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Tensor, a multi-dimensional data structure, has been exploited recently in the machine learning commu-
nity. Traditional machine learning approaches are vector- or matrix-based, and cannot handle tensorial
data directly. In this paper, we propose a tensor train (TT)-based kernel technique for the first time,
and apply it to the conventional support vector machine (SVM) for high-dimensional image classifica-
tion with very small number of training samples. Specifically, we propose a kernelized support tensor

Keywords: train machine that accepts tensorial input and preserves the intrinsic kernel property. The main con-
Image classification tributions are threefold. First, we propose a TT-based feature mapping procedure that maintains the TT
Tensor structure in the feature space. Second, we demonstrate two ways to construct the TT-based kernel func-

Support tensor machine tion while considering consistency with the TT inner product and preservation of information. Third, we

show that it is possible to apply different kernel functions on different data modes. In principle, our
method tensorizes the standard SVM on its input structure and kernel mapping scheme. This reduces the
storage and computation complexity of kernel matrix construction from exponential to polynomial. The
validity proof and computation complexity of the proposed TT-based kernel functions are provided elabo-
rately. Extensive experiments are performed on high-dimensional fMRI and color images datasets, which

demonstrates the superiority of the proposed scheme compared with the state-of-the-art techniques.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Many real-world data appear in tensor format. In medical neu-
roimaging, functional magnetic resonance imaging (fMRI) is natu-
rally a three-way tensor. However, fMRI images are often with very
high dimensions, at the same time with a small number of sam-
ples considering the difficulty of collecting data. This is also known
as the small sample size problem. On the other hand, it is pre-
ferred to process fMRI data on edge devices for fast diagnosis [1].
Nevertheless, due to the limitation of storage and computation re-
sources, it is troublesome to deploy complicated models, such as
deep learning networks, on edge devices. Alternatively, traditional
machine learning models become more popular in such a scenario
due to their lightweight nature and good generalization ability [2].

To make the traditional vector or matrix-based machine learn-
ing algorithms better processing tensor data, it has been popu-
lar recently to extend them to their tensorial formats. For ex-
ample, neighborhood preserving embedding (NPE) was extended
to tensor neighborhood preserving embedding (TNPE) in Dai and
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Yeung (3], support vector machines (SVMs) [4] to support ten-
sor machines (STMs) in Tao et al. [5], and restricted Boltzmann
machines to their tensorial formats in Nguyen et al. [6]. By re-
formulating the machine learning algorithms into their tensorial
frameworks, a performance improvement can be observed. The
main reasons for this improvement can be summarized as follows.
Firstly, these tensor algorithms can naturally utilize the multi-way
structure of the original tensor data, which is believed to be use-
ful in many machine learning applications such as visual question
answering systems [7]| and image completion [8]. Secondly, vec-
torizing tensor data leads to high-dimensional vectors, which may
cause overfitting especially when the training sample size is rela-
tively small [9]. On the contrary, tensor-based approaches usually
derive a more structural and robust model that commonly involves
much fewer model parameters, which not only alleviates the over-
fitting problem but also saves a lot of storage and computation re-
sources [10,11].

This paper focuses on developing an efficient classification algo-
rithm to solve the small sample size problem with limited storage
and computation resources. Although deep learning models show
powerful capability on the image classification task, their size is
usually linearly dependent on the data dimension (possibly mil-
lions in the case of fMRI), which leads to a huge storage and com-
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putation consumption. Moreover, deep learning models often need
a large amount of data for training, which is not a good fit in the
scenario we considered. Few-shot learning [12] is a recently pop-
ular technique to deal with small sample size problems. In [12],
the authors proposed DeepFMRI, in which a pre-trained CNN is
utilized to extract features to facilitate the subsequent training on
the given small number of training samples. We note that the pre-
trained is trained on extra generated data. However, there is no
guarantee that those extra data have a similar distribution as the
given training data. Therefore, the pre-trained model may not work
well for some specific datasets. Moreover, the overall deep model
in DeepFMRI needs to be carefully designed, which is also time-
consuming. In this paper, we propose a kernelized support tensor
train machine (K-STTM), which only has O(M) parameters, where
M is the training sample number, and it is not related to the data
dimension at all. Moreover, no pre-training and manual design are
needed. In the proposed K-STTM, we first employ the tensor train
(TT) decomposition [13] to decompose the given tensor data so
that a more compact and informative representation of it can be
derived. Secondly, we define a TT-based feature mapping strategy
to derive a high-dimensional TT in the feature space. This strategy
enables us to apply different feature mappings on different data
modes, which naturally provides a way to leverage the multi-mode
nature of tensorial data. Thirdly, we propose two ways to build
the kernel matrix efficiently with the consideration of the consis-
tency with the TT inner product and preservation of information.
The constructed kernel matrix is then used by kernel machines to
solve the image classification problems.

The proposed K-STTM is a tensorial extension of the conven-
tional SVM. Different from the existing SVM tensorial extensions,
K-STTM preserves three advantages.

e K-STTM is naturally a nonlinear classifier. Commonly, real-life
data are not linearly separable. However, most existing SVM
tensorial extensions are often based on a linear model (no ker-
nel trick) and cannot deal with nonlinear classification prob-
lems.

The proposed tensorial kernel mapping scheme is valid and we
provide the proof for the first time (refer to Section 4.4). This is
a theoretical guarantee for the successful training of a kernel-
ized support tensor machine. However, this proof is absent in
existing tensorial extensions of SVM.

Due to the non-uniqueness of tensor decomposition, the kernel
mappings of two similar tensors may be very different, which
may lead to different predicting results (refer to Section 4.6).
This is obviously unwanted. To solve this, for the first time, we
propose a data decomposition scheme to make sure that sim-
ilar tensors would have similar kernel mappings in the high-
dimensional feature domain.

The superiority of our methods is validated through extensive
fMRI and color image classification experiments. It is observed
that our methods have significant improvements over other re-
lated state-of-the-art classification methods, including traditional
machine learning methods (vector or tensor-based) and 3D convo-
lutional neural networks. Furthermore, we propose an efficient ker-
nel matrix construction method, which reduces the computational
complexity from O(M21) to O(dIR* + M2R2l,). Applying different
kernel functions on different data modes is also investigated and
shows more than 10% accuracy improvement compared with the
baselines on most datasets.

2. Related works
As one of the most typical supervised learning algorithms,

SVM [4] has achieved enormous success in pattern classification
by minimizing the Vapnik-Chervonenkis dimensions and structural
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risk. However, a standard SVM can not deal with tensorial input
directly. The first work that extends SVM to handle tensorial input
is [5]. More precisely, a supervised tensor learning (STL) scheme
was proposed to train a support tensor machine (STM), where the
hyperplane parameters are modeled as a rank-1 tensor instead of
a vector. For the parameter training, they employed the alternating
projection optimization method.

Although STM is capable to classify tensorial data directly, the
expressive power of a rank-1 weight tensor is limited, which of-
ten leads to a poor classification accuracy. To increase the model
expression capacity, several works were proposed recently based
on the STL scheme. Ref. [14] employs a more general tensor struc-
ture, i.e., the canonical polyadic (CP) format, to replace the rank-1
weight tensor in STM. However, it is an NP-complete problem to
determine the CP-rank. In [15], the STM is generalized to a sup-
port Tucker machine (STuM) by representing the weight parameter
as a Tucker tensor. Nevertheless, the number of model parameters
in STuM is exponentially large, which often leads to a large stor-
age and computational complexity. To overcome this, Ref. [16] pro-
posed a support tensor train machine (STTM), which assumes the
potential weight tensor format is a TT. By doing so, the correspond-
ing optimization problem is more scalable and can be solved effi-
ciently. The aforementioned works are all based on the assumption
that the given tensorial data are linearly separable. However, this is
not the case in most real-world data. It is worth noting that though
STTM sounds like the linear case of the proposed K-STTM, they
are totally different when the linear kernel is applied on K-STTM.
Specifically, K-STTM and STTM use two totally different schemes
to train the corresponding model. For K-STTM, it first constructs
the kernel matrix with the proposed TT-based kernel function, and
then solves the standard SVM problem. However, in STTM, it as-
sumes the parameter in the classification hyperplane can be mod-
eled as a TT, and only updates one TT-core at a time by reformu-
lating the training data.

To extend the linear tensorial classifiers to the nonlinear case,
the authors in He et al. [17] proposed a nonlinear supervised
learning scheme called dual structure-preserving kernels (DuSK).
Specifically, based on the CP tensor structure, they define a corre-
sponding kernel trick to map the CP format data into a higher-
dimensional feature space. Through the introduction of the ker-
nel trick, DuSK can achieve a higher classification accuracy. How-
ever, there is no proof to show that the proposed kernel map-
ping scheme is valid, i.e., there exists a feature space in which
the inner product result is equivalent to the kernel function
value of the original data space. We note that this is the the-
oretical guarantee for the successful training of an SVM-based
method. Moreover, since DuSK is based on the CP decomposi-
tion, the non-deterministic polynomial (NP)-complete problem on
the rank determination still exists. Through introducing a kernel-
ized CP tensor factorization technique, the same research group
in He et al. [17] further proposed the Multi-way Multi-level Ker-
nel model [18] and kernelized support tensor machine model [19].
Nevertheless, the validity of the kernel mapping scheme and the
CP-rank determination issues still exists.

To avoid the above issues, we propose the K-STTM, which not
only introduces the customized kernel function to handle nonlin-
ear classification problems, but also achieves an efficient model
training since the scalable TT format is employed.

3. Preliminaries

In this section, we review some basic tensor notations and
operations, together with the related tensor train decomposition
method.
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(a) Graphical representation

Fig. 1. (a) depicts the graphical representation of a scalar a, vector a, matrix A, and
third-order tensor A. (b) shows the index contraction between two 3-way tensors
A and B.

3.1. Tensor basics

Tensors in this paper are multi-dimensional arrays that gener-
alize vectors (first-order tensors) and matrices (second-order ten-
sors) to higher orders. A dth-order or d-way tensor is denoted as
A e Rli<kx-xl4 and the element of A by A(iy,i...,i4), where 1<
i, < I, k=1,2,...,d. The numbers I, L,...,I; are called the di-
mensions of the tensor .A. We use boldface capital calligraphic let-
ters A, B,..to denote tensors, boldface capital letters A, B,..to de-
note matrices, boldface letters a, b,...to denote vectors, and roman
letters a, b,..to denote scalars. An intuitive and useful graphical
representation of scalars, vectors, matrices and tensors is depicted
in Fig. 1(a). The unconnected edges, also called free legs, are the
indices of the tensor. Therefore scalars have no free legs, while a
matrix has 2 free legs. We will employ these graphical representa-
tions to visualize the tensor networks and operations in the follow-
ing sections whenever possible and refer to Oris [20] for more de-
tails. We now briefly introduce some important tensor operations.

Definition 1 (Tensor index contraction). A tensor index contraction
is the sum over all possible values of the repeated indices in a set
of tensors.

For example, the following contraction of two 3-way tensors A
and B
I
C(ir, iy, i, i5) = Y A(in, 1, 13) B(i3, ia, I5),

is=1

over the i3 index produces a four-way tensor C. We also present
the graphical representation of this contraction in Fig. 1(b), where
the summation over i3 is indicated by the connected edge. After
this contraction, the tensor diagram contains four free legs indexed
by iy, iy, 14, i5, respectively.

Definition 2 (Tensor mode-. kproduct) The mode-k product of a
tensor A e Riv<-xhx-xla with a matrix U € RB<k is denoted as
B = A x;, U and defined by

Ik
ig) =Y U@ i) A1, ... . ... Iq),

=1

B(it, ooy lg1s Jolggts oo o5

where B e Ri*-*k-1xPxli1x-xla We note that Tensor mode-k
product is a special case of tensor index contraction.

Definition 3 (Tensor inner product). For two tensors A, B¢
Rhxkx..xlg  their inner product (A, B) is defined as

I I Iy
:ZZ,..ZA(IHJL...,

ii=1i=1  ig=1

id)B(i1, iz, ...,id).

Definition 4 (Tensor Frobenius norm). The Frobenius norm of a
tensor A € Rlix2x--xla is defined as ||A||r = /(A A).

3.2. Tensor train decomposition
Here we briefly introduce the tensor train (TT) decomposition

that will be utilized in the proposed K-STTM. A TT decomposi-
tion [13] represents a d-way tensor A as d 3-way tensors A1),
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Fig. 2. The TT cores of a 3-way tensor A are two matrices A", A® and a 3-way
tensor A®,
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Fig. 3. Tensor train decomposition of a d-way tensor A into d 3-way tensors
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Fig. 4. The inner product between two d-way tensor trains.

A AD syuch that a particular entry of A is written as the ma-
trix product

Ay, i) = AW G, D) AD G g, ), (1)

where A(k)(:, iy, :) is naturally a matrix since we fix the second
index. Each tensor A®), k=1,....d, is called a TT-core and has
dimensions Ry x I x R, 1. Storage of a tensor as a TT therefore
reduces from ]'[?zl I; down to Zf’zl RiliRi;1. In order for the left-
hand-side of (1) to be a scalar we require that Ry =Ry, = 1. The
remaining R values are called the TT-ranks. A simple illustration
of utilizing TT decomposition to factorize a 3-way tensor A is
shown in Fig. 2. Note that the first and last TT cores are matri-
ces since R; = R4 = 1. A specific element in A is then computed
as a vector-matrix-vector product. Fig. 3 demonstrates the general
TT-decomposition of a d-way tensor .4, where the edges connect-
ing the different circles indicate the matrix-matrix products of (1).
We define the simplifying notation TT (A), which denotes a TT de-
composition of a d-way tensor .4 with user-specified TT-ranks.

Definition 5 (TT inner product). The inner product between two
tensor trains TT(A) and TT(B) is denoted as (TT(A), TT(B)).

The tensor network diagram of the inner product of two TTs is
shown in Fig. 4. The lack of unconnected edges in Fig. 4 implies
that (TT(A), TT(B)) is a scalar.

3.3. Support vector machines

Since this work is based on traditional SVM, we therefore
briefly review the main idea of an SVM. Assume we have a
dataset D=(x;, y,~}§.‘i1 of M labeled samples, where x; € R" are the
vectorized data samples with labels y; € {—1,1}. The goal of an
SVM is to find a discriminant hyperplane

fx)=w'x+b (2)
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that maximizes the margin between the two classes where w and
b are the weight vector and bias, respectively. However, an SVM is
very sensitive to noise since it requires all the training samples to
meet the hard margin constraint. In that case, the trained model
tends to overfit. To solve this, slack variables &, ..., &y are intro-
duced to allow some certain samples to be misclassified, thus en-
hancing the robustness of the trained model. We can express the
learning problem as a quadratic optimization problem

. 1 2 M
min s5||w|:+CY; i
wobE 2” ”F Zx:] El

subjec)t’ to y,-(wai + b) >1-§, (3)
éizo, lZl,,M

The parameter C controls the trade-off between the size of the
weight vector w and the size of the slack variables. It is more com-
mon to solve the dual problem of (3), especially when the feature
size n is larger than the sample size M. The dual problem format
of (3) is

. M M
min iy o — 5 Y iy oYY (Xi, X ;)

subject to Y M, ajy; =0, (4)
O<o;<C i=1,...,M,

where (x;,x;) represents the inner product between vector ¥; and
xjand o (i=1,..., M) are the Lagrange multipliers.

To solve a nonlinear classification problem with SVM, a non-
linear mapping function ¢ is introduced that projects the original
vectorial data onto a much higher-dimensional feature space. In
the feature space, the data generally become more (linearly) sepa-
rable. By doing so, the optimization in (4) is transformed into

M M
. 1
min Zai_i > aiayyi(o@®). ¢(x))) (5)

i=1 i j=1
with the same constraints as in (4). The kernel trick allows us to
compute the inner product term (¢ (x;), ¢ (x;)) with a kernel func-
tion k(x;,x;), thus avoiding the explicit construction of the possi-
bly infinite-dimensional ¢ (x;) vectors.

4. Kernelized support tensor train machines

In this section, we first demonstrate the tensor-based kernel
learning problem and then introduce the proposed K-STTM.

4.1. Problem statement

Given M tensorial training data and their labels, i.e., dataset D =
{X. ¥y}, where x; e R *2x-xla and y; e {~1, 1}, we want to find
a hyperplane
f(X)y=W.x)+b (6)
that separates the tensorial data into two classes. W is the hyper-
plane weight tensor with the same dimensions as X; and b is the

bias. Similar to the primal problem in SVM, we can derive the cor-
responding primal optimization problem for (6)

min ZIWIE+CYEL &
subject to  y;((W, X)) +b) > 1§, (7)
51-20, i:l,...,M.

Following the scheme of the kernel trick for conventional SVMs,
we introduce a nonlinear feature mapping function ®(.). Then,
given a tensor X e Rh*kx-xli we assume it is mapped into the
Hilbert space H by

@() : Rllxlzx...xld — RHIXHZX"'XHd. (8)

We need to mention that the dimension of projected tensor @ (X)
can be infinite depending on the feature mapping function &(.).
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The resulting Hilbert space is then called the tensor feature space
and we can further develop the following model

: M
mnin sIWIE+CXL &

subject to y;((W. ®(X})) +b) = 1 & (9)
£>0,i=1,....M,

with parameter tensor W e RHixHax.xHq  To obtain the
tensor-based kernel optimization model, we need to transfer
model (9) into its dual, namely

min Yl i — 3 YV cigyiy (P (X)), D))

subject to  YM, oy; = 0, (10)
O<o;<Ci=1,...,M,

where «; are the Lagrange multipliers. The key task we need to
solve is to define a tensorial kernel function K(&;, X;) that com-
putes the inner product (®(&;), ®(X;)) in the original data space
instead of the feature space.

4.2. Customized kernel mapping schemes for TT-based data

Although tensor is a natural structure for representing real-
world data, there is no guarantee that such a representation works
well for kernel learning. Instead of the full tensor, here we employ
a TT for data representation due to the following reasons:

1. Real-life data often contain redundant information, which is not
useful for kernel learning. The TT decomposition has proven to
be efficient for removing the redundant information in the orig-
inal data and provides a more compact data representation.

2. Compared to the Tucker decomposition whose storage scales
exponentially with the core tensor, a TT is more scalable (pa-
rameter number grows linearly with the tensor order d), which
reduces the computation during kernel learning.

3. Unlike the CP decomposition, determining the TT-rank is eas-
ily achieved through a series of singular value decompositions
(TT-SVD [13]). Moreover, instead of decomposing many tenso-
rial data sample by sample, it is possible to stack them together
and decompose the stacked tensor with TT-SVD in one shot.
This naturally leads to a faster data transformation to the TT
format.

4, It is convenient to implement different operations on different
tensor modes when data is in the TT format. Since a TT de-
composition decomposes the original data into many TT cores,
it is possible to apply different kernel functions on different TT
cores for better classification performance. Furthermore, we can
emphasize the importance of different tensor modes by putting
different weights on those TT cores during the kernel mapping.
For example, a color image is a 3-way (pixel-pixel-color) tensor.
The color mode can be treated differently with the two pixel
modes since they contain different kinds of information, as will
be exemplified later.

In the following, we demonstrate the proposed TT-based feature
mapping approach. Specifically, we map all fibers in each TT-core
to the feature space through

Gi() RS RE =1, d,
such that

Gi(XD (11, 1. 1i10)) € RM (1)
1<r<R, 1=<ry1 <Ry i=1,....d,

where X and R; are the ith TT-core and TT-rank of TT(X), re-
spectively. The fibers of each TT-core are vectors as the rank in-
dices r;, 1,1 are fixed to a specific value, hence the feature map-
ping works in the same way as for the conventional SVM. We
then represent the resulting high-dimensional TT, which is in the
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tensor feature space, as ®(TT(X)) e RHixH2x..xHy We stress that
O (TT (X)) is still in a TT format with the same TT-ranks as TT(X).
In this sense, the TT format data structure is preserved after the
feature mapping.

After mapping the TT format data into the TT-based high-
dimensional feature space, we then propose two approaches for
computing the inner product between two mapped TT format data
using kernel functions.

4.2.1. K-STTM-Prod

The first method is called K-STTM-Prod since we implement
consecutive multiplication operations on d fiber inner products,
which is consistent with the result of an inner product between
two TTs. Assuming ®(TT(X)) and &(TT(Y)) e RA1<Hax.xHy with
TT-ranks R; and R;, i=1,2,...,d, respectively, their inner product
can be computed from

(@A) DATON) = L5y X il ey 4
(ML (i (X O (11, 2, 1i0)), 3 (VO (R 2, Fir ).

We remark that (12) derives the exact same result as Fig. 4 (assum-

ing X = A and Y = B) when an identity feature mapping function

®(.) is used, namely ®(TT (X)) = TT(X'). What is more, since each

fiber of a mapped TT-core is naturally a vector, we have

(i (XD (ri, 2 1i01)). (VD (Fi, 2, Fiir))
:ki(‘){(l)(riv :’ri+1)’ y(l)(fiv :7izl'+'l))v (13)
where k;(-) can be any kernel function used for a standard SVM,
such as a Gaussian radial basis function (RBF) kernel, polynomial

kernel, linear kernel etc. Combining (12) and (13), we obtain the
corresponding TT-based kernel function

Ri R Ry

Ry
K(IT@X).TT) => ... Y ...

n=l  r=1f=1 f=1

d
(J [l (X @ (i, 2. 1i30). YO (R, 2. Fi1))). (14)
i=1
As mentioned before, in K-STTM setting, different kernel functions
k; can be applied on different tensor modes i. One possible applica-
tion is in color image classification, where one could apply Gaus-
sian RBF kernels k; and k, on its first two spatial modes, while
choosing a linear or polynomial kernel ks for the color mode. This
will be investigated in the experiments.

4.2.2. K-STTM-Sum

The second method we propose to construct a TT kernel
function is called K-STTM-Sum. Instead of implementing contin-
uous multiplication operations on d fiber inner products like in
K-STTM-Prod, K-STTM-Sum performs consecutive addition opera-
tions on them. This idea is inspired by Houthuys and Suykens
[21] which argues that the product of inner products can lead to
the loss/misinterpretation of information. Take the linear kernel as
an example, the inner product between two fibers of the same
mode could be negative, which indicates a low similarity between
those two fibers. However, by implementing consecutive multipli-
cations of d fiber inner products, highly negative values could re-
sult in a large positive value. In that case, the overall similarity is
high which is clearly unwanted. This situation also appears when
employing Gaussian RBF kernels. A nearly zero value would be as-
signed to two non-similar fibers, which could influence the final
result significantly. To this end, we propose the K-STTM-Sum. Sim-
ilar to K-STTM-Prod, we can obtain the corresponding kernel func-
tion as

Ry R Ry

Ry
K(TT@X), TT) =Y ... > ...>

r=1 rg=17=1 fy=1

Pattern Recognition 122 (2022) 108337

d
O ki(x O (11,5, 110), YO (@, 1, Fin))). (15)

i=1
4.3. Kernel optimization problem

After defining the TT-based kernel function, we can then re-
place the term (®(&;), ®(&;)) in (10) with (14) or (15), and derive
our final kernel optimization problem based on the TT structure,
namely,

minaM Y o — 3 Yoy ciegyiy K (TT(%), TT( X))

ap,00,...,
subject to  YM, ay; = 0, (16)
O<o;<Ci=1,...,M

After solving (16), we can get the unknown model parameters

o1, >, ...,y and the resulting decision function is then repre-
sented as

M
f(x) =sign(}_ayiK(TT (), TT(X)) + b). (17)

i=1
4.4. Kernel validity

According to Mercer’'s condition, a kernel function is valid
when the constructed kernel matrix is symmetric and positive
semi-definite on the given training data. This guarantees that the
mapped high-dimensional feature space is truly an inner product
space. Therefore, we provide Theorem 1 to show the validity of
K-STTM-Prod and K-STTM-Sum. In the actual implementation of K-
STTM-Prod and K-STTM-Sum, it is extremely inefficient to use TT
decomposition to decompose each tensorial sample one by one.
The way we did it is by first stacking all the d-way samples and
then compute a TT decomposition on the resulting (d + 1)-way
tensor directly. This procedure is explained in detail in Section 4.5.
By doing so, all TT-based training samples have the same TT-ranks.
Also in the case where we compute the TT decomposition sepa-
rately for each sample, we can still set the TT-ranks of all sam-
ples to be identical. That means R; is equal to R;, i=1,2,....d for
all the TT-based training samples. This setting is also assumed in
Theorem 1 and its proof.

Before we show Theorem 1 and its proof, we first prove the
following lemma, which is helpful in the proof of Theorem 1.

Lemma 1. The summation and Hadamard product between two sym-
metric and positive semi-definite matrices A and B € R™" still results
in a symmetric and positive semi-definite matrix.

Proof. According to the definition of symmetric and positive semi-
definite matrix, we have

A=A", u"Au=>0
B=B", u'Bu=>0,

for every non-zero column vector u € R".

For the summation case, obviously we can conclude that (A +
B)YT =A+B; u"(A+B)u >0, namely A + B is still symmetric and
positive semi-definite.

For the Hadamard product case, we refer to the Schur product
theorem [22] and we can easily obtain u’ (A ® B)u > 0, for every
non-zero column vector u € R", where © is the Hadamard product.
It is obvious that (A ® B)T = (A ® B). Thus A ® B is still symmetric
and positive semi-definite. O

We then demonstrate Theorem 1 and its proof here.

Theorem 1. Given a tensorial training dataset {X,-}?i 1» Where X; e
Rhxbx-xly qnd assumed TT-ranks Ry, ..., Ry, the proposed kernel

functions K-STTM-Prod and K-STTM-Sum are valid kernel functions
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and they produce symmetric and positive semi-definite kernel matri-
ces.

Proof. We first demonstrate the kernel function validity of K-
STTM-Prod. For any tensor X, Y € {&;, X5, ..., Xy}, they are first
decomposed into their TT formats, namely TT(X) and TT()), after
which Eq. (14) is applied. Assuming all the indices over > and [],

namely rq,...,14,71,...,7y and i, are fixed, Eq. (14) can be written
as
K(TT(X), TT(Y)) = ki(XD (17, 1, 111), YO (. 2 Fi). (18)

As we mentioned before, k;(-,-) can be any valid kernel function
used for a standard SVM. Therefore, the kernel matrix constructed
by Eq. (18) is symmetric and positive semi-definite. When only the
indices over Y, namely rq,...,14,7,..., 7y, are fixed, Eq. (14) can
be written as the following product kernel

d
K(TT(X), TT)) = ([ [R(x O (1, 2, 1141), YO R, 2, Fiir))). (19)

i=1

The kernel matrix constructed by Eq. (19) can be regarded as
Hadamard products of the d valid kernel matrices constructed
by Eq. (18) when i=1,...,d. Since the matrix constructed by
Eq. (18) is symmetric and positive semi-definite, according to
Lemma 1, the matrix constructed by Eq. (19) is also symmetric and
positive semi-definite.

Similarly, we notice that the kernel matrix constructed by
Eq. (14) can be regarded as the summation of Ry x ... x Ry x
Ry x...xR; kernel matrices constructed by Eq. (19) when
r,...,Tq,f1,...,Tq are varied from 1 to their corresponding max-
imum values. According to Lemma 1, we conclude that the ker-
nel matrix constructed by Eq. (14) is symmetric and positive semi-
definite, namely K-STTM-Prod is a valid kernel function.

The validity proof for K-STTM-Sum is similar to the proof for
K-STTM-Prod. The kernel matrix constructed by Eq. (15) can be
regarded as the summation of Ry x ... x Ry x Ryx...x I?d x d ker-
nel matrices constructed by Eq. (18) when rq,...,14,f1,..., T4 and
i are varied from 1 to their corresponding maximum values. Ac-
cording to Lemma 1, the kernel matrix constructed by Eq. (15) is
symmetric and positive semi-definite. Therefore, K-STTM-Sum is a
valid kernel function. O

4.5. Efficient implementation for kernel matrix construction

The main computation bottleneck in K-STTM lies in the kernel
matrix construction. In Eqs. (14) and (15), there are both 2d + 1
times consecutive summation or multiplication operations, which
is time-consuming if we use 2d + 1 for-loops to compute each el-
ement in the final kernel matrices of K-STTM-Prod and K-STTM-
Sum. Therefore, we propose an efficient implementation. Here we
first demonstrate the implementation detail of K-STTM-Prod. The
computation of Eq. (14) is first separated into d parts, one for each
TT-core. For example, the ith part calculates the following values

ki (XD (1, 1100), YO (R, 2, Figr)), (20)

where 1 < T <R,‘, 1< fi <I§i and 1 <Tipq <Ri+1, 1< fi+1 <I€i+1-
This leads to a matrix with dimensions R;R;,q xﬁ,ﬁ,-ﬂ. Copies
of this matrix are repeated into a matrix X; of dimensions
(R1...Rg) x (Ry...Ry). All parts are then combined through

Xprod =X1 @Xz@...@Xd, (21)

where @ is the hadamard product. We then sum over all the ele-

ments in Xprod' which generates the results of Eq. (14).

The implementation detail of K-STTM-Sum is similar. The only
difference with K-STTM-Prod is that Eq. (21) is replaced by
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Xsum =X1+X2+...+Xd. (22)

After summing over all the elements in Xsym, we obtain the result
of Eq. (15).

The above implementations all make use of matrix operations,
which leans itself well to software platforms such as MATLAB or
hardware acceleration platforms such as a GPU. There are two ad-
ditional ways to accelerate the construction of the kernel matrix
further.

First, assuming the given dataset consists of M samples X;, we
first stack them together into a tensor Xy, Wwith dimensions
Iy x I x... x Iy x M. We then decompose X, i with assumed TT-

ranks Ry, ..., Ry into d TT cores, namely Xs(g\ck’ i=1,..., d, where

the last TT-core X©) . has dimensions Ry x Iy x M. We note that

stack

all the training samples share the same d — 1 TT cores Xs(?ack’ i=

1,...,d — 1. The dth TT-core of each sample is derived by select-
ing the corresponding slices of Xs(gck through fixing the third

ck(:’ :, samplelndex). With this property,
X,i=1,..., d—1 in Egs. (21) and (22) are the same no matter
which two training samples are employed to compute the kernel
function value. Therefore, we only need to compute the cores X;
once instead of M? times.

Second, we can compute the kernel matrix in a parallel man-
ner. Specifically, we compute the kernel function values between
one sample and all other training samples in one shot. This can
be easily achieved by computing KC(TT (X;), TT (X4, ))- The com-
putation is also separated into d parts and each part is computed
similarly as we discussed for Eq. (20), but the resulting matrices
are repeated to larger-size matrices X;,i =1, ..., d with dimensions
(R1...Rg) x (Ry...RyM). Those X;, matrices are then combined us-
ing Eqgs. (21) and (22) to generate Xprod or Xsym, respectively. We

then sum over the elements of Xprod or Xsym block by block with

block size (R;...Rq) x (Ry...Ry), which leads to a row vector of
size 1 x M. This produces one row of the final kernel matrix.

After explaining the efficient implementation of kernel matrix
construction, we compare the difference in computational com-
plexity in flops (considering multiplication only) between the naive
kernel matrix construction (using 2d + 1 times consecutive sum-
mation or multiplication) and our efficient way. Given a tenso-
rial training dataset {A;}¥ , where X; e Rhi*xl2x--<la, and assumed
TT-ranks R, ..., Ry, we need O(dM2IR2?) and ©(M2IR??) flops for
the kernel matrix construction of K-STTM-Prod and K-STTM-Sum
respectively when employing the naive way, where I and R are
the maximum values of I; and R;, i=1,2,...d, respectively. Using
our aforementioned method the computation of X; costs O(dIR*)
flops and O(M2R2l;) flops for computing X,. For K-STTM-Sum,
the overall computation is then O(dIR* + M?R2l,), where I and R
are the maximum values of I; and R;, i=1,2,...d — 1. The re-
duction in computational cost is primarily from the reduction of
the R2? factor to R4 For K-STTM-Prod, the overall computation
is O(dIR* + M?R2]; + M?R?d + MdR??), I; and R;, i=1.2,...d. We
note that real-world data is commonly low-rank, so the TT-ranks
R; are generally small. Moreover, their dimensions I; are commonly
high. Therefore, the computational cost for the computation of K-
STTM-Prod and K-STTM-Sum are similar as they have the same
multiplication factor on I, which is much smaller than the case in
the naive way. We also investigate this in our Section 5.2, in which
K-STTM-Prod and K-STTM-Sum cost similar time on kernel matrix
construction.

The actual implementation of the kernel matrix construction
can be found in our open-source MATLAB code at: https://github.
com/git2cchen/KSTTM.git

dimension, namely x@
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4.6. Non-uniqueness of TT-SVD

In this paper, we employ the TT-SVD [13] algorithm to convert
the data into the TT format. However, we note that the TT decom-
position of a tensor is not unique. This is not an issue for tensor
compression, but it affects the classification result when using TT
cores. Specifically, referring back to the definition of TT decom-
position, namely Eq. (1), we can derive a specific TT decomposi-
tion of a d-way tensor X, namely TT;(Xx). However, the TT de-
composition for X is not unique. If we apply an invertible linear
transformation U € RRk+1*Ret1 on the third mode of X®, namely
x® x5 UT, and apply U~! on the first mode of X+ namely
x&+1) 5, U-1, we derive another TT decomposition of X, which
we call TT,(x). TT;(X) and TT,(X) are different TT decomposi-
tions of the same tensor X. If we compute K(TT;(X),TT,(X)),
the result may be different with K(TT;(X),TT;(X)). This is be-
cause the kernel function in K-STTM is evaluated in the fibers of
TT cores, which are different between TT;(X) and TT,(X) due
to the applied linear transformation. The extreme case occurs for
even tensor order d when all TT cores X i=1,....d in TT;(X)
have opposite signs with the TT cores £® i=1,..., d in TTy(X),
namely ¥® =_2®  j=1,...,d. In this case, when we com-
pute k(XD (1, ri1), 2D (1,1, 1141)), we would derive a totally
different result with k(XD (r;, 3, 1;,1), XD (1, 2, 11,1)), which is un-
wanted since we may get different predicted labels for two iden-
tical tensors in the classification task just because of the non-
uniqueness of TT-SVD. We note that this issue also appears in
other kernelized support tensor machines, such as DuSK [17], be-
cause the CP decomposition of a tensor is only unique up to an
arbitrary scale indeterminacy. However, this problem was not dis-
cussed in He et al. [17] and no solution was provided either.

To solve the above issue, we stack all the training tensorial
samples together into X and decompose it into its TT for-
mat by TT-SVD in one shot. By doing so, all the samples have
the same first d —1 TT cores, thus would not suffer the above
mentioned issues. Apart from the training data, we also need to
constrain that the TT format of validation and testing data em-
ploy the same first d —1 TT cores as the TT format of training
data. Specifically, assuming the stacked training tensor is Xy ainstacks
its TT format TT (Xyainstack) €an then be derived. We contract its
first d — 1 TT cores and reshape it into a matrix P with dimen-
sion (Iy...I;_1) x Ry. P can also be regarded as a projection ma-
trix, which projects the training, validation and testing data into
the same tensorial space. We further reshape the stacked valida-
tion and testing tensorial data as Xjidstack aNd Xieststack With di-
mensions (Iy...I;_1) x (I4N) and (Iy...I;_1) x (I;0), respectively,
where N and O are the number of validation and testing samples,
respectively. The dth TT-core of validation and test data are then
computed as follows

) stack = reshape (P Xyigsiack. [Ra- 1a. N). (23)
20 e = reshape (P Xeegsiack: [Ra. 1. O)). (24)

where P' is the pseudo-inverse of P. Apart from the last TT-core,
the first d — 1 TT cores are identical to the ones in TT (Xiinstack)s
namdy X\giidsmck = tggtStacl< = t(rla)inStack’ i=1,....d-1

We note that the TT decomposition for X;,stack 1S NOt unique
for the same reason as mentioned above. Therefore, with the same
training samples, we may still get different trained K-STTMs. How-
ever, as long as we constrain the training, validation and test sam-
ples to employ the same first d — 1 TT cores, similar tensors (which
may belong to the same classification category) would be decom-
posed into similar TTs. This ensures the success of TT-based ker-
nel learning tasks, which is empirically confirmed through experi-
ments.
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The training algorithm of the K-STTM-Prod/Sum is described as
pseudo-code in Algorithm 1 using a Gaussian RBF kernel as an ex-

Algorithm 1 K-STTM-Prod/Sum algorithm.

Input: Training dataset {X; € Ri>-<l, y; e {-1,1}}¥,; Vali-
dation dataset {X; € R, y; € {~1,1}}}',; The pre-
set TT-ranks Ry, R,, ..., Ry4.1; The range of the perfor-
mance trade-off parameter C and kernel width parame-
ter o, namely [Cuin, Cmax], and [Omin, Omax]-

Output: The Lagrange multipliers o1, o, . . ., ay; The bias b.

1: Stack the tensors in training dataset together as
Xirainstacks Stack the tensors in validation dataset to-
gether as Xyalidstack-

2: Compute the TT approximation TT (Xyainstack) With
the given TT-ranks using TI-SVD, which produces
x®  i=1,...d, and where the last TI-core

rainstack N1as dimensions Ry x Iy x M.

3: Compute the TT approximation TT (X,ajigstack), in Which
the first d — 1 TT-core are same as the first d — 1 cores
in TT (Xainstack)» and the last TT-core is computed with
~(23)

4: for C from Cy, to Chax do

for o from o, t0 Omax do

6: Construct the K-STTM-Prod kernel matrix~(14) or
K-STTM-sum kernel matrix~(15).

7: Solve~(16) using the resulting kernel matrix.

8: Compute the classification accuracy on validation
set.

9: end for

10: end for

11: Find the best C and o according to the classification ac-
curacy on validation set.

12: Train the K-STTM with the best C and o by imple-
menting step 6 and 7. Thus the Lagrange multipliers
o1, o, . ..,ay and the bias b are obtained.

ample. Hyperparameters can be tuned through a grid search or
through cross-validation. If other kernel functions are employed,
the grid search for o in step 5 can be replaced accordingly. Gener-
alizing the binary classification to multi-classification can be easily
achieved by utilizing an one-vs-one or one-vs-all strategy, namely,
we can build several binary classifiers to do multi-class classifica-
tion.

4.7. Convergence and complexity

In this section we discuss convergence of our proposed meth-
ods and compare the storage and computation complexity with the
standard SVM.

For the convergence rate analysis, it is same as it in the stan-
dard SVM problem [23,24]|. We already show the kernel validity
of (14) and (15) in Theorem 1. With a valid kernel matrix, we can
solve a quadratic programming problem to get the Lagrange mul-
tipliers «; and bias b, which is same as the procedure in the stan-
dard SVM. Consequently, the convergence analysis is exactly same
as it in standard SVM.

For the storage complexity analysis, the original tensorial sam-
ple storage is O(MI%), where I is the maximum value of I;, i=
1,2,...,d. After representing the original tensorial data as TTs, the
data storage becomes to O(dIR? + MI4R,), where R is the maximum
TT-rank of I;,i=1,..., d — 1. This shows a great reduction espe-
cially when the data order d is large.
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The computational complexity of constructing the kernel ma-
trix in standard SVM is O(M219), where n is the maximum di-
mension of ;, i=1,2,...d. As for the computational complexity
of K-STTM-Prod and K-STTM-Sum, the overall results of them are
similar as we discussed in Section 4.5. When applying the above
mentioned accelerating implementation of K-STTM-Sum, its kernel
matrix computation complexity is O(dIR* + M?I4R%), where I and R
are the maximum values of [; and R;, i = 1,2, ...d — 1, respectively.
Therefore our proposed method is more efficient than its vector
counterpart since the computation complexity is reduced from ex-
ponential to polynomial.

5. Experiments

We evaluate the effectiveness of the two proposed schemes,
K-STTM-Prod and K-STTM-Sum, on real-world small-size tensorial
datasets. We note that the classification model may not be well-
trained with a very small number of training samples. However, we
focus on the efficiency of the classification method itself. Therefore,
data-level improvement skills, such as data augmentation, are not
considered. We also do not consider the recently popular transfer
learning and few-shot learning methods [12]. The reason is that
they commonly need a pre-trained deep model for feature ex-
traction or parameter initialization, and the pre-trained model is
trained on a large number of data. To summarize, the compared
methods we consider use only the given training data and are
trained from scratch. We list the 7 compared methods as follows.

e SVM: SVM [4] is one of the most widely used vector-based
method for classification. What is more, the proposed K-STTM
is a tensorial extension of SVM, so SVM is selected as a base-
line. We employ the widely used convex optimization solver
CVX! to solve the quadratic programming problem.

e STM: STM |[5] is the first method which extends SVM to
the tensorial format, which employs alternating optimization
scheme to update the weight tensors and outperforms kernel
SVM in some tasks.

e STuM: STuM [15] is a linear support tensor machine and it is
based on the Tucker decomposition. Its training procedure is
similar to the one in STM.

o STTM: STTM [16] assumes the weight tensor is a scalable tensor
train, which enables STTM to deal with high-dimensional data
classification. STM, STuM, and STTM are all tensor-based linear
classifiers. In the very small sample size problem, sometimes
linear classifiers are observed to achieve a better classification
accuracy than nonlinear classifier [17] since a linear classifier
is commonly less complex and more stable, thus can be better
trained than nonlinear classifiers.

DuSK: DuSK [17] is a kernelized support tensor machine using

the CP decomposition. Through introducing the kernel trick, it

can deal with nonlinear classification tasks.

* 3D CNN: CNN is one of the most powerful structure for image
classification. The 3D CNN we employ here is an extension of
the 2D version in Gupta et al. [25]. We replace the 2D convolu-
tional kernels with 3D ones and keep other settings the same.
Though 3D CNN is a relatively simple CNN model, it has an ad-
vantage in dealing with small sample size problems since it can
be trained better than the complicated CNN model.

o TT Classifier: As an updated tensor classification method, TT
classifier [26] trains a TT as a polynomial classifier and achieves
good results on tensorial image classification tasks.

For simplicity, all of the kernel-based methods, i.e., SVM, DuSK,
and K-STTM, employ the Gaussian RBF kernel. The optimal pa-

1 http://cvxr.com/cvx/
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1-mode

(b)

Fig. 5. fMRI images from [17]. (a) An illustration of a 3-way tensor (fMRI image),
(b) Visualization of an fMRI image.

rameters, namely the performance trade-off parameter C, RBF ker-
nel parameter o, hidden layer size in 3D CNN, plus the corre-
sponding tensor rank R; in STuM, STTM, DuSK, TT classifier and
K-STTM, are determined through a grid search. We provide a
wide search range of C and o such that it can fulfill the re-
quirement for all methods. Specifically, we select C and o from
{10-6,10-5,...,108,109}. We select the hidden layer size of 3D-
CNN from {10, 30, 50, 100, 150, 200}.

As for the tensor rank R;, though STM is a tensor-based method,
it assumes its weight tensor to be rank-one, thus there is no need
to determine the tensor rank. STuM and the polynomial TT clas-
sifier assume the same rank over all tensor modes, namely R; =
Ry =...=R; = R. Therefore, the upper bound of the Tucker rank
in STuM is limited to the smallest data dimension. In the first
two fMRI datasets, the smallest dimensions are 8 and 23 respec-
tively. Thus the tensor rank search range of STuM in the first two
fMRI datasets is relatively smaller than other methods. As for the
polynomial TT classifier, although it is based on the scalable TT
structure, we could not set a high tensor rank since this increases
the memory consumption a lot and makes the training speed ex-
tremely slow due to their model setting. We summarize the ten-
sor rank search range of different methods on different datasets
(details presented later) in Table 1. For more details about hyper-
parameter search, we refer the reader to the supplementary mate-
rial.

Due to the very small number of training samples, we imple-
ment a 5-fold cross-validation on all experiments. We repeat this
process 50 times for all methods and report the average classifica-
tion accuracy of each method for stable learning.

5.1. fMRI datasets

Here we consider three high-dimensional functional magnetic
resonance imaging (fMRI) datasets, namely the StarPlus fMRI
dataset,” the CMU Science 2008 fMRI dataset (CMU2008) [27] and
the ADNI fMRI dataset® to evaluate the classification performance
of different models. An fMRI image is essentially a 3-way tensor.
Fig. 5 from [17] illustrates the tensorial structure of the fMRI im-
age.

5.1.1. StarPlus fMRI dataset

The fMRI images in the StarPlus dataset are with dimensions
64 x 64 x 8 that contains 25 to 30 anatomically defined regions
(called “Regions of Interest”, or ROIs). To achieve a better classifi-
cation accuracy, we only consider the following ROIs: ‘CALC’ ‘LIPL’
‘LT" ‘LTRIA’ ‘LOPER’ ‘LIPS’ ‘LDLPFC’. After extracting those ROIs, we
further normalize the data of each subject. StarPlus fMRI dataset

2 http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-81/www/
3 http://adni.loni.usc.edu/


http://cvxr.com/cvx/
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-81/www/
http://adni.loni.usc.edu/

C. Chen, K. Batselier, W. Yu et al.

Pattern Recognition 122 (2022) 108337

Table 1
Tensor ranks search range of different methods on different datasets.
Dataset StarPlus CMU2008 ANDI Caltech-101
STuM R: {2,3,...,8} R: {2,3,...,23} R: {10, 20, ..., 60} R: {2, 3}
STTM R,: {60, 80, ..., 200} Ry: {10, 20, ..., 100}  Ry: {10, 20, ..., 100}  Ry: {10, 20, ..., 100}
Rs3: {2, 4, 6, 8} R3: {2, 4, ..., 20} Rs3: {10, 20, ..., 60} R3: {3}
DuSK R: {60, 80, ..., 200} R: {10, 20, ..., 90} R: {10, 20, ..., 100} R: {10, 20, ..., 90}
TT classifier R: {2, 3,.., 20} R: {2, 3,., 20} R: {2, 3,., 20} R: {2, 3,.., 20}
K-STTM- Prod/Sum  Rs: {60, 100, ..., 200}  R,: {10, 20, ..., 100}  R;: {10, 20, ..., 60} Ry: {10, 20, ..., 100}
Ry: {2, 4, 6, 8} R3: {2, 4, ..., 20} Rs: {10, 20, ..., 100}  Rs: {3}
Table 2
Classification accuracy of different methods for different subjects in StarPlus fMRI datasets.
Subject  SVM STM STuM STTM DuSK 3D CNN  TT classifier =~ K-STTM-Prod ~ K-STTM-Sum
04799 50.00% 37.14%  34.97% 38.01% 47.88%  51.79% 56.13% 68.28% 66.55%
04820 50.00% 42.97% 32.66% 46.55%  45.65%  44.57% 53.81% 70.65% 64.87%
04847 50.00% 38.30% 17.71%  48.40% 53.99%  54.69% 60.48% 65.46% 66.02%
05675 50.00% 38.56% 29.78%  34.38% 56.58%  48.43% 54.98% 60.13% 59.57%
05680 50.00% 37.49% 39.39% 41.64% 62.95%  68.74% 60.21% 72.01% 76.25%
05710 50.00% 39.11%  31.54%  44.45% 55.63%  48.70% 54.12% 58.31% 58.13%

contains the brain images of 6 human subjects. The data of each
human subject is partitioned into trials, and each subject has 40
effective trials. Here we only use the first 4 s of each trial since
the subject was shown one kind of stimulus (sentence or picture)
during the whole period. The fMRI images were collected every
500 ms, thus we can utilize 8 fMRI images in each trial. Overall, we
have 320 fMRI images: one half of them were collected when the
subject was shown a picture, the other half were collected when
the subject was shown a sentence.

The classification results are listed in Table 2. Due to the very
high-dimensional and sparse data, SVM fails to find a good hy-
perparameter setting and classifies all test samples into one class,
thus can not do classification. Since fMRI data are very compli-
cated, those linear classifiers, namely STM, STuM and STTM, can
not achieve acceptable performance, and the classification accura-
cies of them are all lower than 50%. The classification result of TT
classifier is poor on several subjects. DuSK also performs poorly on
subjects ‘04799’ and ‘04820’. Due to the small number of train-
ing samples and high-dimensional data size, the 3D CNN overfits
and can not be well trained, while our proposed two methods still
achieve the highest classification accuracy on all human subjects.

5.1.2. CMU2008

The second fMRI dataset we consider is CMU2008. It shows the
brain activities associated with the meanings of nouns. During the
data collection period, the subjects were asked to view 60 differ-
ent word-picture from 12 semantic categories. There are 5 pictures
in each category and each image is shown to the subject for 6
times. Therefore, we can get 30 fMRI images for each semantic
category, and each fMRI image is with dimensions 51 x 61 x 23. In
this experiment, we consider all the ROIs thus the classified fMRI
images are relatively denser than the images we classified in the
StarPlus example. Considering the extremely small number of sam-
ples in each category, we therefore follow the experiment settings
in Kampa et al. [28], which combines two similar categories into
an integrated class. Specifically, we combine categories animal and
insect as class Animals, and categories tool and furniture as class
Tools. By doing so, we have 60 samples in both Animals and Tools
classes.

Table 3 shows the binary classification results of different
models. We notice that SVM can perform classification on this
dataset since we include all ROIs, which facilitates the hyperpa-
rameter searching procedure. However, its classification accura-
cies on two subjects are lower than 50%. The linear and poly-
nomial models, namely STM, STuM, STTM, and TT classifier, can

only achieve acceptable performance on a few subjects. Due to the
high-dimensional data size, DuSK fails to find a good CP-rank in
acceptable time and can not achieve a good classification accuracy.
3D CNN still performs poorly due to the very few training samples
and high-dimensional feature size. Our proposed two methods still
achieve the best classification results on all subjects.

5.1.3. ANDI fMRI dataset

ANDI fMRI dataset is collected from the Alzheimer’s Disease
Neuroimaging Initiative. It contains the resting-state fMRI images
of 33 subjects. The subject includes patients (with Mild Cognitive
Impairment (MCI) or Alzheimer’s Disease (AD)) and normal con-
trols. Overall we have 33 fMRI images and each image is with di-
mensions 61 x 73 x 61. We further separate them into two classes.
The positive class includes normal controls, while the negative
class includes patients with MCI or AD. Since the number of sam-
ples is very small, we run all the experiment 50 times and the
results are reported by averaging the accuracy over these runs.

Table 4 lists the classification results of the seven compared
methods and the proposed K-STTM-Prod/Sum. We can observe that
the performance of SVM, STM, STuM and TT classifier is still not
good. STTM and DuSK achieve slightly better performance than
random classification. The proposed K-STTM-Prod/Sum achieves
the best accuracy over all compared methods.

5.2. Caltech-101 binary-classification

In this experiment, we use the Caltech-101 dataset [29] to in-
vestigate the fourth claim in Section 4.2, namely, we can perform
different kernel functions on different tensor modes. Caltech-101
is an image dataset, which includes 101 object categories. How-
ever, the number of images in each category differs a lot, about 40
to 800 images per category. We note that this paper cares more
about small sample size classification problems. We therefore se-
lect 5 class pairs to implement binary-classification experiments
and each category includes 50 colorful images. Since the size of
each image differs also, we resize all the images into 200 x 300 x
3. We note that each color image is naturally a three-way tensor
(pixel-pixel-color), and the first two tensor modes are related to
pixel intensity, therefore we utilize the same Gaussian RBF kernel
for the first two tensor modes and try a different kernel (linear or
polynomial) for the third mode when implementing the classifica-
tion with the proposed K-STTM-Prod/Sum. The parameters c,d in
the polynomial kernel k(x.y) = (xTy + c)¢ were empirically set to
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Table 3
Classification accuracy of different methods for different subjects in CMU2008 fMRI datasets.
Subject  SVM STM STuM STTM DuSK 3D CNN  TT classifier =~ K-STTM-Prod  K-STTM-Sum
#1 65.55%  66.30%  67.31%  64.93% 45.77%  49.76% 29.40% 69.06% 71.54%
#2 52.35% 50.88% 58.77%  68.62%  55.48%  57.48% 43.60% 75.41% 83.72%
#3 50.24%  60.40% 57.90%  65.05% 58.09%  55.33% 61.13% 66.43% 68.98%
#4 50.62%  59.79%  58.29%  56.31%  53.26%  58.05% 56.38% 76.11% 70.62%
#5 56.72%  59.01%  65.10%  66.04%  44.82%  58.11% 56.55% 72.62% 72.17%
#6 43.57%  59.03%  46.27%  45.78%  53.86%  55.70% 49.81% 69.30% 67.65%
#7 49.75%  52.26%  48.83% 51.66% 50.81%  60.61% 59.84% 67.40% 71.56%
Table 4
Classification accuracy of different methods in ADNI fMRI dataset.
SVM STM STuM STTM DuSK 3D CNN  TT classifier ~ K-STTM-Prod ~ K-STTM-Sum
50.63%  57.78%  42.43% 55.90% 50.37%  60.08% 51.25% 71.03% 64.83%
Table 5
Classification accuracy of SVM, STM, STuM, STTM, DuSK, 3D CNN, TT classiifer for different Caltech-101 class
pairs.
Class pair SVM STM STuM STTM DuSK 3D CNN  TT classifier
brain, cup 70.74%  50.00%  70.26%  67.47%  70.05%  42.39% 45.28%
brain, soccer_ball 50.04%  50.00% 35.36% 42.35% 50.65%  54.62% 51.18%
butterfly, watch 82.76%  50.00% 57.43%  75.81% 84.34%  89.78% 42.58%
cup, soccer_ball 61.90% 50.00% 64.65% 60.19% 54.33%  56.69% 49.54%
soccer_ball, umbrella  60.80%  50.00% 39.57% 57.16%  63.19%  58.19% 47.17%

Table 6

Classification accuracy of K-STTM-Prod and K-STTM-Sum with different kernel functions for different Caltech-101 class pairs.
Class K-STTM-Prod K-STTM-Sum

air
P RBF-RBF-RBF RBF-RBF-Poly RBF-RBF-Linear RBF-RBF-RBF RBF-RBF-Poly RBF-RBF-Linear
brain, cup 81.00% 67.24% 91.22% 77.72% 78.49% 79.13%
brain, soccer_ball 71.35% 65.92% 81.04% 72.41% 77.49% 77.20%
butterfly, watch 89.94% 87.85% 86.63% 90.28% 90.96% 91.75%
cup, soccer_ball 69.89% 69.10% 75.69% 72.52% 77.01% 80.82%
soccer_ball, umbrella 72.09% 67.15% 75.27% 83.74% 72.48% 82.86%
c¢=1 and d = 2. The baseline case is when the Gaussian RBF kernel Table 7

is applied to all tensor modes.

Tables 5 and 6 lists the classification results of the seven com-
pared methods and the proposed K-STTM-Prod/Sum respectively.
We observe that K-STTM-Prod/Sum almost achieves the best accu-
racy on all class pairs. And by applying a linear kernel on the color
mode, the classification accuracy of K-STTM-Prod/Sum achieves
similar or better performance than the baseline case (RBF-RBF-
RBF) on all class pairs, which demonstrates the potential benefit
of employing different kernel functions on different tensor modes
when they contain different kind of information. As for applying
the polynomial kernel on the color mode, the classification ac-
curacy decreases a little compared with RBF-RBF-RBF case in K-
STTM-Prod. This indicates that RBF-RBF-Linear may be a better set-
ting when classifying color images.

Apart from the classification accuracy, we further investigate
the kernel matrix construction time of three kernel-based meth-
ods, namely SVM, DuSK and K-STTM, to show the efficiency of
the proposed accelerating implementation (i.e., Section 4.5) of con-
structing kernel matrix for K-STTM. For fair comparison, we set the
CP-rank as 30 for DuSK, and TT-rank as R, = 10 and R3 = 3 for K-
STTM. By doing so, the overall computation of kernel matrix con-
struction for DuSK and K-STTM is similar, which can be observed
by comparing their kernel matrix construction equations. More-
over, we also compare the time consumption for tensorial data
preparation in DuSK and K-STTM, in which DuSK decomposes the
tensorial data into their CP format sample by sample, while K-
STTM stacks those data together and decomposes them into their
TT format in one shot.

10

Time consumption with respect to kernel matrix construction and tenso-
rial data preparation.

Time consumption (s) SVM DuSK K-STTM-Prod/Sum
tensorial data preparation - 1517.04 1.16/1.15
kernel matrix construction  6.62 7.86 0.21/0.28

Table 7 lists the result of time consumption with respect to ker-
nel matrix construction and tensorial data preparation in binary
classification for brain and cup. K-STTM-Prod and K-STTM-Sum cost
a similar time on the two metrics. We notice that DuSK consumes
1300x more time on tensorial data preparation than the proposed
K-STTM-Prod/Sum. What is more, the proposed K-STTM-Prod/Sum
costs 23x and 28x less time on kernel construction than SVM and
DuSK, respectively. This indicates the high efficiency of K-STTM.

6. Conclusions and future works

This paper has proposed a tensor train (TT)-based kernel trick
and devised a kernelized support tensor train machine (K-STTM).
Extensive experiments have demonstrated the superiority of K-
STTM for tensorial data classification in few-sample size scenarios.
By employing TT structure, we reduce the storage and computa-
tion complexity from exponential to polynomial. Theoretical proof
has been given to demonstrate the validity of the proposed tensor-
based kernel mapping scheme for the first time. Moreover, as a
common issue in tensor-based kernel learning, the non-uniqueness
of tensor decomposition is well explained and addressed herein.
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Applying different kernel functions on different tensor modes is
also investigated empirically, and we observe a consistent improve-
ment compared with the baselines in which all modes employ the
same kernel function.

We further envision three future research directions based on
the K-STTM framework. Firstly, in our paper, we treat each fMRI
image as an independent sample. However, those fMRI images are
sampled in a continuous time period and therefore they have some
particular correlation on the time axis. In our future work, we
would investigate the short-time series analysis on fMRI images
and address the possible time bias issue in it. Secondly, instead of
constructing a kernel matrix in the K-STTM formula, we will con-
sider building a kernel tensor. We believe that the kernel matrix
constructed for each mode can contain different information. Sim-
ply multiplying or adding this information may not be the best
solution. Subsequently, we propose to stack this information into
a 3-way kernel tensor and develop a better way to exploit infor-
mation in each of the modes. Thirdly, we will embed the pro-
posed kernel mapping trick into other kernel-based methods such
as LSSVM [30], kernel PCA [31] etc., such that these methods can
directly deal with tensorial data and achieve potentially better per-
formance.
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