
EigenPulse: Detecting Surges in Large
Streaming Graphs with Row

Augmentation

Jiabao Zhang1,2, Shenghua Liu1,2(B), Wenjian Yu3(B), Wenjie Feng1,2,
and Xueqi Cheng1,2

1 CAS Key Laboratory of Network Data Science and Technology,
Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

liu.shengh@gmail.com
2 University of Chinese Academy of Sciences, Beijing, China

zhangjiabao18@mails.ucas.edu.cn
3 BNRist, Department of Computer Science and Technology, Tsinghua University,

Beijing, China
yu-wj@tsinghua.edu.cn

Abstract. How can we spot dense blocks in a large streaming graph
efficiently? Anomalies such as fraudulent attacks, spamming, and DDoS
attacks, can create dense blocks in a short time window, emerging a surge
of density in a streaming graph. However, most existing methods detect
dense blocks in a static graph or a snapshot of dynamic graphs, which
need to inefficiently rerun the algorithms for a streaming graph. More-
over, some works on streaming graphs are either consuming much time
on updating algorithm for every incoming edge, or spotting the whole
snapshot of a graph instead of the attacking sub-block.

Therefore, we propose a row-augmented matrix with sliding window
to model a streaming graph, and design the AugSV D algorithm for
computation- and memory-efficient singular decomposition. EigenPulse
is then proposed to spot the density surges in streaming graphs based
on the singular spectrum. We theoretically analyze the robustness of our
method. Experiments on real datasets with injections show our perfor-
mance and efficiency compared with the state-of-the-art baseline.

Keywords: Surge detection · Streaming graphs · Sliding window

1 Introduction

The surges of density in some subgraph are a strong signal to detect anomalies
in streaming graphs [2,13]. For example, the controlled user accounts rate fake
and high scores to a set of target objects in a short period of time, in Amazon,
Yelp, App stores, etc. The spamming phone calls/msgs are sent intensively from
a group of phone numbers to another group. And the attacks to a set of servers
of target websites from a large pool of IPs. Those cases will result a very dense
c© Springer Nature Switzerland AG 2019
Q. Yang et al. (Eds.): PAKDD 2019, LNAI 11440, pp. 501–513, 2019.
https://doi.org/10.1007/978-3-030-16145-3_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16145-3_39&domain=pdf
https://doi.org/10.1007/978-3-030-16145-3_39

502 J. Zhang et al.

subgraph between some users and objects, phone numbers, and IPs in a short
time window. Thus the question is raised:

How can we detect such a dense subgraph, and spot the density surge in a
large streaming graph in an efficient and accurate way?

Many existing dense subgraph detection methods, such as M-zoom [11],
D-Cube [12], HoloScope [9], have achieved satisfied accuracy in large static
graphs. Re-running those methods once a batch of new data comes is very time-
consuming and low efficiency, in a streaming graph. The recent work, SpotLight
[2], can efficiently detect the sudden changes of a snapshot of the graph in a time
period. It was not able to tell which specific part of the snapshot is attacked.
DenseAlert [13] detects dense subgraph using an incremental and heuristic algo-
rithm, which updates for every single incoming edge, in order to have a high
accuracy. This slows down the algorithm, even though DenseAlert is faster than
the batch methods.

Therefore, we reasonably model the streaming graph as a row-augmented
matrix, and propose, EigenPulse, to detect surges in large streaming graphs,
based on the singular spectrum of the matrix. To get the singular spectrum of a
row-augmented matrix, we propose AugSVD for singular decomposition of the
streaming graph in a sliding window. Even if attacks may cross windows, we
can still detect them since the windows intersect. AugSVD outputs the singular
spectrum of every stride, and EigenPulse algorithm calculate the density of a
subgraph in first several singular vectors and detect anomalies. The experiments
on 5 real data sets show that EigenPulse can detect the suspicious surges of den-
sity of some subgraph, achieving high accuracy as the baselines, but consuming
much less computation time.

In summary, the main advantages of our algorithms are:

• Incremental singular value decomposition: we propose a scalable algo-
rithm, AugSVD, to decompose large streaming graphs, which can output the
spectral values of graph nodes at each time window, as long as the graphs
can be formulated as matrices augmented in rows.

• Robust and effective: we theoretically analyze that the robust approxima-
tion of AugSVD to batch SVD. The experiments show that the EigenPulse
generated by AugSVD can detect suspicious synchronized activities accu-
rately in real-world graphs.

• Scalable: EigenPulse is computation- and memory-efficient. Compared with
the state-of-the-art baseline, EigenPulse can be more than 5 times faster.

2 Related Work

2.1 Anomaly Detection in Static Graphs

Anomaly detection in static graphs is well studied in [1]. For example, methods
based on spectral decomposition, e.g., EigenSpokes [10], which discovers that
the induced sub-graph of the 20 nodes which had the highest magnitude pro-
jection along the singular vector almost contains near-cliques. Many existing

EigenPulse: Detecting Surges in Large Streaming Graphs 503

methods rely on graph’s density, e.g., Fraudar [6], several methods even taking
into account rating variation and burst of attacks, e.g., CrossSpot [7] and Holo-
Scope which is the only one considers temporal spikes and hyperbolic topology.

2.2 Anomaly Detection in Streaming Graphs

We summarize dense subgraph detection algorithms in streaming graphs. Tra-
ditional methods just compare the changes of adjacent graphs via a similarity
function based on, e.g., belief propagation [8]. They do not consider evolution-
ary/periodic trends. Many existing methods, e.g., DenseAlert model dynamic
graphs as streaming tensors and aim to approximately identify the top-k dens-
est subblocks, i.e., maintained dense subtensors. DenseAlert divide time into
bins and can detect sudden emerging dense subtensors, same with EigenPulse.
In contrast, Spotlight detects only the sudden appearance or disappearance of
dense blocks in real-time by using randomized sketching-based approach. [15]
designs an algorithm MASCOT for counting local triangles to detect anomalies
in graph streams. There are some methods based on graph decomposition and
partitioning, such as [14] storing a summary of the graph structure based on
tensor decomposition and identify change points as anomalies. Some random-
ized algorithms, i.e., [4] defines a robust random cut data structure that can be
used as a sketch or synopsis of the input stream. Some other methods find pat-
terns for anomaly detection, e.g., [3] investigates continuous pattern detection
over large evolving graphs with snapshot isolation.

3 Proposed Method

We define a bipartite graph G to represent the relationships between users and
rating objects, callers and callees, attacking IPs and target IPs, etc. The problem
that detects surges of density in a large streaming graph G is described as follows:

Informal Problem 1 (Detecting Density Surges) Given: a stream of
triplets (user, object, timestamp), where timestamp is the time when a user
creates an edge on an object, and a time window of width w,

– find: at each time step t, calculate the density Dt of the subgraph that is the
densest one in streaming graph G within current time window;

– detect suspicious surges of density that are above a threshold.

In our problem, a triplet (user, object, timestamp) is a new edge created in
streaming graph G. The triplets come in an order of timestamp. A streaming
graph G within a time window indicates that only the triplets coming in the time
window are considered as the edges in graph G. The time windows are sliding at
each time step.

504 J. Zhang et al.

3.1 Our Model

To develop a fast algorithm for singular decomposition, we model large streaming
graph G as a row-augmented matrix A.

Row-Augmented Matrix: Matrix which is modified in a row augmented man-
ner. For each new piece of data, its corresponding row is incremental or just same
with the last row of current matrix.

us

er
s

cols within # cols within

window sliding

Fig. 1. The sliding window for the row-augmented matrix. w is the window size in
a time unit, s is the stride size in a time unit. Note that the number of columns in
different time windows may be different.

Figure 1 shows the sliding window for AT , which A is the row-augmented
matrix. The columns of row-augmented matrix A represent the user ids in
streaming graph G. The rows are increasing, and each row is a combination
of an object id and timestamp/s, where s is the stride to a next step. Such
ids guarantee the rows coming in the next step are totally different, keeping
the property of row-augmented matrix. Note that our model of A is actually
batch-row augmented, and the batch size is decided by the number of new edges
between stride s.

We now explain why we can model a streaming graph G with a row-
augmented matrix A. One reason is that since fraudsters and attackers create
edges in a relatively short period of time, combining the object ids with binned
time can still show a dense block in our matrix A for anomalies. Besides, an
object in different time can mean differently, e.g. the same app may be different
versions at different time, the same restaurant and product may have improve-
ment or new generation at later time. With such a combination, one can consider
those differences. In another case, a piece of twitter message or news as an object
probably no users will read after a short while, which reduces the bias of our
model. Finally, the most important of all, such a model, can help us achieve fast
algorithm to detect density surges, which is described in the following sections.

Similarly, we can still introduce a sliding window for row-augmented matrix
A as show in Fig. 1. With such a window, we can make algorithm focus on the
most recent edges in graph G. When assigning the width of window w as infinity,
we can consider all the history at every time step. Or we can have non-overlapped
dense subgraphs by setting w = s.

EigenPulse: Detecting Surges in Large Streaming Graphs 505

Algorithm 1. AugSVD with sliding window
Input: row-augmented matrix A with sliding window w, column size n, rank param-

eter k, block size b, two queues glist and hlist.
1: Choose l = tb, where t is an integer, so that l is slightly larger than k
2: Ω = randn(n, l); G = []; set H to an n × l zero matrix
3: if glist is not empty then
4: glist.dequeue(); hlist.dequeue()
5: end if
6: repeat
7: Read rows a for next stride s
8: g = aΩ; h = aTg
9: glist.enqueue(g); hlist.enqueue(h)

10: until the elements in glist corresponds to a window w
11: for all g in glist, h in hlist do
12: G = [G,g]; H = H + h
13: end for
14: Q = []; B = []
15: for i = 1, 2, · · · , t do
16: Ωi = Ω(:, (i − 1)b + 1 : ib); Yi = G(:, (i − 1)b + 1 : ib) − Q(BΩi)
17: [Qi,Ri] = qr(Yi)

18: [Qi, ˜Ri] = qr(Qi − Q(QTQi))

19: Ri = ˜RiRi

20: Bi = R−T
i (H(:, (i − 1)b + 1 : ib)T − YT

i QB − ΩT
i BTB)

21: Q = [Q,Qi]; B = [BT ,BT
i]T

22: end for
23: [˜U,S,V] = svd(B)

24: U = Q˜U
25: U = U(:, 1 : k); V = V(:, 1 : k); S = S(1 : k, 1 : k)
26: return U,S,V

3.2 AugSVD Algorithm

AugSVD is designed for fast singular decomposition of row-augmented matrix
A with sliding windows. It involves only one pass over the data and having
accuracy guarantees. The algorithm is described as Algorithm 1.

Initially, for the first window, the queues glist and hlist are empty. The
AugSVD algorithm outputs the first k singular values and vectors for the data
observed through the first window. At the second time invoking the algorithm,
the window slides one stride forward to form the next window.In such a way,
repeatedly calling AugSVD results in the singular vectors of row-augmented
matrix A observed from the sliding windows. Such an algorithm outperforms
the standard SVD and other existing randomized algorithms by largely reducing
runtime and memory usage.

In Algorithm 1, Steps 3 through 13 prepares matrices G and H for the sliding
window, while Steps 14 through 25 are just the same as those in the single-pass
PCA algorithm [16]. Due to the accumulation of round-off errors, the orthonor-
mality among the columns in {Q1,Q2, · · · } may lose. To fix this issue, Qi is

506 J. Zhang et al.

explicitly re-projected away from the span of the previously computed basis
vectors (Step 19), just as what is done in [16].

Theorem 1. The AugSVD algorithm is mathematically equivalent to the basic
randomized SVD algorithm in [5] for the row augmented matrix A.

Proof. As stated before, the AugSVD algorithm is the same as the single-pass
PCA algorithm for streaming data in the sliding window, i.e. the row augmented
matrix A. It has been proved in [16] that the single-pass PCA algorithm is
mathematically equivalent to the basic randomized SVD algorithm in [5]. So,
the theorem is proved.

Based on Theorem 1, the AugSVD algorithm inherits the theoretical error
bound (if ignoring the round-off error) [5]:

E‖A − QQTA‖ ≤
(

1 +

√
k

s − 1

)
σk+1 +

e
√

k + s

s

⎛
⎝min(m,n)∑

j=k+1

σ2
j

⎞
⎠

1/2

(1)

where E denotes expectation, s = l − k. If choosing s = k + 1, we have

E‖A − ÛΣ̂V̂
T ‖ ≤ 2σk+1 +

e
√

2k + 1
k

⎛
⎝min(m,n)∑

j=k+1

σ2
j

⎞
⎠

1/2

(2)

Here, we have substituted the computed SVD factors: Û, Σ̂ and V̂ with the
single-pass PCA algorithm. Applying a rough analysis, we have

E max
i=1,...,k

|σi − σ̂i| = E‖Σ − Σ̂‖ ≤ 2σk+1 +
e
√

2k + 1
k

⎛
⎝min(m,n)∑

j=k+1

σ2
j

⎞
⎠

1/2

(3)

where σi and σ̂i are the accurate and computed the i-th singular value, respec-
tively. Moreover, it can be shown that the likelihood of a substantial deviation
from the expectation is extremely small; see Sec. 10.3 of [5] for a proof. This
means the expectation symbol in (3) can be removed in an approximate sense.
This results in:

|σi − σ̂i| � 2σk+1 +
e
√

2k + 1
k

⎛
⎝min(m,n)∑

j=k+1

σ2
j

⎞
⎠

1/2

, i = 1, . . . , k (4)

where � means less than approximately. The right-hand side of (4) means that
the error on singular value depends not only on the (k+1)-th singular value
but also the summation of its subsequent singular values. If A’s singular values
do not decay slowly, the second right-hand-side term in (4) would be relatively
small, which means the computed singular value has sufficient accuracy.

EigenPulse: Detecting Surges in Large Streaming Graphs 507

Algorithm 2. EigenPulse
Input: time t, matrix At within time window [t−w, t], row size mt and column size

n, a pair of left/right singular vectors ut, vt.
1: rowset = []; colset = []
2: τu = 1√

mt
; τv = 1√

n

3: for i = 1, · · · , mt do
4: if abs(ut[i]) >= τu then
5: rowset.append(i)
6: end if
7: end for
8: for j = 1, · · · , n do
9: if abs(vt[j]) >= τv then

10: colset.append(j)
11: end if
12: end for
13: [optional] rowset, colset = dense block detection(At, rowset, colset)
14: return Dt(rowset, colset)

3.3 EigenPulse Algorithm

As we known, the nodes in a dense subgraph probably correspond to larger
absolute values in the first several singular vectors. The EigenPulse algorithm
is used to detect such subgraph and calculate the density measure based the
singular vectors computed with AugSVD. It is described as Algorithm 2.

In Algorithm 2, τu and τv are two thresholds for left and right singular vectors
respectively. The density measure is calculated as:

Dt(rowset, colset) =

∑
i∈rowset

∑
j∈colset At(i, j)

|rowset| + |colset| (5)

We calculate this density measure for every time window. If it is obviously
larger in a window than that in other windows, the window is very suspicious.
Optionally, we can use an existing dense block detection algorithm, such as Frau-
dar and HoloScope (HS-α), to further shave rowset and colset to find a densest
subblock, which is efficient for a reduced rows and columns (see step 2–12 in
Algorithm 2), and benefit from the existing algorithms. To detect suspiciously
surging window, one can simply combine mean value with standard deviation of
historical density values as a threshold to take out suspicious windows. By this
way, we greatly reduce the data needs to be detected than static methods.

4 Experiments

We design experiments to answer the following questions:

Q1.Efificiency: How fast does EigenPulse analyze the real world data com-
pared with competitor?
Q2. Accuracy: How accurately does EigenPulse detect dense blocks?
Q3. Scalability: Does EigenPulse scale linearly with the size of tensor?

508 J. Zhang et al.

Table 1. Datasets statistic information

Name Nodes Edges Span time

BeerAdvocate 26.5K × 50.8K 1.08M Jan 2008 – Nov 2011

Yelp 686K × 85.3K 2.68M Oct 2004 – Jul 2016

Amazon Cellphone 2.26M × 329K 3.45M Jan 2007 – Jul 2014

Amazon Electronics 4.20M × 476K 7.82M Dec 1998 – Jul 2014

Amazon Grocery 763K × 165K 1.29M Jan 2007 – Jul 2014

Sina Weibo 2.74M× 8.08M 50.06M Sep 2013 – Dec 2013

4.1 Experimental Settings

Machine: We ran all experiments on a machine with 2.7 GHz Intel Xeon E7-
8837 CPUs and 512 GB memory.

Data: Table 1 lists the real-world datasets used in our experiments. All of the
data are 4-way tensors (users, items, timestamps, ratings) where entry values are
the number of reviews. In addition, the AugSVD can only decompose matrices
augmented in rows, so we first filter the data with high rating scores, then
concatenate these items by the timestamp as row, user as column, and thus the
row of modified tensor grows with the forward of time.

Implementations: We chose the state-of-the-art streaming dense-subtensor
detection algorithm, DenseAlert, as baseline. In all the experiments, we used
sparse tensor format and only considered the first pair left/right singular vector.

4.2 Q1.Efficiency

As we see, EigenPulse chooses suspicious windows based on AugSVD, and then
combines other shaving algorithms to obtain smaller dense blocks, finally identi-
fies the fraudulent blocks with density measure. Other streaming methods, how-
ever, e.g., DenseAlert needs to update dense subtensor every time when coming
a new tensor and SpotLight maintains a streaming tensor about graph sketch
information in real-time. So EigenPluse is faster than those algorithms.

We measured the wall-clock time taken by EigenPluse and DenseAlert for
analyzing the first 5 datasets and showed the results in the Fig. 2(a). The Eigen-
Pluse achieves 2.53× faster than DenseAlert, or even achieves 12.2× speed up
in BeerAdvocate dataset. According to the performance results of DenseAlert,
which is a million times faster than the fastest batch algorithms, e.g., M-Zoom
or CP Decomposition. We can draw the conclusion that EigenPluse significantly
outperforms most of the state-of-the-art competitors.

In addition, EigenPulse is memory-efficient for only calculating one window’s
data each time, which up to 2.33 GB memory consumed.

EigenPulse: Detecting Surges in Large Streaming Graphs 509

4.3 Q2.Accuracy

This experiment demonstrates the accuracy of EigenPulse for detecting dense
blocks in different datasets.

4.42X

2.53X

2.53X

5.77X

12.20X

El
ap

se
d

T
im

e
(m

ic
ro

se
co

nd
s)

(a) Runtime performance

61024002 Year
0

2

4

6

8

10

D
e
n
s
it
y

 Injected Attacks

Threshold

(b) Detection for injected attacks

Fig. 2. EigenPluse performance: (a). EigenPulse consistently outperforms DenseAl-
ert on 5 datasets, and achieves more than 2.53× speed up. (‘Beer’ denotes BeerAdvo-
cate); (b). EigenPluse successfully detects most of the injected attacks on Yelp dataset.

Detection of Injected Attacks: Here, we set w = 30 and s = 10 in days.
We injected dense blocks with different densities and different speeds to iden-

tify the lowest detection density(LDD) and the lowest detection speed(LDS). The
unit of detection speed is (#edges/days), referring to the maximum number of
injected edges in one day which we can detect. To identify the LDS, we keep
the injected density unchanged and change the time span until the F-measure
value is less than 90%. We randomly choose 20 products whose in-degrees are
no more than 100 because they are more likely to buy fake reviews. Since data
in windows is part of all the data, so we should inject small blocks into windows.
For 0.1 may be a suitable density, we sample out 200 fraudsters as a whole to
randomly create 20 edges on each of the 20 products, and also create biased
camouflage on other products. Then, we just vary the time span across the data
to find out the LDS for each dataset. Having identified the LDS, We choose a
proper time span, e.g., 30 days, then inject blocks with different densities until
the F-measure value is less than 90% to identify the LDD. We randomly choose
20 products as mentioned above and sample out fraudsters ranges from 20 to
2000 to generate fraudulent blocks with densities ranges from 1.0 to 0.01 for
testing to find the lowest fraudulent density. The time was generated for each
fraudulent edge: randomly choosing a time in the window range.

In order to give a comparison with DenseAlert, we compare the LDD and
LDS on the first 5 datasets in Table 2. As we can see that EigenPulse has the
lower LDD than DenseAlert except on Amazon Electronics dataset and has the
lower LDS than DenseAlert. In detail, EigenPluse has the LDD which can be
as small as 250 on source nodes on Yelp dataset and Amazon Cellphone dataset
with the minimum density of 0.08 on sink nodes, which means we can detect
fraudsters even if they use 250 accounts to create 20 × 20 edges across 30 days.

510 J. Zhang et al.

Table 2. Experimental results on real data with injected labels

Data Name Metrics DenseAlert EigenPulse

BeerAdvocate LDD 0.1 0.1

LDS 13.33 6.67

Yelp LDD 0.2 0.1

LDS 26.67 13.33

Amazon Cellphone LDD 0.2 0.08

LDS 26.67 13.33

Amazon Electronics LDD 0.2 1

LDS 26.67 6.67

Amazon Grocery LDD 0.2 0.08

LDS 26.67 6.67

Besides, we injected 10 dense blocks with density vary from 0.01 to 1 for
the Yelp dataset. The Fig. 2(b) shows the densities of all the windows on the
EigenPulse. We can see that the injected dense blocks cause significant density
surges. By assuming the density follows a Normal distribution, we successfully
detect 6 injected blocks after simply set the density detection threshold as μ+3σ,
where μ and σ are the mean and standard deviation of all windows’ density
measures.

3102/10/213102/51/113102/10/11
0

20

40

60

80

100

D
en

si
ty

China Telecom Promotion Activity
11.11 Shopping Festival ads
A pop.singer's(Lixin Wang) music album ads
Thanksgiving sales ads

Fig. 3. EigenPulse detects anomalies dense blocks on Sina weibo dataset.

Anomaly Detection on Real Data: For the social network, i.e.,following
relationship or message retweets, the dense blocks usually contain anomalous
items or correspond to suspicious behaviors, and the sudden surges of density
measure can be a significant signal for anomalies. So we applied the EigenPluse
to Sina weibo dataset to detect the suspicious dense blocks, and also crawled the
detailed content of msgs for verification.

The Fig. 3 illustrates the density change of dense blocks in the sliding windows
with w = 2 hours, s = 1 hour. The Table 3 reports the suspicious features and
content of detected blocks. We spot some significant spikes in the Fig. 3, and the
message content all gives the tell-tale sign of suspicious behaviors, that is, as the

EigenPulse: Detecting Surges in Large Streaming Graphs 511

’Message Topic’ shown, most of the messages about advertisements or products
promotion information. In particular, We can notice that there are 953 edges
for the only 7 users × 8 messages in two hours, which means a user retweeted 20
times for one message in average, and it’s very suspicious intuitively. In summary,
EigenPluse can detect anomalies dense blocks in real dataset.

Table 3. Dense blocks detected by EigenPulse on Sina weibo dataset

Message topic Size Time range #Edges

China Telecom
Promotion Activity

39 × 57 6:00–8:00, Nov 7 2,004

78 × 58 7:00–9:00, Nov 7 4,051

151 × 119 8:00–10:00, Nov 7 8,295

11.11 Shopping
Festival ads

201 × 139 6:00–8:00, Nov 10 7,012

196 × 111 7:00–9:00, Nov 10 9,668

126 × 93 8:00–10:00, Nov 13 638

A pop. singer’s
(Lixin Wang) music
album ads

7 × 8 22:00–24:00, Nov 26 953

Thanksgiving sale
ads

26 × 36 23:00, Nov 26–1:00, Nov 27 629

43 × 34 1:00–3:00, Nov 27 263

4.4 Q3.Scalability

We demonstrate the linearly scalability with of EigenPluse by measuring how
rapidly its update time increases as a tensor grows.

We choose two representative datasets: BeerAdvocate with the highest vol-
ume density, and Amazon Electronics with the most edges, and randomly sample
sub-tensors with different size of edges. As shown in Fig. 4, the running time of
our algorithm increases linearly with the number of the edges.

0 2 4 6 8 10
#of edges

105

0

20

40

60

80

100

A
lg

o
ri
th

m
 R

u
n
n
in

g
 T

im
e
(s

)

(a) BeerAdvocate dataset

0 1 2 3 4 5
#of edges 106

0

200

400

600

800

1000

A
lo

g
ri
th

m
 R

u
n

n
in

g
 T

im
e

(s
)

(b) Amazon Electronic dataset

Fig. 4. EigenPulse runs in near-linear time.

512 J. Zhang et al.

5 Conclusion

In this paper, we proposed a surge detection method, EigenPulse, which can spot
the density surge in a large streaming graph in a efficient and accurate way. We
use row-augmented matrix and Sliding Window to model streaming graph and
design the AugSVD algorithm for efficient singular decomposition which is the
input of EigenPulse. In conclusion, our algorithm has the following advantages:

• Incremental singular value decomposition: we propose a scalable algo-
rithm, AugSVD,which combines Sliding Window to do streaming graph
decomposition.

• Robust and effective: AugSVD has good robustness and EigenPulse gen-
erated by AugSVD can detect suspicious synchronized activities accurately.

• Scalable: EigenPulse is near-linear in running time and memory-efficient
because it only detects one window’s data each time.

• Reproducibility: The code and data are available at https://github.com/
shenghua-liu/EigenPulse/invitations.

Acknowledgments. This material is based upon work supported by the Strategic Pri-
ority Research Program of CAS (XDA19020400), NSF of China (61772498, 61872206,
61425016, 91746301), and the Beijing NSF (4172059).

References

1. Akoglu, L., Tong, H., Koutra, D.: Graph based anomaly detection and description:
a survey. Data Min. Knowl. Discov. 29(3), 626–688 (2015)

2. Eswaran, D., Faloutsos, C., Guha, S., Mishra, N.: Spotlight: detecting anomalies
in streaming graphs. In: SIGKDD, pp. 1378–1386. ACM (2018)

3. Gao, J., Zhou, C., Yu, J.X.: Toward continuous pattern detection over evolving
large graph with snapshot isolation. In: VLDB (2016)

4. Guha, S., Mishra, N., Roy, G., Schrijvers, O.: Robust random cut forest based
anomaly detection on streams. In: ICML (2016)

5. Halko, N., Martinsson, P.G., Tropp, J.A.: Finding structure with randomness:
probabilistic algorithms for constructing approximate matrix decompositions.
SIAM Rev. 53, 217–288 (2011)

6. Hooi, B., Song, H.A., Beutel, A., Shah, N., Shin, K., Faloutsos, C.: Fraudar: bound-
ing graph fraud in the face of camouflage. In: KDD. ACM (2016)

7. Jiang, M., Beutel, A., Cui, P., Hooi, B., Yang, S., Faloutsos, C.: A general suspi-
ciousness metric for dense blocks in multimodal data. In: ICDM. IEEE (2015)

8. Koutra, D., Shah, N., Vogelstein, J.T., Gallagher, B., Faloutsos, C.: Deltacon:
principled massive-graph similarity function with attribution. ACM Trans. Knowl.
Discov. Data (TKDD) 10, 28 (2016)

9. Liu, S., Hooi, B., Faloutsos, C.: Holoscope: topology-and-spike aware fraud detec-
tion. In: CIKM, pp. 1539–1548. ACM (2017)

10. Prakash, B.A., Sridharan, A., Seshadri, M., Machiraju, S., Faloutsos, C.: Eigen-
Spokes: surprising patterns and scalable community chipping in large graphs. In:
Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010. LNCS (LNAI),
vol. 6119, pp. 435–448. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-13672-6 42

https://github.com/shenghua-liu/EigenPulse/invitations
https://github.com/shenghua-liu/EigenPulse/invitations
https://doi.org/10.1007/978-3-642-13672-6_42
https://doi.org/10.1007/978-3-642-13672-6_42

EigenPulse: Detecting Surges in Large Streaming Graphs 513

11. Shin, K., Hooi, B., Faloutsos, C.: M-Zoom: fast dense-block detection in tensors
with quality guarantees. In: Frasconi, P., Landwehr, N., Manco, G., Vreeken, J.
(eds.) ECML PKDD 2016. LNCS (LNAI), vol. 9851, pp. 264–280. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46128-1 17

12. Shin, K., Hooi, B., Kim, J., Faloutsos., C.: D-cube: dense-block detection in
terabyte-scale tensors. In: WSDM (2017)

13. Shin, K., Hooi, B., Kim, J., Faloutsos, C.: Densealert: incremental dense-subtensor
detection in tensor streams. In: KDD. ACM (2017)

14. Sun, J., Tao, D., Faloutsos, C.: Beyond streams and graphs: dynamic tensor anal-
ysis. In: KDD. ACM (2006)

15. Yongsub Lim, M.J., Kang, U.: Memory-efficient and accurate sampling for counting
local triangles in graph streams: from simple to multigraphs. In: TKDD. ACM
(2018)

16. Yu, W., Gu, Y., Li, J., Liu, S., Li, Y.: Single-pass PCA of large high-dimensional
data. In: IJCAI, pp. 3350–3356 (2017)

https://doi.org/10.1007/978-3-319-46128-1_17

	EigenPulse: Detecting Surges in Large Streaming Graphs with Row Augmentation
	1 Introduction
	2 Related Work
	2.1 Anomaly Detection in Static Graphs
	2.2 Anomaly Detection in Streaming Graphs

	3 Proposed Method
	3.1 Our Model
	3.2 AugSVD Algorithm
	3.3 EigenPulse Algorithm

	4 Experiments
	4.1 Experimental Settings
	4.2 Q1.Efficiency
	4.3 Q2.Accuracy
	4.4 Q3.Scalability

	5 Conclusion
	References

