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Abstract—With the increase in the complexity of VLSI chips,
power grid analysis has become a challenging task, because linear
equations of extremely large size need to be solved. Recent graph
sparsification-based solvers have shown promising performance
for power grid analysis. However, existing graph sparsification
algorithms are implemented in serial computing, while factor-
ization and backward/forward substitution of the sparsifier’s
Laplacian matrix are hard to parallelize. On the other hand,
partition-based iterative methods which are inherently parallel
lack a direct control of the relative condition number of the pre-
conditioner and consume more memory. In this work, we propose
a novel parallel iterative solver called pGRASS-Solver. We first
propose a practically efficient parallel graph sparsification algo-
rithm. Then, the domain decomposition method (DDM) is utilized
to solve the sparsifier’s Laplacian matrix. To further improve the
efficiency, a variant of DDM which employs partial Cholesky
factorization and Schur complement matrix sparsification is
proposed. Thus, we obtain an efficient parallel preconditioner,
which not only leads to fast convergence but also enjoys ease of
parallelization. Numerous experiments are conducted to illustrate
the superior efficiency of the proposed pGRASS-Solver for large-
scale power grid analysis, showing an average 6.8× speedup over
a recent parallel iterative solver (Wang et al. 2017). Moreover,
it solves a real-world power grid matrix with 0.36 billion nodes
and 8.7 billion nonzeros within 20 min on a 16-core machine,
which is 10.9× faster than the best result of sequential graph
sparsification-based solver (Liu et al. 2022).

Index Terms—Domain decomposition method (DDM), graph
spectral sparsification, iterative solver, parallel computing,
power grid analysis, preconditioned conjugate gradient (PCG)
algorithm.

I. INTRODUCTION

POWER grid analysis is an indispensable step in the mod-
ern very large-scale integrated (VLSI) circuits design. It is

a computationally challenging task due to the extremely large
size of power grids. Many methods have been developed for
efficient power grid analysis, including direct solvers, iterative
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solvers [3], [4] and other specialized methods, such as the
hierarchical matrix-based method [5] and domain decomposi-
tion method (DDM) [6], [7], [8], [9], [10]. Direct methods,
such as Cholesky or LU decomposition [11], [12], solve
the simulation problem exactly but do not scale well to
large problems due to the excessive memory requirement.
On the other hand, iterative methods, such as the Krylov
subspace methods [13] or algebraic multigrid (AMG) meth-
ods [3], [14], [15], usually consume less memory thereby
achieving more scalable performance. Among the most pop-
ular iterative methods, graph spectral sparsification-based
iterative solvers have shown highly scalable performance for
large circuit simulation tasks [2], [16], [17], [18].

Graph spectral sparsification aims to find an ultrasparse
subgraph (called sparsifier) which can preserve the spec-
tral properties of the original graph. Spectral sparsifica-
tion approaches have been extensively studied in both the-
ory [19], [20], [21], [22], [23], [24] and practice [2], [17],
[18], [25], [26]. An effective resistance-based sampling
method was proposed in [22]. However, computing effective
resistances with respect to general graphs can be extremely
time consuming. Another approach exploiting effective resis-
tances in a spanning tree instead of the original graph was
proposed in [20], which usually causes a much greater number
of edges recovered for achieving a similar spectral approxima-
tion level. The “BSS process” proposed in [21] can construct
ε-sparsifiers with O(nε−2) edges for every graph, but the
cubic time complexity prevents it from being applied to large-
scale practical problems. GRASS proposed in [17] and [18] is
the first practically efficient spectral graph sparsification algo-
rithm. It leverages spectral perturbation analysis for identifying
and recovering spectrally critical off-tree edges and can pro-
duce high-quality spectral sparsifiers (low relative condition
number of graph Laplacians). Two different approaches were
then proposed in [2] and [25] to speed up the graph sparsi-
fication phase. SF-GRASS in [25] leverages spectral graph
coarsening and graph signal processing techniques, while
feGRASS in [2] is based on effective edge weights and a
concept of spectral edge similarity. The both approaches can
largely reduce the runtime of graph sparsification. It is shown
that feGRASS-based solver achieves better performance than
GRASS-based solver and also other preconditioned conjugate
gradient (PCG) solvers such as AMG-PCG [3]. However, all
these graph sparsification algorithms are implemented under
the assumption of serial computing. Besides, factorization and
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backward/forward substitution of the sparsifier’s Laplacian
matrix, which are required by graph sparsification-based PCG
solvers, are also hard to parallelize.

Partition-based methods are another type of methods which
employ divide-and-conquer techniques for parallel comput-
ing. DDM is based on the Schur complement matrix [6], [7],
but forming and solving the dense Schur complement matrix
can be even more costly than solving the original equa-
tions. The additive Schwarz method (ASM) introduced in [8]
and [9] utilizes overlapping domain decomposition to build
a block-structure preconditioner but lacks a direct control of
the relative condition number of the preconditioner. Recently,
a new block Jacobi preconditioner was proposed in [1],
which aims to combine graph sparsification techniques and
partition-based methods to deliver both fast convergence and
good parallelism. It first partitions the maximum spanning
tree (MST) and then forms the block Jacobi preconditioner
for parallel computing. However, the MST-guided method
requires more memory and more iteration steps than graph
sparsification-based methods.

In our preliminary work [27], we propose a parallel graph
sparsification-based iterative solver named pGRASS-Solver.
The pGRASS-Solver combines the convergence property
of graph sparsification-based methods and the divide-and-
conquer nature of DDM. It works well for tree-like sparsifiers
but the parallel efficiency decreases as the density of sparsi-
fier increases. In this work, to further improve the efficiency
of pGRASS-Solver, we propose a variant of DDM which
employs partial Cholesky factorization (PCF) and Schur com-
plement matrix sparsification. To avoid confusion, we call
the solver developed in [27] pGRASS-Solver1, while the
extended and improved one is called pGRASS-Solver2. Our
main contributions are summarized as follows.

1) A practically efficient parallel graph spectral sparsification
algorithm called pGRASS is proposed, which employs
a divide-and-conquer strategy to calculate effective
resistances and a parallel edge-recovering technique.

2) DDM is leveraged to solve the sparsifier’s Laplacian
matrix, thus, a graph sparsification-based parallel pre-
conditioner is obtained. It combines the convergence
property of graph sparsification techniques and the inher-
ently parallel nature of DDM. It is also an explicit
preconditioner which can be easily reused for the linear
systems with multiple right-hand sides.

3) To further improve the efficiency of the proposed solver,
a variant of DDM utilizing PCF and spectral sparsifica-
tion for Schur complement matrices is proposed. With
this method, the cost for constructing and applying the
preconditioner can be reduced largely while the quality
of the preconditioner is almost unaffected.

4) Combining these techniques, we have developed an effi-
cient parallel iterative solver called pGRASS-Solver.
Extensive experiments, including power grid DC analy-
sis and transient analysis, have been conducted to verify
the efficiency of the proposed solver. Experimental
results show that pGRASS-Solver achieves an aver-
age 7.9× speedup over sequential feGRASS-based
solver [2] and an average 6.8× speedup over the parallel

MST-guided method [1] for simulating 16 large-scale
power grid DC benchmarks [28], [29] on a 16-core
machine. The results on transient analysis show that
an average 8.6× speedup is gained over the feGRASS-
based solver [2] and several tens times speedup can be
gained over the direct solver CHOLMOD [12]. Besides,
pGRASS-Solver succeeds in solving a real-world power
grid matrix with 0.36 billion nodes and 8.7 billion
nonzeros within 20 min, which is 10.9× faster than
the best result of sequential graph sparsification-based
solver. As far as we know, it is the first time that a power
grid matrix containing more than eight billion nonzeros
can be solved within half an hour on a 16-core machine.

The remainder of this article is organized as follows. In
Section II, we briefly introduce the background of power grid
analysis, graph spectral sparsification, and DDM. In Section III
and Section IV, an efficient parallel iterative solver is presented
in detail. Extensive experimental results for large-scale power
grid analysis are demonstrated in Section V. Finally, we draw
the conclusions in Section VI.

II. BACKGROUND

A. Problem of Power Grid Analysis

Power grid analysis aims at analyzing the supply noise of
power delivery networks (PDNs) in integrated circuits. In DC
analysis the power grid is modeled as a resistive network. It
can be formulated as the following problem:

Gx = b (1)

where G is the conductance matrix, x and b denote the
unknown vector of node voltages and the vector of cur-
rent sources, respectively. In transient analysis the power
grid is modeled as an RLC network. It can be formulated
as differential algebra equations (DAEs) via modified nodal
analysis [

G AT
l−Al O

][
x
il

]
+

[
C O
O L0

][ dx
dt
dil
dt

]
=

[
b
0

]
. (2)

Here, G and C denote the conductance matrix and the capac-
itance matrix, respectively. L0 is a diagonal matrix whose
diagonal elements are inductance values of inductors and Al

is the incidence matrix corresponding to inductors. x, il and b
denote the vector of node voltages, inductor branch currents,
and current sources.

With time integration schemes like the backward Euler
scheme, the DAEs are converted to a set of linear equation
systems for solving the node voltages at consecutive time
points. In this work, we use the backward Euler scheme and
solve the following linear equation at each time point:(

G + C

h
+ hL̃

)
x(t + h) = C

h
x(t) + b(t + h) − AT

l il(t) (3)

where h is the time step and L̃ denotes

L̃ = AT
l L−1

0 Al. (4)

The direct solver for sparse matrix can be very efficient
for power grid transient simulation with a fixed time step

Authorized licensed use limited to: Tsinghua University. Downloaded on August 30,2023 at 13:27:57 UTC from IEEE Xplore.  Restrictions apply. 



LIU AND YU: pGRASS-SOLVER: A GRAPH SPECTRAL SPARSIFICATION-BASED PARALLEL ITERATIVE SOLVER 3033

because the expensive Cholesky factorization can be executed
only once and the results can be reused [30]. However, the
maximum step size is limited by the smallest distance among
the breakpoints of current source waveforms. If varied time
steps are adopted, the direct solver can be extremely time-
consuming because the expensive matrix factorization needs
to be performed whenever the time step changes.

The iterative solver, such as PCG solver, is more suitable
for varied time steps because it allows larger time steps to
reduce the total time for solving (3) in a transient simulation.
It is desired that the preconditioner in the iterative solver can
be constructed only once and only the solution phase needs
to be performed in each subsequent time step, so as to make
the iterative solver more competitive to the direct solver. In
this work, an efficient parallel iterative solver is proposed to
accelerate both DC and transient analysis of power grids.

B. Graph Spectral Sparsification-Based Iterative Solver

Given an undirected weighted graph G = (V, E, w), its
Laplacian matrix LG can be defined as follows. Here, V and E
are the sets of vertices (nodes) and edges and w is a positive
weight function

LG(i, j) =
⎧⎨
⎩

−wi,j, (i, j) ∈ E∑
(i,k)∈E wi,k, i = j

0, otherwise.
(5)

The Laplacian matrix is singular because the smallest eigen-
value is 0. In many applications, it is desired to solve the
Laplacian matrix excluding one row and one column. For
simplicity, we still use LG to denote the resulted symmet-
ric positive definite (SPD) matrix. Now consider solving the
following linear equation:

LGx = b. (6)

LG is SPD, so we can employ the PCG algorithm to solve
the linear equation [13]. Constructing an effective precondi-
tioner is essential to obtain an efficient linear equation iterative
solver.

Graph spectral sparsification aims to find an ultrasparse
subgraph P (called sparsifier) which can preserve spectral
properties of the original graph G. A subgraph P is called
k-ultrasparse if it has n−1+k edges. It can be constructed by
recovering k off-tree edges into a spanning tree. The similarity
between G and P can be measured by the relative condition
number κ(LG, LP ). Smaller relative condition number implies
a higher similarity level. The Laplacian matrix of the sparsifier
can be leveraged as an effective preconditioner to accelerate
PCG iteration [2], [17], [18], [25]. The PCG algorithm will
converge in at most O(κ(LG, LP )1/2 log (1/ε)) iterations to
find an ε-accurate solution [31].

Existing graph spectral sparsification typically involves the
following two steps [2], [17], [18], [25]: 1) extract a spec-
trally critical spanning tree from the original graph G and
2) recover a few spectrally critical off-tree edges from G into
the spanning tree to form the sparsifier P . In this work, a
parallel graph sparsification algorithm called pGRASS will be
presented in Section III-B. It can be seen as a parallel ersion
of feGRASS [2], which is briefly introduced as follows.

To reduce the average stretch of extracted spanning tree,
the concept of effective edge weight is utilized in feGRASS.
Effective edge weight contains not only weight information
but also topological information. It is defined as follows [2]:

Weff(e) = wi,j × log(max{deg(i), deg(j)})
dist(r, i) + dist(r, j)

(7)

where deg(i) denotes the degree of vertex i, r is a root node of
the tree, and dist(r, i) denotes the unweighted distance between
r and i which can be computed with breadth-first search
(BFS). The resulted maximum-effective-weight spanning tree
(MEWST) usually has a lower stretch than maximum-weight
spanning tree (MWST) [2].

To identify spectrally important off-tree edges, the effec-
tive resistance is leveraged as a spectral criticality metric in
feGRASS. More specifically, it calculates wi,jRP (i, j) for each
off-tree edge and then sorts them by wi,jRP (i, j). Here, RP (i, j)
denotes the effective resistance across i and j in P . Then,
the concept of spectral edge similarity is utilized to further
improve the sparsifier’s approximation level. Spectral edge
similarity reflects the drop of effective resistance during the
edge-recovery procedure. Spectral edge similarity between two
off-tree edges e1 = (p, q) and e2 = (s, t) is defined as follows:

Similarity(e1, e2) = f T
p,qL+

P fs,t = f T
s,tL

+
P fp,q (8)

where fp,q = fp−fq, and fp and fq is the pth and the qth column
of identity matrix, respectively. After an edge e = (i, j) is
recovered, the off-tree edges whose effective resistances drop
largely should be excluded from subsequent edge recovery.
Those off-tree edges can be obtained by executing β-layer
BFS from i and j, respectively. Readers may refer to [2] for
more details.

Graph sparsification-based iterative solvers can be employed
to solve the problem of power grid analysis. For DC anal-
ysis (1), the resistive network can be seen as a weighted
undirected graph. The conductance matrix is just the Laplacian
matrix of that graph. So the Laplacian matrix of the sparsi-
fier can be utilized as an efficient preconditioner. For transient
analysis, the coefficient matrix in (3) can be also modeled
as a graph. There are three types of edges in that graph,
whose weight values are 1/r, c/h, and hl̃ corresponding to
resistors, capacitors, and inductors, respectively. Note that it
is a dynamic graph, if varied time steps are used. Suppose
h ∈ [hmin, hmax]. A static graph of the dynamic graph can
be constructed by setting those weight values to 1/r, c/hmax,
and hmin l̃. Compared to sparsifying the dynamic graph at each
time step, it can be more efficient to sparsify the static graph at
the begining of transient simulation and to reuse the resulted
preconditioner in the following time steps. This strategy is
adopted in this work. Suppose the dynamic graph and the
static graph are denoted as Gh and Gs, respectively, and the
sparsifier obtained by sparsifying Gs is denoted as Ps. It can
be shown that∥∥∥L−1

Ps
LGh

∥∥∥ ≤
∥∥∥L−1

Ps
LGs

∥∥∥∥∥∥L−1
Gs

LGh

∥∥∥ (9)

and ∥∥∥∥
(

L−1
Ps

LGh

)−1
∥∥∥∥ ≤

∥∥∥∥
(

L−1
Ps

LGs

)−1
∥∥∥∥
∥∥∥∥
(

L−1
Gs

LGh

)−1
∥∥∥∥. (10)
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Fig. 1. Graph partitioned into two subdomains.

Because the relative condition number κ(LGh, LPs) equals to
‖L−1

Ps
LGh‖‖(L−1

Ps
LGh)

−1‖, we can derive

κ
(
LGh , LPs

) ≤ κ
(
LGs , LPs

)
κ
(
LGh , LGs

)
. (11)

By setting weight values as above, it can be shown that
LGh −LGs and (hmax/hmin)LGs −LGh are both positive semidef-
inite. Therefore, the eigenvalues of the matrix L−1

Gs
LGh lie in

[1, (hmax/hmin)], leading to κ(LGh, LGs) ≤ (hmax/hmin). This
means the increase of relative condition number due to this
static graph is bounded. And, in practice κ(LGh, LGs) can be
close to 1, for the power grid cases like those in [28]. Thus,
κ(LGh, LPs) is usually slightly larger than κ(LGs, LPs), and
LPs is an effective preconditioner for the dynamic coefficient
matrix.

C. Domain Decomposition Method

DDM is a specialized method which is developed for solv-
ing linear systems in parallel. It employs the techniques of
graph partitioning and Schur complement matrix [32]. In this
work, we focus on solving linear equations whose coefficient
matrices are graph Laplacian matrices (excluding one row and
one column), so there is a natural map between the coefficient
matrix and graph. Suppose the graph is partitioned into m sub-
domains. There are two types of nodes in each subdomain,
interior nodes, and interface nodes, as shown in Fig. 1. After
the unknowns are reordered, (6) becomes
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 E1 O O · · · O O
ET

1 C1 O F12 · · · O F1,m

O O A2 E2 · · · O O
O FT

12 ET
2 C2 · · · O F2,m

...
...

...
...

. . .
...

...

O O O O · · · Am Em

O FT
1,m O FT

2,m · · · ET
m Cm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

y1

x2

y2
...

xm

ym

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1
g1

f2
g2
...

fm
gm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(12)

Here, O denotes a zero matrix. xi and yi denote the
unknowns on interior and interface nodes in the ith subdomain,
respectively. fi and gi are the right-hand sides corresponding to
the interior and interface nodes in the ith subdomain, respec-
tively. Matrices A1,. . . , Am correspond to the interior nodes
of m subdomains, and C1, . . . , Cm correspond to the interface
nodes. Matrices Ei reflect the connections between the interior
nodes and the interface nodes in the ith subdomain, and matri-
ces Fi,j reflect the connections between the interface nodes in
the ith subdomain and the jth subdomain.

After all interior nodes are eliminated, (12) becomes

Sy ≡

⎡
⎢⎢⎢⎢⎣

S1 F12 · · · F1,m

FT
12 S2 · · · F2,m
...

...
. . .

...

FT
1,m FT

2,m · · · Sm

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

y1

y2
...

ym

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

g1 − ET
1 A−1

1 f1
g2 − ET

2 A−1
2 f2

...

gm − ET
mA−1

m fm

⎤
⎥⎥⎥⎥⎦
(13)

where S is called overall Schur complement matrix and Si is
called local Schur complement matrix, which satisfies

Si = Ci − ET
i A−1

i Ei. (14)

To obtain the solution to (12), one can first solve (13) to get
interface unknowns yi and then solve the following equations
to get interior unknowns xi:

Aixi = fi − Eiyi, i = 1, 2, . . . , m. (15)

Most steps in DDM are inherently parallel and the main
bottleneck is to solve (13). The overall Schur complement
matrix S is much denser than the original coefficient matrix.
When the number of interface nodes is large, it can be even
more costly to solve the Schur complement matrix than to
solve the original matrix.

In this work, DDM is leveraged to solve the Laplacian
matrix of the sparsifier to obtain a parallel preconditioner. The
motivation is that the sparsifier is ultrasparse so the number
of interface nodes can be small, resulting in a small Schur
complement matrix which can be solved efficiently. This strat-
egy combines both advantages of graph sparsification-based
approaches and partitioning-based methods, which leads to fast
convergence and enjoys ease of parallelization. It works well
for the cases where the sparsifier is tree-like. However, the
efficiency of the proposed solver deteriorates as the density of
the sparsifier increases. To address this problem, a variant of
DDM which employs PCF and Schur complement matrix spar-
sification is proposed. The cost for constructing and applying
the preconditioner can be further reduced and the efficiency
of the proposed solver can be further improved. The details of
theses techniques will be presented in the next two sections.

III. PARALLEL ITERATIVE SOLVER BASED ON GRAPH

SPECTRAL SPARSIFICATION AND DOMAIN

DECOMPOSITION METHOD

In this section, a parallel iterative solver, based on paral-
lel graph spectral sparsification and DDM, is proposed for
tackling large-scale power grid analysis problems.

A. Idea

There are mainly three stages in graph sparsification-based
PCG solver: 1) run the graph spectral sparsification algo-
rithm to obtain the ultrasparse sparsifier (graph sparsification
stage); 2) factorize the sparsifier’s Laplacian matrix (precon-
ditioner factorization stage); and 3) run the PCG algorithm
with the sparsifier as the preconditioner (PCG iteration stage),
where in each iteration the matrix-vector multiplication and
the forward/backward substitution of the Cholesky factor are
executed. Note that it is essentially solving the linear system
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Fig. 2. Spanning tree, which is partitioned into a global subtree and m local
subtrees.

whose coefficient matrix is the sparsifier’s Laplacian matrix in
each iteration, whereas the sparsifier’s Cholesky factorization
is not required.

When analyzing a typical power grid, the three stages take
time of the same order of magnitude, as reported in [2]. For
example, to simulate the power grid named “thupg10” in [29],
the three stages consume 79.6, 87.1, and 29.3 s, respectively.
Notice that the relative tolerance for iteration termination is
set 10−3 in [2]. If one tightens the termination criterion, the
time for the third step would be longer. Therefore, to obtain
an efficient parallel solver, all these three steps need to be
parallelized efficiently.

Previous graph sparsification-based PCG solvers are diffi-
cult to parallelize. For the graph sparsification stage, all the
existing practical graph sparsification algorithms are imple-
mented under the assumption of serial computing. For the
preconditioner factorization stage and PCG iteration stage,
Cholesky factorization and backward/forward substitution of
the highly irregular ultrasparse preconditioner matrix are also
hard to parallelize. To address the first problem, a practically
efficient parallel graph spectral sparsification algorithm called
pGRASS is proposed. To tackle the second problem, DDM is
employed to solve the ultrasparse preconditioner matrix. The
number of interface nodes is small, so the Schur complement
matrix can be solved efficiently. The resulted parallel graph
sparsification-based PCG solver is named pGRASS-Solver. We
will present these two ideas detailedly in the next two sections.

B. Parallel Graph Spectral Sparsification

The serial feGRASS algorithm [2] can be divided into four
steps: 1) construct the MEWST; 2) compute effective resis-
tances; 3) sort off-tree edges; and 4) recover off-tree edges.
The details of the parallelization of each step are presented as
follows.

To construct the MEWST, two basic graph algorithms,
including BFS and the Kruskal algorithm are required. Parallel
BFS and parallel Kruskal algorithm have been extensively
studied and we just use the implementation in problem-based
benchmark suite (PBBS) [33]. As for parallel sorting, we use
the multiway mergesort implemented in C++ standard library.

Effective resistance calculation with respect to a tree can
be parallelized using a simple yet effective divide-and-conquer
strategy. Note that computing the effective resistance of one
off-tree edge corresponds to one query for the distance

between two nodes of the edge. First partition the MEWST
into a global subtree and m local subtrees, as shown in
Fig. 2. Those distance queries can be classified into four types,
depending on locations of two nodes, as shown in Fig. 2
with dotted lines. Let Reff(i, j) denote effective resistance of
e = (i, j), T(i) denote the subtree which vertex i belongs to
(T(i) = 0 means vertex i belongs to the global subtree), Rt(i)
denote the root vertex of subtree T(i), and Dl(i, j) denote the
distance between vertex i and j in the subtree with index l. If
both i and j belong to the global subtree, then

Reff(i, j) = D0(i, j). (16)

If both i and j belong to the same local subtree, then

Reff(i, j) = DT(i)(i, j). (17)

If i belongs to the global subtree and j belongs to some local
subtree, then

Reff(i, j) = D0(i, Rt(j)) + DT(j)(Rt(j), j). (18)

If i and j belong to different local subtrees, then

Reff(i, j) = D0(Rt(i), Rt(j)) + DT(i)(Rt(i), i)

+ DT(j)(Rt(j), j). (19)

With (16)–(19), any distance query in the original MEWST
can be reduced to queries in subtrees. Then the queries in
different subtrees can be handled independently, which is
embarrassingly parallel. The queries in one subtree can be
computed efficiently leveraging Tarjan’s off-line least common
ancestor (LCA) algorithm [34].

To parallelize the edge-recovering stage, fisrt note that the
main work in this stage is to find spectrally similar edges
of each off-tree edge. This operation seems inherently serial
because the spectral similarity defined in (8) relies on the latest
subgraph P . To overcome this issue, we first observe that for
two off-tree edges e1 = (p, q) and e2 = (s, t)

Similarity(e1, e2) = f T
p,qL+

P fs,t ≈ f T
p,qL+

T fs,t (20)

where T denotes the spanning tree and P denotes the latest
subgraph. Equation (20) infers that one can obtain spectrally
similar edges of each edge by running β-layer BFS on the
spanning tree. The tree is static during the edge-recovering
procedure, so a naive approach is to compute spectrally similar
edges for each off-tree edge parallelly in advance. Then, one
can run the sequential edge-recovering phase in feGRASS [2]
except that spectrally similar edges are obtained by reading
the data stored before.

However, storing spectrally similar edges of all off-tree
edges may consume a large amount of memory, making the
aforementioned approach impractical. Another drawback of
the naive approach is that it introduces extra work, because
there is no need to compute spectrally similar edges for those
edges which have been excluded by previous recovered edges.
To address these issues, we first divide the off-tree edges into
many blocks, as shown in Fig. 3. Each block contains k × m
edges, where m denotes the number of threads and k denotes
a constant integer (we set k to 100 in our experiment). Within
each block, we compute spectrally similar edges of each edge
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Fig. 3. Off-tree edges, divided into many blocks.

Algorithm 1 pGRASS: parallel GRAph Spectral
Sparsification
Input: Graph G = (V, E, w), the number of edges added to the

spanning tree of G for producing the sparse graph: α, the number
of threads m.

Output: Sparse graph P , which is spectrally similar to G.
1: Run parallel BFS to compute unweighted distances. Calculate

effective edge weights via (7) in parallel. Run the parallel Kruskal
algorithm to obtain MEWST T . Set P = T .

2: Partition T into a global subtree and m local subtrees. Use
(16)–(19) to convert distance queries in T to distance queries in
those subtrees. Run Tarjan’s LCA algorithm for each subtree in
parallel.

3: Sort off-tree edges by w(e)Re in descending order in parallel.
4: Divide off-tree edges into many blocks such that each block

except the last one contains km edges.
5: for each block do
6: for each edge e = (i, j) in the current block in parallel do
7: if e is not marked then
8: Run β-layer BFS from i and j respectively. Store the off-

tree edges connecting the reached vertices in BFS and
other vertices as spectrally similar edges of e.

9: end if
10: end for
11: for each edge e in the current block do
12: if α edges have been added into P then
13: Return.
14: end if
15: if e is not marked then
16: Add e into P .
17: Mark the spectrally similar edges of e.
18: end if
19: end for
20: end for

in parallel, store them, execute the sequential edge-recovering
procedure and then move to the next block. The memory for
storing the spectrally similar edges can, therefore, be reused.
This approach can also reduce the extra work introduced by
parallelization because it only processes the edges which have
not been excluded by the edges in previous blocks.

Combining the aforementioned techniques, we obtain a par-
allel graph spectral sparsification algorithm called pGRASS.
It is described in Algorithm 1.

C. Solving the Sparsifier’s Laplacian Matrix With DDM

In this section, we propose to leverage DDM to solve the
sparsifier’s Laplacian matrix. Because the sparsifier is ultra-
sparse, the number of interface nodes is small when it is
partitioned, resulting in a small Schur complement matrix
which can be solved efficiently. Thus, we can obtain an effi-
cient parallel preconditioner based on graph sparsification and
DDM.

To compute the overall Schur complement matrix in (13),
each local Schur complement matrix Si can be computed
using (14) in parallel. However, computing Si using (14)

Algorithm 2 Parallely Solving the Laplacian-Matrix
Equation (12) with DDM
Input: Laplacian-matrix equation provided in the form of (12).

Cholesky factors of Ai, and S defined by (13) and (14).
Output: Solution xi and yi of (12).

1: for each subdomain i in parallel do
2: Use the Cholesky factor of Ai to calculate bi = gi − ET

i A−1
i fi,

where gi, Ei and fi are defined in (12).
3: end for
4: Use the Cholesky factor of S to solve (13).
5: for each subdomain i in parallel do
6: Use the Cholesky factor of Ai to solve (15) for xi.
7: end for

directly is expensive because it requires solving Ai many times.
Below we show how to compute Si more efficiently.

Suppose the subdomain matrix, including both interior
nodes and interface nodes, is factorized in the following way:[

PiAiPT
i PiEi

ET
i PT

i Ci

]
=

[
Li,11 O
Li,21 Li,22

][
LT

i,11 LT
i,21

O LT
i,22

]
(21)

where Pi denotes permutation matrix which can be computed
using any fill-in reducing matrix reordering technique. Note
that only the interior nodes are reordered.

From (21), we can get

PiAiP
T
i = Li,11LT

i,11 (22)

PiEi = Li,11LT
i,21 (23)

and

Ci = Li,21LT
i,21 + Li,22LT

i,22. (24)

Substituting (22)–(24) into (14), we have

Si = Ci − ET
i A−1

i Ei

= Li,21LT
i,21 + Li,22LT

i,22

− (
PT

i Li,11LT
i,21

)T(
PT

i Li,11LT
i,11Pi

)−1
PT

i Li,11LT
i,21

= Li,22LT
i,22. (25)

Equation (25) infers that Si can be computed by multiplying
the submatrices in the Cholesky factor in (21). Besides, DDM
requires factorizing Ai and the Cholesky factor of Ai is already
obtained in (22).

After the Schur complement matrix S is formed and factor-
ized, we obtain an efficient parallel preconditioner. It means
that at each PCG iteration, the preconditioner equation is
solved with DDM as described in Algorithm 2. Because the
Cholesky factors of S and Ai are constructed and stored explic-
itly, the resultant preconditioner can be easily reused for linear
systems with multiple right-hand sides.

It is interesting to compare our method with the MST-
guided method proposed in [1], since both methods aim to
combine the convergence property from graph sparsification
techniques and the divide-and-conquer nature from partition-
based approaches. The MST-guided method partitions the
MST and then recovers all inner-partition edges to form a
block Jacobi preconditioner. There are two major differences
between the two methods. First, the MST-guided method dis-
cards some spectrally critical interpartition edges, while our
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method fully inherits the convergence property from graph
sparsification techniques and, thus, leads to faster convergence
of the iterative solution. Second, the MST-guided method
recovers all inner-partition edges leading to a denser precondi-
tioner, while our method retains the sparsity of the sparsifier,
which results in shorter factorization time and iteration time
along with less memory cost.

D. Overall Algorithmic Flow

The proposed parallel iterative solver which combines graph
sparsification and DDM is called pGRASS-Solver. In this sec-
tion, we have employed a naive DDM and we name the
resulted solver pGRASS-Solver1, whose algorithmic flow is
described as follows.

1) Run the pGRASS algorithm (Algorithm 1) parallelly to
obtain the sparsifier.

2) With DDM, partition the sparsifier into m subdomains.
3) Form the sparsifier’s Laplacian matrix in form of (12),

parallelly.
4) Factorize each subdomain matrix in the form of (21),

parallelly. Then, compute Si for each subdomain in
parallel using (25), i = 1, . . . , m.

5) Factorize the overall Schur complement matrix S in (13).
6) Run the PCG algorithm with the sparsifier’s Laplacian

matrix as the preconditioner, where in each iteration step
the preconditioner equation is solved with Algorithm 2.

In this algorithm flow, there are three major stages: 1) graph
sparsification (step 1); 2) factorization of the preconditioner
(steps 2–5); and 3) the PCG iteration (step 6). Most com-
putations are well parallelized. Only steps 2 and 5 (during
the factorization of the preconditioner) are executed serially.
Because the sparifier is an ultrasparse graph, the both steps
consume a small fraction of the overall runtime.

IV. MORE EFFICIENT FACTORIZATION AND SOLUTION OF

THE SPARSIFIER’S LAPLACIAN MATRIX

To further improve the efficiency of the proposed solver,
two techniques are presented in this section. We focus on
reducing the cost for factorizing and solving the sparsifier’s
Laplacian matrix. We first present a variant of DDM, which is
based on PCF, to reduce the cost for solving the preconditioner
matrix without any additional overhead. Then, an efficient
Schur complement matrix sparsification approach is proposed.
The sparsified Schur complement matrix (SSCM) can be fac-
torized and solved much more efficiently, with only marginal
additional cost for sparsification and negligible increase in the
number of PCG iterations. Thus, the efficiency of the proposed
solver can be further improved. These two techniques will be
presented in detail in the next two sections.

A. Parallel Partial Cholesky Factorization

If the preconditioner equation is solved with DDM, as in
Algorithm 2, the submatrices Ai are solved twice in each PCG
iteration step: one is for forming the right-hand side of the
Schur complement equation bi = gi − ET

i A−1
i fi, the other is

for calculating the interior variables xi = A−1
i (fi − Eiyi). To

reduce the cost of applying the preconditioner, we present a
more efficient way to solve the preconditioner equation.

We can write (21) in a slightly different way[
PiAiPT

i PiEi

ET
i PT

i Ci

]
=

[
Li,11 O
Li,21 I

][
I O
O Si

][
LT

i,11 LT
i,21

O I

]

(26)

where Si = Li,22LT
i,22. Puting all these equations together

leads to⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1A1PT
1 P1E1 O O · · · O O

ET
1 PT

1 C1 O F1,2 · · · O F1,m

O O P2A2PT
2 P2E2 · · · O O

O FT
1,2 ET

2 PT
2 C2 · · · O F2,m

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

O O O O · · · PmAmPT
m PmEm

O FT
1,m O FT

2,m · · · ET
mPT

m Cm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= LSaugLT

(27)

where L and Saug satisfy

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L1,11 O O O · · · O O
L1,21 I O O · · · O O

O O L2,11 O · · · O O
O O L2,21 I · · · O O
...

...
...

...
. . .

...
...

O O O O · · · Lm,11 O
O O O O · · · Lm,21 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(28)

Saug =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I O O O · · · O O
O S1 O F1,2 · · · O F1,m

O O I O · · · O O
O FT

1,2 O S2 · · · O F2,m
...

...
...

...
. . .

...
...

O O O O · · · I O
O FT

1,m O FT
2,m · · · O Sm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (29)

Equation (27) is called PCF where only interior variables
are eliminated. It implies that the preconditioner can be applied
by solving L, Saug, and LT successively. Note that L is a block
diagonal matrix, so L and LT can be easily solved using for-
ward/backward substitution, which is inherently parallel due
to the blocked structure of L. Saug is the overall Schur comple-
ment matrix S defined in (13) augmented by identity matrices
so solving Saug is equivalent to solving S. This approach is
mathematically equivalent to Algorithm 2 but computation-
ally different from that. To analyze time complexity of these
two approaches, let nnz(A) denote the number of nonzeros in
matrix A and fac(S) denote the Cholesky factor of the overall
Schur complement matrix S. If Algorithm 2 is used, the cost
for applying the preconditioner is

C̃ost1 = �i
(
4nnz

(
Li,11

) + 2nnz(Ei)
) + 2nnz(fac(S)). (30)

Under the assumption of parallel computing, the cost becomes

Cost1 = max
i

(
4nnz

(
Li,11

) + 2nnz(Ei)
) + 2nnz(fac(S)). (31)

If the PCF described in this section is used, the cost is

Cost2 = max
i

(
2nnz

(
Li,11

) + 2nnz
(
Li,21

)) + 2nnz(fac(S)). (32)
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It is observed that nnz(Li,21) is usually much smaller than
nnz(Li,11). So solving the preconditioner equation using the
techniques described in this section can be more efficient than
solving it using Algorithm 2.

B. Sparsification of the Overall Schur Complement Matrix

Although the cost of applying the preconditioner has been
reduced from (31) to (32), it still needs to solve the dense
Schur complement matrix S. This is expensive in the scenar-
ios where the sparsifier is denser and the size of the Schur
complement matrix is larger. It should be noted that there
are many applications, such as transient simulation of power
grids, where linear equations with the same or similar coef-
ficient matrices need to be solved for many times. For these
applications, the time for PCG iteration dominates the overall
performance so it is often preferred to recover more off-tree
edges to reduce the number of PCG iterations, resulting in
large and dense Schur complement matrices.

To improve the efficiency of pGRASS-Solver for these sce-
narios, we present a spectral sparsification approach which
is customized for Schur complement matrices in this sec-
tion. We have modified the effective resistance-based sampling
method [22] to utilize the structural properties of the Schur
complement matrix. Note that in the Schur complement matrix
S (13), the diagonal blocks Si are dense while the other blocks
are sparse. Thus, instead of sparsifying the overall Schur com-
plement matrix S directly, we propose to sparsify each dense
block Si separately. After those dense blocks are sparsified,
they are put together with the other sparse off-diagonal blocks
to form the overall SSCM. Let S̃i denote the sparsifier for Si,
then the overall SSCM S̃ is

S̃ =

⎡
⎢⎢⎢⎣

S̃1 F12 · · · F1,m

FT
12 S̃2 · · · F2,m
...

...
. . .

...

FT
1,m FT

2,m · · · S̃m

⎤
⎥⎥⎥⎦. (33)

Each local Schur complement matrix Si can be written as
a non-negative diagonal matrix Di plus a graph Laplacian
matrix LGi

Si = Di + LGi (34)

where the corresponding graph is denoted as Gi. We use the
effective resistance-based sampling method [22] to sparsify Gi

to obtain Pi, then the local SSCM can be written as follows:

S̃i = Di + LPi . (35)

The effective resistance-based method [22] samples each
edge e with probability proportional to weRe, where we and
Re denote weight of edge e and effective resistance across the
two endpoints of edge e, respectively. For an edge e = (p, q)

in Gi, its effective resistance can be computed as follows:

Rp,q = f T
p,qS−1

i fp,q (36)

where fp,q = fp−fq, and fp and fq is the pth and the qth column
of identity matrix, respectively. Suppose the dimension of Si

is ni. We can assume there are O(n2
i ) edges in Gi because

it is dense. Note that Si is obtained by multiplying Li,22 and

Algorithm 3 Sparsification of the Schur Complement Matrix
Input: Schur complement matrix S defined by (13) and (14), a

parameter α to determine the number of samples.
Output: Sparsified Schur complement matrix S̃ defined by (33).

1: for each subdomain i in parallel do
2: Construct the diagonal matrix Di and the graph Gi using Si as

in (34).
3: Compute L−1

i,22, where Li,22 is defined in (21).
4: Compute effective resistance Rp,q for each edge (p, q) in Gi

using (37).
5: Compute sampling probability Probp,q for each edge:

Probp,q = wp,qRp,q
�(s,t)∈Gi ws,tRs,t

.

6: Set Mi = αni log ni and Pi = φ, where ni is the dimension of
Si.

7: for l = 1 to Mi do
8: Choose a random edge (j, k) ∈ Gi with replacement,

according to probability Probj,k.
9: Add edge (j, k) to Pi with weight

wj,k
MiProbj,k

.
10: end for
11: Set S̃i = Di + LPi .
12: end for
13: Form S̃ as in (33).

LT
i,22 (25) so there is no need to perform Cholesky factorization

on Si again. Then, the effective resistance becomes

Rp,q = f T
p,q

(
Li,22LT

i,22

)−1
fp,q =

(
L−1

i,22fp,q

)T
L−1

i,22fp,q. (37)

L−1
i,22 can be computed by solving ni linear equations where

the coefficient matrix is Li,22 and it takes O(n3
i ) time. After

L−1
i,22 is computed, it takes O(ni) time to compute the effec-

tive resistance of one edge using (37). So computing effective
resistances for all edges takes O(n3

i ) time. Note that ni is
the number of interface nodes in the ith subdomain, which
is usually very small. So effective resistances can be com-
puted efficiently. We summarize the above Schur complement
matrix sparsification algorithm as Algorithm 3.

Instead of solving the dense Schur complement matrix in
each PCG iteration step, our new approach solves the SSCM so
the cost of applying the preconditioner can be largely reduced.
We remark that it may bring errors and affect the quality
of the preconditioner. However, as shown by experimental
results in the next section, there is almost no increase in the
number of PCG iteration steps, which is because the spectral
properties are well preserved using the proposed sparsification
approach. Moreover, because the proposed spectral sparsifica-
tion approach is highly efficient and it takes much less time to
factorize the SSCM than to factorize the original dense Schur
complement matrix, the cost of constructing the preconditioner
can also be reduced.

Compared with sparsifying S with feGRASS [2] or
pGRASS, the proposed Algorithm 3 can find sparsifiers S̃
preserving the spectral properties of S better, leading to less
impact on the preconditioning quality and fewer increase in
PCG iterations. On the other hand, the time complexity of
Algorithm 3 is tolerable because the dimension of the Schur
complement matrix is much smaller than the original matrix.

The details of approximately solving the Laplacian matrix
of the sparsifier is presented in Algorithm 4. With this method,
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Algorithm 4 Parallely Solving the Laplacian-Matrix
Equation (12) With PCF and the Sparsification
Input: Laplacian-matrix equation provided in the form of (12), par-

tial Cholesky factors defined in (26)–(28) and Cholesky factor of
sparsified Schur complement matrix.

Output: Approximate solution xi and yi of (12).
1: for each subdomain i in parallel do
2: Solve the following linear equations using forward substitu-

tion, based on (26).[
Li,11 O
Li,21 I

][
zi
bi

]
=

[
fi
gi

]
. (39)

3: end for
4: Use the Cholesky factor of sparsified Schur complement matrix

to solve the following linear equations.⎡
⎢⎢⎢⎢⎣

S̃1 F12 · · · F1,m
FT

12 S̃2 · · · F2,m
...

...
. . .

...

FT
1,m FT

2,m · · · S̃m

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

y1
y2
...

ym

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

b1
b2
...

bm

⎤
⎥⎥⎦. (40)

5: for each subdomain i in parallel do
6: Solve the following linear equations using backward substitu-

tion. [
LT

i,11 LT
i,21

O I

][
xi
yi

]
=

[
zi
yi

]
. (41)

7: end for

the cost of applying the preconditioner is

Cost3 = max
i

(
2nnz

(
Li,11

) + 2nnz
(
Li,21

)) + 2nnz
(

fac
(

S̃
))

.

(38)

Note that S̃ is much sparser than S, so the cost of solving the
preconditioner equations can be reduced largely.

C. Algorithm Description of pGRASS-Solver2

The parallel iterative solver proposed in this section also
combines parallel graph sparsification and DDM. Instead of
employing naive DDM as in pGRASS-Solver1, it leverages
PCF and SSCM, which can be seen as a variant of DDM. We
name the resulted solver pGRASS-Solver2, whose algorithmic
flow is described below.

1) Run the pGRASS algorithm (Algorithm 1) parallelly to
obtain the sparsifier.

2) With DDM, partition the sparsifier into m subdomains.
3) Form the sparsifier’s Laplacian matrix in form of (12),

parallelly.
4) Factorize each subdomain matrix in the form of (21),

parallelly. Then, compute Si for each subdomain in
parallel using (25), i = 1, . . . , m.

5) Sparsify the overall Schur complement matrix using
Algorithm 3. Factorize the overall SSCM S̃ defined
in (33).

6) Run the PCG algorithm with the sparsifier’s Laplacian
matrix as the preconditioner, where in each iteration step
the preconditioner equation is solved with Algorithm 4.

Note that pGRASS-Solver2 differs from pGRASS-Solver1
only in steps 5 and 6. These two steps of pGRASS-Solver2 are

more efficient than those of pGRASS-Solver1, especially, for
the cases where the Schur complement matrix is large. For DC
simulation of power grids, all these steps are executed once and
theSchurcomplementmatrix isusuallysmall, so theperformance
of these two solvers are similar. For transient simulation of power
grid, step 1 through step 5 are executed once while step 6 is
executed for many times, so the runtime of step 6 dominates the
overall performance. On the other hand, it is preferred to recover
more off-tree edges to accelerate PCG iterations, resulting in the
larger Schur complement matrix. Therefore, pGRASS-Solver2
can be more efficient than pGRASS-Solver1 for the transient
analysis problem of power grid.

V. EXPERIMENTAL RESULTS

We first validate the proposed techniques, including parallel
graph sparsification, parallel preconditioner matrix factoriza-
tion, and parallel preconditioner matrix solution, respectively.
Then, pGRASS-Solver1 and pGRASS-Solver2 are compared
with the feGRASS-based PCG solver [2] and the MST-guided
method [1] for power grid DC analysis. After that the exper-
imental results on transient analysis are presented. We have
implemented pGRASS-Solver1, pGRASS-Solver2, feGRASS-
based PCG solver [2], and the MST-guided method [1]
in C++ with MKL [35]. Notice that a binary version of
feGRASS has been shared on [36]. For the Cholesky factor-
ization, we use the direct sparse solver CHOLMOD [11], [12].
For graph partitioning, we use the widely adopted graph
partitioner METIS [37]. All experiments are carried out on
a machine with two 8-core Intel Xeon E5-2630 Processors
and 512-GB RAM. Thread-level parallelism is realized by
OpenMP with 16 threads. In all experiments, the wall-clock
runtime is reported. Unless stated explicitly, the relative
tolerance for PCG termination is set to 10−6.

A. Validation of the Parallel Graph Sparsification

To validate the ideas proposed in Section III-B, we com-
pare the pGRASS algorithm (Algorithm 1) with the feGRASS
algorithm [2]. For both algorithms, 2%|V| off-tree edges are
recovered. The quality of sparsifier is reflected by the relative
condition number and the number of iteration steps that PCG
converges to a relative tolerance of 10−6 with the sparsifier
as preconditioner. pGRASS is executed in parallel using 16
threads while feGRASS is executed serially. The results are
listed in Table I.

From the results we see that, pGRASS algorithm
(Algorithm 1) achieves 6.1× speedups over the sequential
feGRASS algorithm on average. For large-scale cases, the
speedup is up to 8.2×. This validates the effectiveness of the
ideas proposed in Section III-B. Note that there is a little differ-
ence in relative condition number and the number of iteration
steps between two graph sparsification algorithms, which is
caused by the approximation in (20).

B. Validation of DDM-Based Techniques for Factorizing
Preconditioner Matrix

To validate the proposed techniques for preconditioner
matrix factorization, we compare three methods for factorizing
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TABLE I
COMPARISON BETWEEN PARALLEL AND SEQUENTIAL GRAPH

SPARSIFICATION ALGORITHMS FOR THE TEST CASES IN [28] AND [29].
(TIME IN UNIT OF SECOND)

the sparsifier’s Laplacian matrix: 1) Cholesky factorization;
2) naive DDM; and 3) DDM with SSCM. Note that naive
DDM and PCF are identical in the matrix factorization phase.
Cholesky factorization is executed using a single thread while
the other two methods are executed using 16 threads. We com-
pare these methods under two scenarios where 2%|V| and
10%|V| off-tree edges are recovered, respectively. The param-
eter α in Algorithm 3 is set to 10. The results are listed in
Table II.

Naive DDM works well for the scenarios where the precon-
ditioner is sparser, but it may take even more time than the
Cholesky factorization for the cases where the preconditioner
is denser. The reason is that the size of the Schur complement
matrix grows as more off-tree edges are recovered and factoriz-
ing the large Schur complement matrix can be extremely time
consuming. Things are different after the Schur complement
matrix is sparsified. With the proposed Schur complement
matrix sparsification approach (Algorithm 3), the number of
nonzeros can be reduced largely and the Schur complement
matrix can be factorized more efficiently. Moreover, we can
also see that it takes only a little time to sparsify the Schur
complement matrix. Therefore, the total time for precondi-
tioner matrix factorization Tf is drastically reduced, especially,
for the cases where more off-tree edges are recovered. To show
the results more clearly, we have plotted the factorization time
for case “thupg1” with different percentages of off-tree edges
in Fig. 4.

C. Validation of the DDM-Based Techniques for Solving
Preconditioner Matrix

To validate the proposed techniques for solving the pre-
conditioner matrix, we compare four PCG solvers where the
preconditioner matrix is solved in different ways. In this sec-
tion, we focus on the iteration phase of these solvers. For serial

Fig. 4. Time for preconditioner matrix factorization (up) and the time for
PCG iteration (down) on case thupg1 with different proportions of off-tree
edges recovered.

feGRASS-PCG [2], the preconditioner matrix is solved using
serial backward/forward substitution. For pGRASS-Solver1, it
is solved using DDM (Algorithm 2). For pGRASS-Solver2,
it is solved using PCF along with SSCM (Algorithm 4). We
also record the performance of the PCG solver in which the
preconditioner matrix is solved solely using PCF. It differs
from pGRASS-Solver2 only in that it solves the original Schur
complement matrix while pGRASS-Solver2 solves the SSCM.
As in the last section, we also compare these solvers under
two scenarios where 2%|V| and 10%|V| off-tree edges are
recovered, respectively. The results are listed in Table III.

pGRASS-Solver1 equipped with naive DDM achieves more
than 6× speedups over the sequential solver for the cases
with fewer edges recovered, but the parallel speedup decreases
as more edges are added into the sparsifier. Replacing naive
DDM with PCF can reduce the preconditioning cost without
any additional overhead. If the SSCM instead of the original
one is solved, the preconditioning cost can be further reduced,
with only negligible increase in PCG iteration steps. These
results demonstrate that both the techniques of PCF and SSCM
are beneficial for reducing the preconditioning cost Tpre, thus,
reducing the PCG iteration time Ti. As in the last section, we
have also plotted the PCG iteration time for case thupg1 with
different percentages of off-tree edges in Fig. 4.

D. Results on DC Analysis of Power Grids

In this section, power grid DC analysis is considered. Cases
are from two well-known power grid benchmarks [28], [29].
We compare pGRASS-Solver1 and pGRASS-Solver2 with two
recent work: 1) feGRASS-based solver [2] and 2) the MST-
guided method [1]. feGRASS-based solver is sequential while
the other three are parallel. The relative tolerance of the PCG
algorithm is set to 10−3. For all graph sparsification algo-
rithms, 2%|V| off-tree edges are recovered. The performance
of the four solvers for the test cases in [28] and [29] is listed
in Table IV. For the MST-guided method, pGRASS-Solver1
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TABLE II
RESULTS ON FACTORIZING THE PRECONDITIONER MATRIX. (TIME IN UNIT OF SECOND)

TABLE III
RESULTS ON SOLUTION OF THE PRECONDITIONER MATRIX AND PCG ITERATION. (TIME IN UNIT OF SECOND)

and pGRASS-Solver2, the time for graph partitioning is not
included in the factorization time as in [1].

Compared with the feGRASS-based solver, pGRASS-
Solver1 achieves an average 6.7× speedup for the total time.
With the techniques proposed in Section IV, the parallel
speedup is further improved to 7.9×. The comparison between
the proposed two solvers with the feGRASS-based solver has
been presented in the last three sections so we will skip the
details here.

Compared with the parallel MST-guided method [1],
pGRASS-Solver1 (pGRASS-Solver2) achieves an average
5.9× (6.8×) speedup for the total time. For the factorization
phase, although all methods partition the matrix into 16 sub-
domain matrices and factorize each subdomain matrix in a
single thread, the proposed two solvers show great improve-
ment in factorization time. This is because the subdomain

matrices in the proposed solvers are ultrasparse after graph
sparsification and can be factorized more efficiently. A great
improvement in iteration time is also shown, which is due to
the following two reasons. First, the relative condition num-
ber of graph sparsification-based preconditioners is lower than
that of the MST-guided block Jacobi preconditioners, which
results in fewer iteration steps. Second, the preconditioner in
the proposed solvers can be solved less costly because of fewer
nonzeros in Cholesky factors, which leads to faster single-
step iteration. We also note that the proposed solvers are
more memory-efficient than the MST-guided method. Take
the case thupg10 as an example. The MST-guided method
consumes 62-GB memory, while both pGRASS-Solver1 and
pGRASS-Solver2 use only 18 GB.

A power grid circuit for the design of a flat panel dis-
play (with 2160 × 3840 pixels) from [2] is tested. It includes
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TABLE IV
RESULTS ON POWER GRID DC ANALYSIS. (TIME IN UNIT OF SECOND)

TABLE V
RESULTS ON A LARGER REAL-WORLD POWER GRID.

(TIME IN UNIT OF SECOND)

3.6×108 nodes and the resulting Laplacian matrix has 8.7 bil-
lion nonzeros. The MST-guided block Jacobi fails to handle
this case due to excessive memory requirement. For the other
three methods, 2%|V| off-tree edges are recovered to construct
the ultrasparse sparsifier. pGRASS-Solver1 and pGRASS-
Solver2 are executed with 16 threads. The results are listed in
Table V. We note that the feGRASS-based solver with 2%|V|
off-tree edges recovered runs faster than the results reported
in [2]. Using 16 threads, pGRASS produces the sparsifier
in 755 s, which is 11× faster than the feGRASS algorithm.
As for the total time, pGRASS-Solver1 and pGRASS-Solver2
achieve 9.7× and 10.9× speedups over feGRASS-based PCG
solver, respectively. As far as we know, it is the first time that a
power grid matrix containing more than eight billion nonzeros
is solved within half an hour on a 16-core machine.

E. Results on Transient Analysis of Power Grids

In this section, power grid transient simulation is con-
sidered. Cases are from two well-known power grid bench-
marks [28], [29]. For the cases from [29], capacitors and
inductors with random values are added (similar to IBM

PG benchmarks) and periodic pulse currents are generated
at each current source for transient analysis. We compare
direct solver CHOLMOD [12], feGRASS-based solver [2],
pGRASS-Solver1 and pGRASS-Solver2 for this application.
DC analysis is first performed, followed by repeatedly solv-
ing (3) toward time 5 ns with varied time steps for three
iterative solvers and a fixed time step (10 ps, 500 time points
totally) for the direct solver. The varied time steps are deter-
mined with the breakpoints of current sources, but restricted
not to exceed 200 ps for error control. The resulted total num-
ber of time points is also recorded. Although the coefficient
matrix changes with the time step, all the linear equations
share the same preconditioner. For all these iterative solvers,
10%|V| off-tree edges are recovered to form sparsifiers and
the relative tolerance of PCG algorithms is set to 10−6.

The results are listed in Table VI. Note that the Tdc reported,
here, is larger than the Ttot reported in Table IV, because the
relative tolerance of PCG is set to 10−6, here, to produce a
more accurate initial condition for transient simulation. From
the results we see that the proposed pGRASS-Solver2 achieves
8.6× speedups averagely over the sequential feGRASS-based
solver. It is interesting to notice that pGRASS-Solver2 shows
more than 2× improvement on average over pGRASS-Solver1
for those transient analysis benchmarks, which is larger than
the improvement in DC analysis shown in the last section.
There are mainly two reasons. First, the overall performance of
transient analysis is dominated by the time for PCG iteration.
With the techniques proposed in Section IV, the cost for solv-
ing the preconditioner matrix can be reduced largely, with only
negligible increase in the number of PCG iterations. Second,
it is preferred to recover more off-tree edges to reduce the
number of PCG iterations in transient analysis, leading to a
larger Schur complement matrix whose factorization can be
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TABLE VI
RESULTS ON POWER GRID TRANSIENT ANALYSIS. (TIME IN UNIT OF SECOND)

extremely costly. With the proposed Schur complement matrix
sparsification approach, the cost for factorizing the precondi-
tioner matrix can be reduced greatly. It is, especially, true for
large-scale cases. For example, pGRASS-Solver2 achieves up
to 5.8× speedups over pGRASS-Solver1 on the largest case
named “thupg10t.”

To verify the accuracy of the proposed iterative solver for
transient simulation, the results derived from the direct solver
CHOLMOD [12] are also listed in Table VI. The differences
between the node voltages computed by pGRASS-Solver2 and
CHOLMOD solver are denoted by Err. Both the maximum
error and the average error are recorded. The results show
that the node voltage error is less than 2.4 mV for all cases.
As the supply voltage is 1.8 V, the relative error is below
0.13%, which is tolerable. The transient waveforms of node
n0_20706300_8937900 and node n1_29561400_9521100 in
case “ibmpg3t” are plotted in Fig. 5. They validate the
accuracy of transient simulation using the proposed parallel
iterative solver. Besides, we can also see that the proposed
pGRASS-Solver2 achieves 32.4× speedups averagely over the
sequential direct solver CHOLMOD.

To show the parallel scalability, we execute the two ver-
sions of pGRASS-Solver on the case named thupg1t with
the different number of threads. To better demonstrate where
the speedups come from, i.e., from algorithm improvement
or parallel implementations, here, we just change the num-
ber of threads, while the number of partitions is kept constant
(set to 16 for all thread numbers). So the total work under
the different number of threads remains constant. The results
are listed in Table VII. We see that single-thread pGRASS-
Solver1 runs slower than feGRASS-PCG, which is because
that pGRASS-Solver1 takes more total work to deliver good
parallelism. With the techniques of PCF and SSCM, the total
work of pGRASS-Solver2 is reduced, which is even smaller
than that of the sequential feGRASS-PCG. We also notice
that pGRASS-Solver2 achieves better parallel efficiency than
pGRASS-Solver1. Using 16 threads, the parallel efficiency of

Fig. 5. Transient simulation results of a VDD node (up) and a GND node
(down) in case ibmpg3t, obtained with direct equation solver and the proposed
pGRASS-Solver2.

TABLE VII
RUNTIME OF TRANSIENT ANALYSIS ON THE CASE Thupg1t USING

DIFFERENT NUMBER OF THREADS (TIME IN UNIT OF SECOND)

pGRASS-Solver2 is 49.4% while that of pGRASS-Solver1 is
only 38.8%. The reason is that solving the Schur complement
matrix is the main bottleneck for parallelization and pGRASS-
Solver2 employs the SSCM, which can be solved much more
efficiently.

VI. CONCLUSION

This article presents a practically efficient parallel iterative
solver (pGRASS-Solver) for large-scale power grid analysis
problems. A parallel graph sparsification algorithm is first
proposed, which employs a divide-and-conquer strategy to
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compute effective resistances and a parallel edge-recovering
technique. Then, DDM is utilized to solve the sparsifier’s
Laplacian matrix. To further reduce the cost for factoriza-
tion and solution of the sparsifier’s Laplacian matrix, a variant
of DDM which employs PCF and Schur complement matrix
sparsification is proposed. Consequently, we obtain an effi-
cient parallel preconditioner, which combines the advantages
of both graph sparsification techniques and partition-based
methods. For power grid DC analysis, experimental results
show that an average 7.9× speedup is gained over the sequen-
tial feGRASS-based solver [2] and an average 6.8× speedup is
gained over the parallel MST-guided method [1], on a 16-core
machine. For power grid transient analysis, the proposed
pGRASS-Solver achieves an average 8.6× speedup over the
feGRASS-based solver and several tens times speedup over
direct solver CHOLMOD [12]. For a real-world power grid
matrix with 360 million nodes and 8.7 billion nonzeros,
pGRASS-Solver succeeds in performing DC analysis on it
within 20 min, which is 10.9× faster than the best sequential
method.
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