-SVD representation. Methods that exploit tensor decomposition formats were also introduced to tensor completion problems in recent years. In [24] and [25], the authors use the Canonical Polyadic (CP) decomposition for Bayesian tensor estimators. Imaizumi et al. [26] adopted tensor trains (TTs) and solved the optimization problem using a TT Schatten norm [27] via the alternating direction method of multipliers. Bengua et al. [28] also combined TT rank optimization with factorization methods introduced in [7]. In [9], Grasedyck et al. borrowed the traditional tensor completion problem formulation and adopted the tensor train format as the underlying data structure. By updating slices of the tensor cores using parts of the observed entries, the tensor train is completed through alternating least square problems. Wang et al. [29] designed a tensor completion algorithm by expanding the tensor trains in [9] to uniform TT-rank tensor rings using random normal distributed values, which yields higher recovery accuracies. However, using tensor rings suffers from two drawbacks: the relatively large storage requirement of a uniform TT-rank structure and a sensitivity of the obtained solution to its random initialization.

B. Our Contribution

In this paper we propose to adopt tensor trains when performing tensor completion, rather than using the CP and Tucker decomposition. The motivation behind this lies in the fact that determining the CP-rank is NP-hard while the TT-rank is easily determined from an SVD [30]. Also, the Tucker form requires exponentially large storage, which is not as economic as a tensor train. We further reformulate the problem as a regression task. The unknown completed tensor \mathbf{A} is thereby interpreted as an underlying regression model, while the observed “inputs” and “outputs” of the model are the multi-indices (coordinates) and values of the known tensor entries, respectively. The tensor completion problem is then solved by the following optimization problem

$$\min_{\mathbf{A} \in S_{\text{TT}}^{(d)}} \| S^T \text{vec}(\mathbf{A}) - y \|_2^2,$$

s.t. $\mathbf{A} \in S_{\text{TT}}^{(d)}$, and TT-rank($\mathbf{A}$) = (R_1, R_2, \ldots, R_d),

where $S_{\text{TT}}^{(d)}$ denotes the subspace of d-order tensor where each element can be represented in the tensor train format with d TT-cores. The binary matrix S^T selects the known entries of vec(\mathbf{A}), where vec(\mathbf{A}) denotes the vectorization of the unknown completed tensor \mathbf{A}. The vector y contains the values of the observed tensor entries. Minimizing $\| S^T \text{vec}(\mathbf{A}) - y \|_2^2$ therefore enforces that the desired solution needs to have nearly the same observed tensor entries. To regularize the problem, an additional low-rank constraint is added together with the requirement that the desired tensor is represented in the tensor train format, which will be explained in Section III. Moreover, other regularization terms such as Total Variation (TV) and Tikhonov regularization are readily integrated into this tensor train framework. The above problem is solved using an iterative method called the alternating linear scheme that iteratively solves small linear systems. The computationally most expensive steps are a singular value decomposition and QR decomposition. The numerical stability and monotonic convergence of the proposed method is guaranteed by these orthogonal matrix factorizations [31], [32].

The flexibility of our proposed model naturally permits various variants and creates more possibilities for recovery tasks. Particularly, the inputs and outputs in the proposed model can be grouped into batches. This favors parallelization and allows more room in tuning the number of equations and unknowns in least square problems. For example, the updating scheme in [9], [29] can be incorporated as one specific variant of our proposed plain architecture (without TV/Tikhonov regularizers) by grouping the inputs/outputs into I_k batches when updating the k-th core. However, this way of grouping inputs/outputs shows no evidence of balancing the number of equations and unknowns in the resulting least square problems and [9] has demonstrated a consistently inferior performance than [29], while we will show in later experiments that the proposed plain TTC model outperforms [29] in both time and accuracy. Lastly, it is remarked that there is no direct TT format employed in [28]. Instead, the TT rank optimization problem formed refers to enforcing the matricizations along k modes have pre-defined rank $= R_k$. This is equivalent to updating the products of the first k tensor train cores and the last $d-k$ cores as two matrices at the same time via a standard factorization method in matrix completions. In summary, the main contributions of this article are:

- The tensor completion problem is rephrased as a regression task and solved using the alternating linear scheme.
- Both the selection matrix S and tensor \mathbf{A} are never explicitly formed, which lifts the curse of dimensionality and results in a computationally efficient tensor completion algorithm.
- A deterministic TT-initialization method for image and video data is provided, which guarantees consistent results and is demonstrated to speed up convergence of our proposed tensor completion algorithm.
- Both TV and Tikhonov regularization are integrated into the tensor train framework. The addition of these regularization terms comes at almost no additional computational cost. The low TT-rank property of the matrices involved in the TV regularization, especially, ensures a computationally efficient algorithm. To the best of our knowledge, this is the first time that the Total Variation regularization term is incorporated in tensor train form.
- We propose a factorization scheme of the physical indices that can be exploited through tensor trains, which results in a better scalability of our method compared to state-of-the-art methods.
- The efficacy of the proposed algorithm is demonstrated by extensive numerical experiments. The proposed method shows a particular effectiveness and efficiency (155× speedup) in recovering severely damaged (large portions of missing pixels) high-resolution images. A comparable
Fig. 1. Graphical depiction of a scalar a, vector a, matrix A and 3-way tensor \mathbf{A}.

performance to the state-of-the-art methods is demonstrated for small image inpainting tasks.

The outline of the article is as follows. Necessary tensor and tensor train preliminaries are briefly introduced in Section II. The proposed tensor train completion model and algorithm are discussed in Section III. Numerical experiments comparing our proposed algorithm with state-of-the-art methods are given in Section IV. Finally, conclusions are drawn in Section V.

II. PRELIMINARIES

A d-way or d-order tensor $\mathbf{A} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_d}$ is an array where each entry is indexed by d indices i_1, i_2, \ldots, i_d. Tensors are generally high-dimensional arrays that generalize vectors and matrices. If all dimensions except one of a d-way tensor are equal to 1 (i.e., $I_k = 1$, for $k = 1, \ldots, t - 1, t + 1, \ldots, d$), the d-order tensor is essentially a vector of length I_1. Alternatively, any vector or matrix can be viewed as a d-way tensor by appending augmented dimensions that are size 1. We use the convention $1 \leq i_k \leq I_k$ for $k = 1, \ldots, d$. MATLAB notation is used to denote entries of tensors. In this paper, boldface capital calligraphic letters $\mathbf{A}, \mathbf{B}, \ldots$ are used to denote tensors, boldface capital letters A, B, \ldots denote matrices, boldface letters a, b, \ldots denote vectors, and Roman letters a, b, \ldots denote scalars. A set of d tensors, like that of a tensor train, is denoted as $\mathbf{A}^{(1)}, \mathbf{A}^{(2)}, \ldots, \mathbf{A}^{(d)}$. A useful representation of tensors is tensor network diagrams. These diagrams use a graphical depiction of scalars, vectors, matrices, and tensors as introduced in Figure 1, where each node represents a tensor and the number of free edges on each node represents its order. For example, matrices are 2-way tensors, and thus are represented by nodes with two unconnected edges. We now give a brief description of some required tensor operations. The generalization of the matrix-matrix multiplication to tensors involves a multiplication of a matrix with a d-way tensor along one of its d modes.

Definition 1: ([8, p. 460]) The k-mode product of a tensor $\mathbf{A} \in \mathbb{R}^{I_1 \times \cdots \times I_d}$ with a matrix $\mathbf{U} \in \mathbb{R}^{J \times I_k}$ is denoted $\mathbf{B} = \mathbf{A} \times_k \mathbf{U}$ and defined by

$$\mathbf{B}(i_1, \ldots, i_{k-1}, j, i_{k+1}, \ldots, i_d) = \sum_{i_k=1}^{I_k} \mathbf{U}(j, i_k) \mathbf{A}(i_1, \ldots, i_{k-1}, i_k, i_{k+1}, \ldots, i_d),$$

where $\mathbf{B} \in \mathbb{R}^{I_1 \times \cdots \times I_{k-1} \times J \times I_{k+1} \times \cdots \times I_d}$.

The proposed method also requires the knowledge of the matrix Khatri-Rao product, which is crucial in the construction of the input matrix S.

Definition 2: If $\mathbf{A} \in \mathbb{R}^{N_1 \times M}$ and $\mathbf{C} \in \mathbb{R}^{N_2 \times M}$, then their Khatri-Rao product $\mathbf{A} \odot \mathbf{C}$ is the $N_1 N_2 \times M$ matrix

$$(\mathbf{A}(\cdot, 1) \odot \mathbf{C}(\cdot, 1) \cdots \mathbf{A}(\cdot, M) \odot \mathbf{C}(\cdot, M)),$$

where \odot denotes the standard Kronecker product.

Two other basic operations include tensor reshaping and vectorization.

Definition 3: We adopt the MATLAB reshape operator “\texttt{reshape(\{A\{i_1, n_2, n_3 \ldots \}\}})”, which reshapes the d-way tensor \mathbf{A} with column-wise ordering preserved into a tensor with dimensions $n_1 \times n_2 \times \cdots \times n_d$. The total number of elements of \mathbf{A} must be the same as $n_1 \times n_2 \times \cdots \times n_d$.

Definition 4: The vectorization $\text{vec}(\mathbf{A})$ of a tensor \mathbf{A} is the vector obtained from concatenating all tensor entries into one column vector.

More details on these tensor operations can be found in [8, p. 459]. The mapping between the index i of the vector $\text{vec}(\mathbf{A})$ and the multi-index $[i_1, i_2, \ldots, i_d]$ of the corresponding tensor \mathbf{A} is bijective. Herein we adopt the mapping convention

$$i = i_1 + \sum_{k=2}^{d} (i_k - 1) \prod_{p=1}^{k-1} I_p$$

(1)

to convert the multi-index $[i_1, i_2, \ldots, i_d]$ into the linear index i. Before going into the formal definition of a tensor train decomposition, we give an intuitive interpretation of this process in Figure 2. For a given 4-way tensor as the one on the left-hand side, we analogize it to a large train cabin with four wheels (legs), while a tensor train decomposition separates the train cabin to four small connected cabins as shown on the right-hand side. Using a tensor train format can reduce the storage complexity of a tensor significantly. The storage of a tensor train of a d-way tensor $\mathbf{Z} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_d}$ requires approximately $d I R^2$ elements, where R is the maximum TT-rank, compared to the conventional I^d storage requirement. The formal definition is given as follows:

Definition 5: A tensor train of a vector $\mathbf{a} \in \mathbb{R}^{I_1 I_2 \cdots I_d}$ is defined as the set of d 3-way tensors $\mathbf{A}^{(1)}, \ldots, \mathbf{A}^{(d)}$ such that $\mathbf{a}(i)$ equals

$$\sum_{r_1=1}^{R_1} \cdots \sum_{r_d=1}^{R_d} \mathbf{A}^{(1)}(r_1, i_1, r_2) \mathbf{A}^{(2)}(r_2, i_2, r_3) \cdots \mathbf{A}^{(d)}(r_d, i_d, r_1),$$

(2)

where i is related to $[i_1, i_2, \ldots, i_d]$ via (1) and r_1, r_2, \ldots, r_d are auxiliary indices that are summed over. The dimensions R_1, R_2, \ldots, R_d of these auxiliary indices are called the tensor train ranks (TT-ranks).

The summations over the auxiliary indices are represented in Figure 2 by the connected edges between the different nodes. The second auxiliary index of $\mathbf{A}^{(d)}$ is R_1, which ensures that the summation in (2) results in a scalar. When $R_1 > 1$, the tensor train is also called a tensor ring or matrix product state with periodic boundary conditions [33], [34]. Throughout this article we always choose $R_1 = 1$.

The notion of a site-k-mixed canonical tensor train is very useful when implementing our proposed algorithm. In order to be able to define this notion, we first need to introduce left and right-orthogonal tensor train cores.

Definition 6: ([31, p. A689]) A tensor train core $\mathbf{A}^{(k)}$ is left-orthogonal if it can be reshaped into an $R_k I_k \times R_{k+1}$ matrix \mathbf{A} for which

$$\mathbf{A}^T \mathbf{A} = \mathbf{I}_{R_{k+1}}$$
applies. Similarly, a tensor train core $\mathbf{A}^{(k)}$ is right-orthogonal if it can be reshaped into an $R_k \times I_k R_{k+1}$ matrix \mathbf{A} for which

$$\mathbf{A} \mathbf{A}^T = \mathbf{I}_{R_k}$$

applies.

Definition 7: (Site-k-mixed-canonical tensor train) A tensor train is in site-k-mixed-canonical form [35] when all TT-cores $\mathbf{A}^{(l)}$ ($1 \leq l \leq k-1$) are left-orthogonal and TT-cores $\mathbf{A}^{(l)}$ ($k+1 \leq l \leq d$) are right-orthogonal.

One advantage of a tensor \mathbf{A} being in a site-k-mixed-canonical form is that its Frobenius norm is easily computed as

$$||\mathbf{A}||_F^2 = ||\mathbf{A}^{(k)}||_F^2 = \text{vec}(\mathbf{A}^{(k)})^T \text{vec}(\mathbf{A}^{(k)}).$$

III. Methodology

We first explain the basic idea of our proposed method without any TV or Tikhonov regularization in Sections III-A up to III-D. Discussions on how the tensor dimensions can be factorized and the TT-ranks chosen are given in Section III-E. The inclusion of both TV and Tikhonov regularization are discussed in Sections III-F and III-G, respectively.

A. Basic Idea

The proposed tensor completion method intrinsically relies on solving an underdetermined linear system under a low TT-rank constraint. For a given set of N multi-indices $[i_1, i_2, \ldots, i_d]$ and a corresponding vector of observed tensor entries $\mathbf{y} \in \mathbb{R}^N$, the goal is to obtain a tensor $\mathbf{A} \in \mathbb{R}^{I_1 \times \cdots \times I_d}$ that contains the same tensor entries. Equivalently, we form the optimization problem

$$\min_{\mathbf{A} \in \mathcal{S}^{(d)}} ||\mathbf{S}^T \text{vec}(\mathbf{A}) - \mathbf{y}||_2^2,$$

s.t. $\mathbf{A} \in \mathcal{S}^{(d)}_{\text{TT}}$, and TT-rank$(\mathbf{A}) = (R_1, R_2, \ldots, R_d)$, \hspace{1cm} (4)

where $\mathbf{S}^T \in \mathbb{R}^{N \times I_1 I_2 \cdots I_d}$ is the row selection matrix corresponding with the known multi-indices. In other words, we want $\mathbf{S}^T \text{vec}(\mathbf{A}) \in \mathbb{R}^{N \times 1}$ to be as close as possible to the observed entries \mathbf{y}, under the constraint that vec(\mathbf{A}) has a low-rank tensor train representation. We stress that the tensor \mathbf{A} is never computed explicitly in the proposed algorithm but is stored in its tensor train format instead. This is possible by exploiting the fact that S can be written as the Khatri-Rao product of d smaller binary matrices

$$S = S^{(d)} \otimes S^{(d-1)} \otimes \cdots \otimes S^{(1)}.$$

Equation (5) also implies that the matrix S never needs to be explicitly kept in memory. By storing the factor matrices $S^{(1)}, \ldots, S^{(d)}$ instead, the storage cost for S is reduced from $N (I_1 \cdots I_d)$ down to $N (I_1 + \cdots + I_d)$. The decomposition of S follows from the following definition.

Definition 8: For a tensor entry $\mathbf{A}(i_1, i_2, \ldots, i_d)$, the corresponding selection vector $s_{[i_1, i_2, \ldots, i_d]}$ is defined as

$$s_{[i_1, i_2, \ldots, i_d]} := e_{i_1}^{(d)} \otimes \cdots \otimes e_{i_d}^{(1)},$$

where $e_{i_k}^{(k)} \in \mathbb{R}^{I_k}$ ($k = 1, 2, \ldots, d$) is the i_k-th standard basis vector.

One can verify that

$$s_{[i_1, i_2, \ldots, i_d]}^T \text{vec}(\mathbf{A}) = \mathbf{A}(i_1, i_2, \ldots, i_d).$$

Note that the order of the Kronecker products is reversed to be consistent with the index mapping (1). We now define the n-th column of the $N \times I_d$ selection matrix $S^{(d)}$ as the standard basis vector $e_n^{(d)}$ of the n-th observed entry. Equation (5) then follows from the concatenation of (6) for each known multi-index.

Example 1: We use a small example to illustrate Definition 8. Consider a $3 \times 4 \times 2$ tensor \mathbf{A} with only 3 of the entries observed. The multi-indices of the three observed entries are

$$[2, 1, 2], [1, 3, 1], [3, 4, 2].$$

The corresponding selection vectors are then given by

$$s_{[2,1,2]} = e_2^{(3)} \otimes e_1^{(2)} \otimes e_1^{(1)},$$

$$s_{[1,3,1]} = e_1^{(3)} \otimes e_3^{(2)} \otimes e_1^{(1)},$$

$$s_{[3,4,2]} = e_2^{(3)} \otimes e_4^{(2)} \otimes e_3^{(1)}.$$

The corresponding selection matrices for each mode are then

$$S^{(1)} = \begin{bmatrix} e_1^{(1)} & e_1^{(1)} & e_1^{(1)} \end{bmatrix} \in \mathbb{R}^{3 \times 3},$$

$$S^{(2)} = \begin{bmatrix} e_2^{(2)} & e_3^{(2)} & e_4^{(2)} \end{bmatrix} \in \mathbb{R}^{4 \times 3},$$

$$S^{(3)} = \begin{bmatrix} e_1^{(3)} & e_3^{(3)} \end{bmatrix} \in \mathbb{R}^{2 \times 3}.$$

In our regression task, the d matrices $S^{(1)}, S^{(2)}, \ldots, S^{(d)}$ from (5) act as the inputs to the unknown model and the output is the vector of N observed tensor entries

$$\mathbf{y} = (y_1, y_2, \ldots, y_N)^T,$$

where typically $N \ll I_1 I_2 \cdots I_d$.

Fig. 2. Graphical depiction of the tensor train decomposition of a 4-way tensor \mathbf{A}.

Authorized licensed use limited to: Tsinghua University. Downloaded on July 10,2020 at 00:24:00 UTC from IEEE Xplore. Restrictions apply.
B. Tensor Train Initialization

The proposed tensor completion algorithm solves (4) iteratively using an alternating linear scheme (ALS). Starting from an initial guess for the tensor train of $\text{vec}(\mathbf{A})$, the ALS updates each tensor train core for a predefined number of iterations or until convergence. Each tensor train core update is achieved by solving a relatively small (compared to the original tensor size) least squares problem. A good initial guess is therefore of crucial importance to speed up convergence. Through extensive tests, we observed that the following heuristic initialization method for images and videos is effective in terms of convergence speed.

Suppose $\mathbf{V} \in \mathbb{R}^{h_1 \times h_2 \times \cdots \times h_L}$ is a tensor with missing entries. Before converting \mathbf{V} into a tensor train, the goal is to fill up the missing entries using information from the observed entries through two interpolation steps. First, each dimension of the tensor \mathbf{V} is resized by a factor h using a box-shaped interpolation kernel. The resulting tensor is denoted $\mathbf{W} \in \mathbb{R}^{(\lceil \frac{h_1}{h} \rceil \times \frac{h_1}{h}) \times h_2 \times \cdots \times (\frac{h_L}{h})}$ and its entries are then used to construct a tensor of the original size $\mathbf{X} \in \mathbb{R}^{h_1 \times h_2 \times \cdots \times h_L}$ through cubic kernel interpolation. Alternatively, one can use max or average pooling together with interpolation to achieve a similar effect. Note that for color images and videos the color dimension is not resized during the whole initialization procedure. We refer the readers to Section IV-A.5 for comparing the convergence behavior of the proposal versus a vanilla zero initialization. Finally, a tensor train with given TT-ranks is computed from \mathbf{X} by a modified version of the TT-SVD algorithm [30, p. 2301]. The TT-SVD algorithm decomposes a tensor to its tensor train format by consecutive reshapings and singular value decomposition (SVD). The modification is made in line 5 of the TT-SVD algorithm, where instead of using the original truncation parameter δ, each SVD is truncated to the prescribed TT-rank R_2, \ldots, R_d. Alternatively, one can use a Krylov subspace method (‘svds’ command in MATLAB) to determine the desired truncated SVD. Using the TT-SVD algorithm to obtain the initial estimate of tensor train also implies that the tensor train will be in site-d-mixed-canonical form. We provide a sketch of the proof:

Proof: A typical TT-SVD starts from the truncated SVD, $U_L^{(1) \Sigma(U_R^{(1)} U_L^{(1)T}) = \text{reshape}(\mathbf{A}, [I_1, I_2, \ldots, I_d])$. Since the entries of \mathbf{A} are real numbers, we have $U_L^{(1)T} U_L^{(1)} = I_{R_2}, \Sigma(U_R^{(1)T}) \in \mathbb{R}^{R_2 \times \cdots \times R_d}$. The first TT-core is then constructed as $\text{reshape}(U_L^{(1)}, [1, I_2, R_2])$, which is automatically left-orthogonal by definition. The norm $||\mathbf{A}||_F$ therefore resides in the $\Sigma U_R^{(1)T}$ part. Next, a truncated SVD is operated on $\text{reshape}(\Sigma(U_R^{(1)}), R_2, I_3, \ldots, I_d) = U^{(2)} \Sigma(U_R^{(2)} U^{(2)T})$, and the second TT-core is formed by $\text{reshape}(U^{(2)}, [R_2, I_2, R_2])$ that naturally satisfies left-orthogonality as well. At this point we have two left orthogonal TT-cores and a tensor that contains the norm $||\mathbf{A}||_F$. By continued application of this reshaping and a truncated SVD we subsequently obtain a site-d-mixed-canonical initial tensor train.

C. Alternating Linear Scheme

We now derive the least squares problem for updating each tensor train core during the ALS. The main motivation for solving (4) in tensor train form is the reduction in computational cost. Indeed, we will show how updating each tensor train core $\mathbf{A}^{(k)}$ during the ALS has a computational cost of $O(N(R_k I_k R_{k+1})^2)$ flops, whereas in vector form the computational cost would take approximately $O(N^2 I_d^2)$ flops. In addition, by specifying small TT-ranks one effectively regularizes the problem since the underdetermined system $S^T \text{vec}(\mathbf{A}) = \mathbf{y}$ will typically have an infinite number of solutions. In what follows, $\mathbf{s}_l^{(k)} \in \mathbb{R}^{R_l \times 1 \times \cdots \times R_{k-1}}$ denotes the l-th column of the matrix $S^{(k)}$. We further define the following useful auxiliary notations

$$a_{k,l}^{T,k,l} := (\mathbf{A}^{(1)} \times_2 \mathbf{s}_l^{(1)T}) \cdots (\mathbf{A}^{(k-1)} \times_2 \mathbf{s}_l^{(k-1)T}) \in \mathbb{R}^{R_k},$$

$$a_{k,l} := (\mathbf{A}^{(k+1)} \times_2 \mathbf{s}_l^{(k+1)T}) \cdots (\mathbf{A}^{d} \times_2 \mathbf{s}_l^{(d)T}) \in \mathbb{R}^{R_{k+1}},$$

for $k = 2, \ldots, d - 1$. Per definition $a_{c,k,l} = a_{c,d,l} = 1$. The l-th observed entry $y(l)$ can then be written as

$$y(l) = (a_{k,l}^{T,k,l} \otimes \mathbf{s}_l^{(k)T} \otimes \mathbf{a}_{c,k,l}) \text{vec}(\mathbf{A}^{(k)}).$$

(7)

The proof of equation (7) resembles that in [36, Theorem 4.1]. Writing out (7) for all N observed entries results in the following linear system

$$\mathbf{y} = \begin{pmatrix}
(a_{k,i}^{T,k,i} \otimes \mathbf{s}_l^{(k)T} \otimes \mathbf{a}_{c,k,i}) \\
(a_{k-2,i}^{T,k-2,i} \otimes \mathbf{s}_l^{(k-2)T} \otimes \mathbf{a}_{c,k-2,i}) \\
\vdots \\
(a_{k,N}^{T,k,N} \otimes \mathbf{s}_l^{(k)T} \otimes \mathbf{a}_{c,k,N})
\end{pmatrix} \text{vec}(\mathbf{A}^{(k)}),$$

(8)

where the matrix is $N \times R_k I_k R_{k+1}$. Solving (8) requires $O(N(R_k I_k R_{k+1})^2)$ flops. If the TT-ranks R_k, R_{k+1} are chosen such that $N \geq R_k I_k R_{k+1}$, one can solve the normal equations of (8) instead with a computational complexity of $O((R_k I_k R_{k+1})^3)$ flops, which comes at the cost of a squared condition number and possible loss of accuracy. It is possible to construct the matrix of (8) without computing any Kronecker product by exploiting the structure of the binary $\Sigma^{(k)}$ matrices. However, the total runtime of our proposed algorithm is dominated by solving the linear system (8) so we will not discuss this particular optimization any further. The key idea of the ALS is to solve (8) for varying values of k in a “sweeping” fashion, starting from the leftmost tensor train core $\mathbf{A}^{(1)}$ to the rightmost $\mathbf{A}^{(d)}$ and then back from the rightmost to the leftmost. The numerical stability of the ALS algorithm is guaranteed through an orthogonalization step using the QR decomposition [31, p. A701].

D. Tensor Train Completion Algorithm

The pseudocode of the proposed tensor train completion (TTC) algorithm is given as Algorithm 1. First, d binary input matrices $S^{(1)}, S^{(2)}, \ldots, S^{(d)}$ are constructed as specified in Section III. The tensor train with specified TT-ranks is then initialized according to Section III-B. The ALS is then applied to update the tensor train cores one by one in a sweeping fashion by solving (8) repeatedly for different values of k. Since the tensor train is in site-d-mixed-canonical form (see proof III-B in Section IV-A.5 for details), the updating starts with $\mathbf{A}^{(d)}$. One can update the tensor train cores for a fixed amount of sweeps or until the residual falls below a certain
Algorithm 1 Tensor Completion in Tensor Train Form (TTC)

Input: d-way multi-indices of N known entries and their corresponding values \(y(1), \ldots, y(N)\), TT ranks \(R_2, \ldots, R_d\).
Output: Completed tensor \(\mathcal{A}\) in tensor train form \(\mathcal{A}^{(1)}, \ldots, \mathcal{A}^{(d)}\).

1: Construct \(S^{(1)}, S^{(2)}, \ldots, S^{(d)}\) as specified in Section III-A.
2: Initialize the tensor train as specified in Section III-B.
3: while stopping criteria not satisfied do
 for \(k = d-2, \ldots, 1\) do
 \(\mathbf{vec}(\mathcal{A}^{(k)})\) \(\rightarrow\) solve equation (8), (11) or (13)
 \(R_k \mathbf{I}_k R_k\) \(\rightarrow\) thin QR decomposition of \(\mathcal{A}^{(k)}_R\)
 \(\mathcal{A}^{(k)} \rightarrow \text{reshape}\left(\begin{bmatrix}Q & R\end{bmatrix}, [R_k I_k R_{k+1}]\right)\)
 \(\mathcal{A}^{(k+1)} \rightarrow \text{reshape}(R \mathbf{A}^{(k)}_R, [R_{k+1} I_{k+1} R_{k+2}])\)
 end for
 for \(k = 1, \ldots, d-1\) do
 \(\mathbf{vec}(\mathcal{A}^{(k)})\) \(\rightarrow\) solve equation (8), (11) or (13)
 \(\mathbf{vec}(R_k \mathbf{I}_k R_k)\) \(\rightarrow\) thin QR decomposition of \(\mathcal{A}^{(k)}_R\)
 \(\mathcal{A}^{(k)} \rightarrow \text{reshape}\left(\begin{bmatrix}Q & R\end{bmatrix}, [R_k I_k R_{k+1}]\right)\)
 \(\mathcal{A}^{(k+1)} \rightarrow \text{reshape}(R \mathbf{A}^{(k)}_R, [R_{k+1} I_{k+1} R_{k+2}])\)
 end for
end while

threshold. Numerical stability and convergence is guaranteed by the QR factorization step in line 7. In lines 8 to 10 of the algorithm the updated tensor \(\mathcal{A}^{(k)}\) is replaced by a reshaping of the orthogonal \(Q\) matrix and the \(R\) factor is “absorbed” into the next core \(\mathcal{A}^{(k-1)}\). In this way, the resulting tensor train is brought into site-\((k-1)\)-mixed-canonical form, before updating \(\mathcal{A}^{(k-1)}\). Global convergence to the solution with unique minimal norm is not guaranteed. Once \(\mathcal{A}^{(2)}\) has been updated, one iteration has completed and the sweep reverses direction with updating the tensor train cores from \(\mathcal{A}^{(1)}\) up to \(\mathcal{A}^{(d-1)}\). Each for-loop in Algorithm 1 therefore corresponds with one iteration. Depending on the application one can either choose to keep the result in tensor train form or compute the full tensor \(\mathcal{A}\) by summing the tensor train over its auxiliary indices.

The most computationally expensive steps in Algorithm 1 are solving the linear systems in line 5 and line 13.

E. Choosing a Dimension Factorization and TT-Ranks

Color images and videos are 3-way and 4-way tensors, respectively. Converting these tensors directly into tensor trains would then result in 3 or 4 TT-cores with relatively large \(I_k\) dimensions. This potentially has a detrimental effect on the runtime of Algorithm 1 as the computational complexity of solving (8) is \(O((R_k I_k R_{k+1})^3)\). The runtime of computing inverse matrices of different sizes varies from one computer to another (the coefficients of the cubic complexity function are dependent on the computer specifications). For the desktop computer used in our experiments, a sharp increase in runtime for matrix inversion was observed when \(R_k I_k R_{k+1}\) \(\approx\) 4000. The problem size was therefore limited to \(R_k I_k R_{k+1} \leq 4000\) in our experiments to guarantee a fast completion. This problem size limitation was implemented by factorizing each of the \(I_k\) dimensions of the desired completed tensor into more manageable sizes. This implies that each linear index of \(I_k\) is split into a corresponding multi-index. This factorization comes at the cost of introducing more TT-cores, resulting in a trade-off between the total number of TT-cores and the total number of parameters per TT-core. The maximal amount of TT-cores is determined by the factorization of each tensor dimension \(I_k\) into its prime factors. Specifically, we choose the dimensions of each tensor train core \(I_k \leq 10\) combined with TT-ranks \(R_k R_{k+1} \leq 400\) for \(k = 1, \ldots, d\). We will show in an experiment that as long as we follow the above rules, the completion performance of different factorization sizes are similar. Moreover, in case the dimensions are large prime numbers, one can always append zeros to the tensor such that the dimensions can be factored. Since we never mix column indices and row indices, the tensor decomposition essentially serves as a normal matrix SVD with the left and right singular vectors being factorized into Kronecker products of smaller vectors with low-rank constraints.

Example 2: Suppose we have a \(360 \times 640 \times 144 \times 3\) tensor of a color video that consists of 144 frames. The prime factorizations of 360, 640 and 144 are \(2^3 \times 3^2 \times 5\), \(2^7 \times 5\) and \(2^4 \times 3^2\), respectively. Separating each of these factors into TT-cores would result in a tensor train of 21 cores. The number of cores can, for example, be set to 11 by using the factorization \(9 \times 8 \times 5 \times 4 \times 4 \times 5 \times 8 \times 4 \times 6 \times 6 \times 3\).

Choosing good values for the \(d-1\) TT-ranks can be quite tedious when \(d\) is large. We therefore propose to choose the values of \(R_2, R_{mid}\) ("mid" stands for middle) and \(R_d\) and automatically determine the remaining TT-ranks \(R_{k+1}(2 \leq k \leq d-2)\) as \(\min(R_k I_k, R_{mid})\). In this way, a uniform plateau of TT-ranks equal to \(R_{mid}\) is obtained. The TT-ranks \(R_2, R_d\) need to be chosen while keeping in mind that \(R_2 \leq I_1\) and \(R_d \leq I_d\). When the tensor represents either a color image or color video, the last dimension will typically be 3 for the color channels. In this case, we always set \(R_d = 3\) and additionally choose the value of \(R_{d-1}\).

Example 3: We revisit the \(360 \times 640 \times 144 \times 3\) tensor of Example 2, together with the 11-core dimension factorization \(9 \times 8 \times 5 \times 4 \times 4 \times 5 \times 8 \times 4 \times 6 \times 6 \times 3\). Choosing \(R_2 = 5, R_{mid} = 5\), \(R_{d-1} = R_{10} = 5\) and \(R_{11} = 3\) then results in \(R_3 = \cdots = R_9 = 5\).

F. Total Variation Regularization

The low TT-rank constraint in (4) can be interpreted as a global feature, as it pertains to the construction of the whole tensor. Better completion results can be obtained from the addition of local constraints on the completed tensor entries. The notion of local smoothness, as described by TV, is such a local feature, and is particularly useful when the tensor represents visual data. The addition of TV terms to (4) is quite straightforward, resulting in

\[
\begin{aligned}
\min_{\mathcal{A} \in S^{(d)}_{TT}} & \left\| S^T \mathbf{vec}(\mathcal{A}) - y \right\|_2^2 + \sum_{p=1}^P \lambda_p \left\| \mathbf{A} \times_p D_p \right\|_F^2 \\
\text{s.t. } & \mathcal{A} \in S^{(d)}_{TT}, \text{ and TT-rank}(\mathcal{A}) = (R_1, R_2, \ldots, R_d),
\end{aligned}
\]
where $D_p \in \mathbb{R}^{(k_p - 1) \times l_p}$ has entries $D_p(i, i) = 1$ and $D_p(i, i + 1) = -1$. For notational convenience we make D_p square by appending a bottom row of zeros. Minimizing each of the $|A \times_p D_p|_2$ terms ensures that the completed tensor entries do not differ too much from their neighbors along modes 1, \ldots, P, which encodes local smoothness. For image and video tensors we have $P = 2$, as the smoothness is only required in the width and length dimensions. Solving (9) requires the modification of (8) with additional matrix terms. To derive how exactly (8) needs to be modified, we will first ignore the fact that we can factorize the dimensions of the original tensor as discussed in Section III-E. It is worthwhile to stress that to the best of our knowledge, this is the first time that the Total Variation regularization term is exploited and fully incorporated in tensor train form.

The derivation of this modification is very similar to the traditional ALS derivation, where the input matrices $S_{(k)}$ are now replaced with the matrices

$$D_{(k)} := \begin{cases} D_p, & \text{if } k = p, \\ I_{l_k}, & \text{otherwise}. \end{cases} \quad (10)$$

Indeed, the p-th TV regularization term can now be rewritten as $(D_{(p)}^d \otimes \cdots \otimes D_{(2)}^d \otimes D_{(1)}^d) \text{vec}(A)$. The only difference between the TV term and $S^T \text{vec}(A)$ is that S consists of a Khatri-Rao product, while the TV term contains a Kronecker product. Just as in Section III-D we consider the contractions of the TT-cores of A with these new “input” matrices

$$W_{<k,p} := (A^{(1)} \times_2 D_{(1)}^d) \cdots (A^{(k-1)} \times_2 D_{(k-1)}^d),$$

$$W_{>k,p} := (A^{(k+1)} \times_2 D_{(k+1)}^d) \cdots (A^{(d)} \times_2 D_{(d)}^d),$$

which allows us to define the matrix

$$W_p := (W_{<k,p} \otimes D_{(k)}^d \otimes W_{<k,p}) \in \mathbb{R}^{l_k \times l_k \times l_k \times l_k} \times_l.$$

In Figure 3, we exemplify the calculation of $W_{<k,p}$ using tensor diagrams. Specifically, we give an example of $W_{<4,2}$ ($k = 4, p = 2$), where, according to Equation (10), we have $D_{(1)}^d = I_{l_1}$, $D_{(2)}^d = D_2$, and $D_{(3)}^d = I_{l_1}$. Denoting the matrix in (8) by B, the modified linear system is then

$$(B^T B + \sum_{p=1}^{P} \lambda_p W_p^T W_p) \text{vec}(A^{(k)}) = B^T y. \quad (11)$$

The number of rows of W_p grows exponentially with d. Fortunately, it is not necessary to explicitly construct this matrix as it is possible to compute $W_p^T W_p$ directly from the tensor network diagram depicted in Figure 4 for the case $d = 5, k = 3$. This computation can be done efficiently by exploiting the fact that most of the $D_{(k)}^d$ matrices are unit matrix. In addition, the site-k-mixed-canonical form of the tensor train of A can also be exploited. Suppose for example that $p = 1$ in Figure 4. The site-3-mixed-canonical form of the tensor train of A then implies that both $A^{(4)}$ and $A^{(5)}$ are right-orthogonal. Since $p = 1$, both $D_{(4)}^d$ and $D_{(5)}^d$ matrices are unit matrices. The summation of the two bottom rows in Figure 4 then results in an $R_4 \times R_4$ unit matrix and can be skipped. Also note that all vertical edges between the different $D_{(k)}^d$ matrices have dimensions 1.

When the dimensions of the original tensor are factorized as discussed in Section III-E, then only one minor modification is required. The TT-SVD algorithm needs to be applied to D_p to transform this matrix into a tensor train matrix (TT matrix) [37] according to the same dimension factorization. The corresponding node in the tensor network diagram is then replaced by the corresponding TT matrix. As a result, not all vertical edges will have dimension 1 anymore. It turns out that the TT matrix-ranks of D_p are always uniformly 3, irrespective of the factorization of the dimensions or number of cores. This low TT-rank feature of the D_p matrix is favorable for the computation of $W_p^T W_p$ from the tensor network.

Example 4: Suppose we have a $1024 \times 1024 \times 3$ color image and we factor each of the 1024 dimensions into 4^5. The tensor train of vec(A) hence consists of 11 cores. The $1024 \times 1024 \times 4^5$ matrix is then converted into a TT matrix of 5 cores with ranks $R_2 = \cdots = R_5 = 3$. When computing the $W_p^T W_1$ term, we then have that the first five TT-cores of A are connected with the TT matrix of D_1, while the remaining cores are connected to identity matrices.

The values of the λ_p parameters were fixed to 0.5 in [18]. Through experiments, we found that choosing values between 0 and 10 for the λ_p parameters resulted in consistently
G. Tikhonov Regularization

In addition to the TV terms, Tikhonov regularization has also been considered in [18, p. 2213]. The tensor completion problem is then written as the following optimization problem

$$\min_{\mathcal{A} \in \mathcal{S}_{TT}^{(d)}} ||S^T \text{vec}(\mathcal{A}) - y||^2_2 + \sum_{p=1}^{P} \lambda_p ||\mathcal{A} \times_p D_p||^2_F + \gamma ||\mathcal{A}||^2_F,$$

s.t. $\mathcal{A} \in \mathcal{S}_{TT}^{(d)}$, and $TT\text{-rank}(\mathcal{A}) = (R_1, R_2, \ldots, R_d)$.

(12)

Using the fact that the tensor train is in k-tiled-canonical form together with (3), the update step in the ALS algorithm is then modified to

$$(B^T B + \sum_{p=1}^{P} \lambda_p W_p^T W_p + \gamma I) \text{vec}(\mathcal{A}^{(k)}) = B^T y,$$

where I is an identity matrix of size $R_k I_k R_{k+1}$. The addition of a Tikhonov regularization term therefore comes at zero additional computational cost.

IV. EXPERIMENTAL RESULTS

In this section our proposed algorithm is compared extensively with state-of-the-art tensor completion methods in three experiments. The scalability of our algorithm in particular is demonstrated through the last two experiments. All experiments were run in MATLAB2018a on a desktop computer with an Intel i5 quad-core processor at 3.2GHz and 16GB RAM. A MATLAB implementation of Algorithm 1, together with necessary data files for reproducing all experimental results can be downloaded from https://github.com/IRENKO/TTC. The values of all tuning parameters used in these experiments as well as benchmark images are all given in the supplemental materials. First, we apply Algorithm 1 to complete eight color images with approximate size 300×300 and compare its efficacy in runtime and completion accuracy with seven other state-of-the-art tensor completion algorithms. The two best methods from the first experiment are then compared with our algorithm in the second experiment for the completion of three color images with approximate size 4000×4000. The increased dimensions allow us to highlight the scalability of Algorithm 1 with these state-of-the-art methods. Another way to assess the scalability of our method is to apply it on higher order tensors. We therefore also compare Algorithm 1 with the two best methods from Experiment 1 to complete a color video. The completion accuracy of all methods is measured either by the relative standard error (RSE)

$$\text{RSE} = \frac{||\mathcal{A} - \hat{\mathcal{A}}||_F}{||\mathcal{A}||_F},$$

or the peak signal-to-noise ratio (PSNR)

$$\text{PSNR} = 20 \log_{10}(\text{MAX}_1) - 10 \log_{10}(\text{MSE}),$$

where $\hat{\mathcal{A}}$ is the completed tensor, MAX_1 is the maximum possible pixel value and MSE is the mean square error $||\mathcal{A} - \hat{\mathcal{A}}||_F/\text{numel}(\mathcal{A})$, where $\text{numel}(\mathcal{A})$ denotes the total number of entries in \mathcal{A}.

A. Small Image Inpainting

Eight benchmark images, shown in Figure 5, from the Berkeley Segmentation dataset1 and USC-SIPI image database2 were used to compare the performance of our proposed method with state-of-the-art completion algorithms in terms of completion accuracy and runtime. TTC denotes Algorithm 1 without any TV or Tikhonov regularization and TTC-TV denotes Algorithm 1 with TV regularization. Tikhonov regularization did not improve the results significantly in the task herein and its discussion is therefore conducted individually in Section IV-A.7. Table II lists the dimensions of the benchmark images and the dimension factorizations used for the tensor train methods. All images were resized using bicubic interpolation through the MATLAB “imresize” command. The eight

1https://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsd/
2http://sipi.usc.edu/database/database.php

TABLE I: PERFORMANCE (RSES) OF TEN ALGORITHMS ON EIGHT BENCHMARK IMAGES

| Method | House | Time(s) | River | Time(s) | Bridge | Time(s) | Man | Time(s) | Lena | Time(s) | Peppers | Time(s) | Baboon | Time(s) | Airplane | RSE |
|----------------|-------|---------|-------|---------|--------|---------|-----|---------|------|---------|---------|---------|--------|---------|---------|--------|------|
| TNN | 0.221 | 44.9 | 0.393 | 47.0 | 0.159 | 60.7 | 0.231| 15.1 | 0.221| 18.6 | 0.295 | 16.6 | 0.210 | 15.7 | 0.168 | 18.7 |
| hutRTC | 0.209 | 7.9 | 0.182 | 6.3 | 0.153 | 15.6 | 0.221| 20.3 | 0.206| 10.6 | 0.265 | 5.2 | 0.222 | 4.1 | 0.162 | 8.4 |
| hutLRTC | 0.210 | 30.0 | 0.181 | 10.0 | 0.153 | 26.6 | 0.218| 10.6 | 0.202| 5.1 | 0.253 | 5.3 | 0.228 | 7.0 | 0.161 | 12.3 |
| LRTC-TV | 0.186 | 163.1 | 0.223 | 178.4 | 0.126 | 165.8 | 0.130| 185.7 | 0.107| 97.4 | 0.127 | 99.3 | 0.159 | 99.7 | 0.102 | 98.9 |
| TMac | 0.226 | 12.6 | 0.359 | 8.4 | 0.168 | 11.4 | 0.237| 12.0 | 0.240| 5.6 | 0.287 | 7.7 | 0.296 | 6.0 | 0.173 | 8.2 |
| TMac-TT | 0.225 | 21.0 | 0.191 | 28.6 | 0.181 | 28.1 | 0.203| 20.7 | 0.165| 10.2 | 0.215 | 9.6 | 0.201 | 7.4 | 0.145 | 9.8 |
| TR-ALS | 0.170 | 8.2 | 0.154 | 7.6 | 0.153 | 9.5 | 0.185| 8.5 | 0.160| 5.4 | 0.198 | 7.2 | 0.205 | 5.1 | 0.141 | 3.6 |
| TTC | 0.161 | 20.7 | 0.163 | 38.1 | 0.161 | 39.9 | 0.171| 27.9 | 0.158| 15.3 | 0.194 | 20.5 | 0.212 | 29.5 | 0.142 | 27.6 |
| TTC-Tikhonov | 0.161 | 21.3 | 0.153 | 39.9 | 0.150 | 40.1 | 0.170| 28.1 | 0.158| 15.8 | 0.194 | 20.6 | 0.212 | 30.1 | 0.142 | 27.4 |
| TTC-TV | 0.151 | 23.1 | 0.136 | 40.4 | 0.141 | 40.9 | 0.155| 29.8 | 0.131| 15.8 | 0.175 | 22.2 | 0.176 | 31.0 | 0.111 | 28.7 |

Fig. 5. Ground-truth of eight small benchmark images.
images are grouped into two groups with slightly different dimensions, which is a first attempt to determine how sensitive the runtime and completion accuracy of all methods are with respect to dimension size. Only 10% of each benchmark image was retained, whereby for each missing pixel all color information was removed. We fine-tune the hyper-parameters of the seven algorithms in comparison to give the best RSE scores on the images.

For the proposed TTC method, the TT-ranks are determined by cross-validation [38] on the completion error of a held-out 1% entries. That is, for an image with only 10% observed entries, 1/10 of these known entries are kept for validation. We perform 10 trials in each cross-validation experiment and the TT-ranks that give the lowest average error of held-out entries are chosen. The same TT-ranks are shared by TTC-Tikhonov and TTC-TV experiments for the same image.

1) State-of-the-Art Methods: Algorithm 1 is compared with the following state-of-the-art methods: TNN, HaLRTC, FaLRTC, LRTC-TV, TMac, TMac-TT, and TR-ALS. These methods represent four different approaches towards the completion problem. The TNN method aims at minimizing the sum of nuclear norms of the unfolded matrices. The TMac algorithm [7] includes two different schemes, TMac-inc and TMac-dec, depending on different rank adjustment strategies. Here we only compare with TMac-inc as it shows a better performance than TMac-dec in our experiments. The extension of TMac algorithm TMac-TT [28] is also considered. The TR-ALS algorithm [29] also uses a tensor train of \mathcal{A} but with $R_1 > 1$. Moreover, it employs a different ALS for updating each tensor train core wherein each slice of the core is updated sequentially, unlike our way of updating the whole core at once. In these benchmarking algorithms, all MATLAB implementations written by the original authors were used.

2) Comparison With State-of-the-Art: The completion accuracy measured as the RSE of all algorithms and their corresponding runtimes are reported in Table I, while the completed images for Lena and Airplane are shown in Figure 6. The completed images obtained by the FaLRTC is indistinguishable from HaLRTC and has therefore been omitted from Figure 6. The proposed TTC-TV algorithm with TTC cross-validated TT-ranks outperforms the other six algorithms, excluding LRTC-TV, in terms of RSE for all eight benchmark images at the cost of an overall larger runtime than TR-ALS. Moreover, although TTC only reaches lower RSEs compared to its competitors on five out of eight benchmark images, we remark that it is able to obtain the same or even lower RSEs with less runtime with fine-tuned TT-ranks. Table III lists the runtime for each method averaged over all images to obtain its best RSE, together with the average runtime over all images for the TTC algorithm to obtain an identical RSE. The TTC algorithm is seen to be faster than the state-of-the-art methods, with average speedups of at least 10 compared with TMac and TNN. Moreover, it is worth noting that the proposed TTC-TV algorithm results in consistently smaller RSEs compared with those achieved by TTC at similar runtimes. These better RSE values obtained with TTC-TV result in completed images that are smoother while still preserving details. LRTC-TV, an extension of the LRTC methods with total variation terms, that are smoother while still preserving details. LRTC-TV, an extension of the LRTC methods with total variation terms, is also considered. The TR-ALS algorithm [29] also uses a tensor train of \mathcal{A} but with $R_1 > 1$. Moreover, it employs a different ALS for updating each tensor train core wherein each slice of the core is updated sequentially, unlike our way of updating the whole core at once. In these benchmarking algorithms, all MATLAB implementations written by the original authors were used.

3) RSE Is Not Enough: Table I seems to indicate that LRTC-TV consistently obtains better completion results over all other methods. However, we argue that it is sometimes not enough to evaluate the completed images by their corresponding RSEs. A visual inspection of the completed images still
remains the best way to compare results. We illustrate this point by comparing the completed Lena image using both the LRTC-TV and TTC-TV methods in Figure 7. Both the TT-rank and the number of iterations used in TTC-TV were increased to obtain an RSE score that is quite close to the LRTC-TV method. Although the LRTC-TV method has better RSE and PSNR scores, one can see that detailed features such as the eyes and feathers are blurred by the LRTC-TV method due to oversmoothing. This oversmoothing was observed for any nonzero value of the λ tuning parameters.

4) Influence of Smaller Portions of Observed Entries: In what follows, we explore the influence of smaller percentages of observed entries on the completion accuracy and runtime by recovering images with 1% observed. As before, we fine-tune the tuning parameters of different algorithms except the proposed TTC-TV, for which cross-validated hyper-parameters are used. LRTC-TV, TMac-TT and TTC-TV generally perform better than LRTCs, TMac and TTC, respectively, according to Table I, hence we omit the latter three in Table IV. LRTC-TV outperforms the TNN, TMac-TT and TR-ALS algorithms in five out of eight benchmark images at the cost of 6, 7, 55 times longer average runtime, respectively. TMac-TT reaches lower RSEs than LRTC-TV when completing the remaining three images. Moreover, the proposed TTC-TV outperforms all other methods in all benchmark images except River, where a similar RSE as that obtained by LRTC-TV is reached. It is also worthwhile to note that TTC-TV demonstrates a speedup of up to 55 times compared with LRTC-TV in the above investigation.

5) Effect of TT-Initialization on ALS Convergence: We also investigated whether our proposed initialization method results in better convergence behavior of ALS. An alternative initialization method, called the “missing entry zero filled” tensor initialization, is described in [29] and used in the TR-ALS method. Figure 8 depicts the RSEs of the completed Man benchmark image as a function of the iteration count using these two different initializations. If we assume that the RSE obtained after 8 iterations when using the proposed initialization method is taken as a threshold to stop the TTC algorithm, then the “missing entry zero-filled” tensor initialization would still not have converged after 20 iterations. In general, using our proposed initialization method always resulted in the RSE curve tapering off very fast over iterations. However, modifying the code for TNN, LRTC-TV, TMac, TMac-TT to the proposed initialization method is not trivial. For HalRRTC, FaLRTC and TR-ALS, the algorithms get stuck in local optima and achieve high RSEs (≈ 0.9) with the interpolation initialization.

6) Influence of Different Factorization Sizes: In Section III-E, a general guideline for choosing a specific factorization size of a tensor is provided. Here we use the House benchmark image as an example to show the influence of different factorization sizes on both the obtained RSE, total runtime and problem size ($\sum R_k I_k R_k + 1$), all listed in Table V. The total number of iterations of Algorithm 1 is fixed for all factorizations. As shown in the table, similar RSEs are obtained when the maximal dimension in the factorization is limited to 9. A slight improvement of the runtime is observed when the number of tensor train cores is reduced from 13 down to 7 due to the trade-off between the number of cores and problem size as discussed in Section III-E. Both the RSE and total runtime are seen to degrade as the dimensions in the factorization are further increased, due to the fast growing problem size. These observations are consistent with the rules specified in Section III-E. Moreover, when we do not perform any dimension factorizations, we show in Table V that the condition number of the linear systems to be solved becomes infinitely large (due to the singularity of the linear system). Specifically, we point out that the condition number can also increase as we increase the TT-ranks adopted in TTC algorithms. We will illustrate this in the following Section IV-A.7.

7) Influence of Tikhonov regularization: Adding Tikhonov regularization term can be beneficial for solving linear systems
in two ways: it can help in regularizing the problem in Equation (13) for the case where the matrix $B^\top B$ in the ALS update is singular – adding a scaled unit matrix then makes the matrix in the normal equation invertible; it can also be interpreted as an equal scaling (down) of all pixels, which serves well in certain applications.

In Figure 9, we demonstrate that the linear systems become ill-conditioned (characterized by relatively large condition numbers) as the TT-ranks R_{mid} and $R_d - 1$ grow. When the condition number of original normal equation grows to 1118, the benefits of Tikhonov regularization become visible. On the other hand, we exploit the other gain by evaluating TTC, TTC-Tikhonov algorithms on completions of magnetic resonance imaging (MRI) scans of heads and necks\(^9\) [39]. Table VI summarizes the dimensions of the benchmark images and the dimension factorizations considered. Since we show in the above experiments (Table I, IV, Figure 9) that TTC-TV is generally more powerful than TTC and TTC-Tikhonov, the TT-ranks herein are found by cross-validation using TTC-TV on a held-out 1% entries. The same TT-ranks are then shared by TTC and TTC-Tikhonov. By referring to Table VII, one can see that, though not significant, the effect of Tikhonov regularization is discernible. We remark that the linear systems are well-conditioned with a condition number of 24.72 on average. Adding Tikhonov regularization, alternatively, helps to scale down the pixels by 1.43% with $\lambda_p = 0.001$ and reaches lower RSEs.

B. Large Image Inpainting

The experiments above have shown that the performance of both the TR-ALS and LRTC-TV methods are similar to the proposed TTC (TTC-TV) method. In this experiment we assess the scalability of the LRTC-TV, TR-ALS and TTC-TV methods by completing three high-resolution benchmark color images. The ground-truth of these three images is shown in the supplemental materials. The color images used in this section are Dolphin\(^10\), Water Nature Fall\(^11\) and Orion nebula\(^12\). The dimensions of each image and their respective factorizations used in TTC-TV and TR-ALS are listed in Table VIII. The LRTC-TV method uses the original dimensions of each image. The corresponding tensor trains consisted of 16, 17 and 17 cores, respectively. Only 1% pixels of each image were retained. Figure 10 shows the PSNR obtained by TTC-TV, TR-ALS and LRTC-TV as a function of the total runtime for all three images. These graphs were constructed by increasing the TT-ranks for both the TTC-TV and TR-ALS methods, which resulted in better completion results at the cost of increased runtime per iteration. The TT-rank R_{mid} of the TTC-TV method was increased from 3 up to 24, 24 and 19 for Dolphin, Water Nature Fall and Orion nebula, respectively.

\(^9\)https://www.cis.rit.edu/htbooks/mri/chap-14/chap-14.htm
\(^10\)http://absfreepic.com/free-photos/download/dolphin-4000×3000_21859.html
\(^12\)http://absfreepic.com/free-photos/download/orion-nebula-in-space-6000×6000_50847.html
The TT-ranks could only be varied from 2 up to 7, 5 and 4 for the TR-ALS method, as the uniform TT-rank quickly lead to out-of-memory errors. This is reflected by the limited number of points in each of the TR-ALS graphs in Figure 10. The LRTC-TV method does not use tensor trains and we allowed it to run without time restriction.

All four figures in Figure 10 show that TR-ALS manages to achieve almost as good PSNR values as TTC-TV at about 10 times larger runtimes. The PSNR values obtained by the LRTC-TV method are unacceptable within reasonable runtimes. Figure 10(d) illustrates that LRTC-TV needs a runtime that is about 155 times larger (64775 versus 417 seconds13) than TTC-TV to obtain the same PSNR on Water Nature Fall. This is due to the use of the Tucker decomposition and a corresponding computational complexity of $O(K \left(\prod_{k=1}^{d} I_k \right)^3)$, which scales badly with both d and I_k. We further note that LRTC-TV is unable to reach as high PSNR as TTC-TV in this experiment, and a sharp drop in the PSNR is witnessed after 89765 seconds as shown in Figure 10(d).

Moreover, we further included the curve obtained by applying TT-SVD for given TT-ranks on the original benchmark images in Figure 11(a)(b)(c). Noted that for the given TT-ranks, the TT approximation given by TT-SVD method is quasi-optimal in the tensor-train subspace $\mathcal{S}_{TT}^{(d)}$ [30, Corollary 2.4.]. Thus including the curves enables us to evaluate the gaps between the result obtained by TTC-TV and a quasi-optimal solution in the subspace. However, we stress that the curve is only meaningful when comparing to the curve of TTC-TV, because the subspaces of TR-ALS and LRTC-TV are

136011 versus 39 seconds on Dolphin to reach PSNR = 22dB and 59985 versus 345 seconds on Orion nebula to reach PSNR = 25dB.
essentially different from that of TTC-TV. We increased the TT-rank R_{mid} of the TT-SVD approximation exactly the same as we did for TTC-TV, and compare the PSNRs of TTC-TV and TT-SVD approximation for same the TT-ranks. It is then seen that the result obtained by TTC-TV is nearly or even better than a quasi-optimal approximation in the tensor train subspace $c_{TT}^{(d)}$.

C. Color Video Completion

The inpainting of high-resolution images demonstrated the lack of scalability of the LRTC-TV method. This method will therefore not be considered anymore. The purpose of this experiment is to demonstrate an advantageous feature of our proposed TTC algorithm with regard to color video completion. A 144 frames video clip was taken from the Mariano Rivera Ultimate Career Highlights video, available on YouTube. The dimensions of the resulting tensor and their factorizations are given in Table IX, resulting in a tensor train of eleven cores. The total number of elements of this particular tensor has the same order of magnitude as for the high-resolution images. In this experiment 10% of the video is retained. Observed pixels appear consistently at the same position over all frames and color channels, which models a breakdown of 90% of the available sensors in the camera. The fact that all observed pixels occur at the same position over all frames can be taken into account by solving the following optimization problem

$$\min_{\mathbf{A}} \| \mathbf{S}^T \mathbf{A} - \mathbf{Y} \|^2_F, \text{ s.t. TT-rank}(\mathbf{A}) = (R_1, \ldots, R_d),$$

(14)

where \mathbf{A} is the original tensor reshaped into a $(360 \times 640) \times (144 \cdot 3)$ matrix. This implies that the observed values are also reshaped into the matrix \mathbf{Y}. The input matrices related to the frame and color dimensions are in this way not necessary anymore. The matrix \mathbf{A} is then modeled by a tensor train of seven cores for which $\mathbf{A}^{(1)}$ has dimensions $1 \times 9 \times (144 \cdot 3) \times R_2$. The $(144 \cdot 3)$ dimension of $\mathbf{A}^{(1)}$ corresponds with the columns of the \mathbf{A} matrix and updating this TT-core is done by rewriting (8) into a matrix equation. All other TT-cores are updated by solving (8). Figure 12 shows the PSNR as a function of the total runtime obtained by the conventional TTC algorithm, its modification (14), and TR-ALS. The TT-rank for the TR-ALS method was varied from 2 up to 4, higher values for the ranks resulted in out-of-memory-errors. The best PSNR obtained with TR-ALS is 17.45 dB and is obtained after a total runtime of 4523 seconds. The conventional TTC algorithm was run for a fixed number of 3 iterations and increasing TT-ranks from 2 up to 5 and obtains the same PSNR value about 2.5 times faster. The modified TTC algorithm for solving Equation (14) was run for a fixed number of 3 iterations and increasing TT-ranks from 2 up to 10. The smaller amount of TT-cores results in faster runtimes and better PSNRs. The best PSNR value obtained by TR-ALS is obtained by this particular TTC implementation in 79 seconds, about 57 times faster than TR-ALS and 23 times faster than the standard TTC formulation.

V. CONCLUSION

We have proposed an efficient tensor completion framework by assuming tensor train structures in the underlying regression model. Specifically, the multi-indices (coordinates) of the known entries act as inputs and their corresponding values act as outputs. Moreover, Total Variation regularization and Tikhonov regularization are readily realized under the tensor train framework with almost zero additional computational cost. A simple yet effective tensor train initialization method based on interpolations has also been introduced for images and videos. Extensive experiments with low percentages of known pixels have shown that the proposed algorithm not only outperforms the state-of-the-art methods in both accuracy and time cost, but also demonstrates better scalability.

REFERENCES

