
Journal of Computational and Applied Mathematics 405 (2022) 113972

L
a

b

o
s
d

w
d

u
t

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Faster tensor train decomposition for sparse data✩

ingjie Li a, Wenjian Yu a,∗, Kim Batselier b

Department of Computer Science and Technology, BNRist, Tsinghua University, Beijing 100084, China
The Delft Center for Systems and Control, Delft University of Technology, Delft, Netherlands

a r t i c l e i n f o

Article history:
Received 7 September 2020
Received in revised form 17 August 2021

Keywords:
Tensor train decomposition
Sparse data
TT-rounding
Parallel-vector rounding

a b s t r a c t

In recent years, the application of tensors has become more widespread in fields that
involve data analytics and numerical computation. Due to the explosive growth of
data, low-rank tensor decompositions have become a powerful tool to harness the
notorious curse of dimensionality. The main forms of tensor decomposition include CP
decomposition, Tucker decomposition, tensor train (TT) decomposition, etc. Each of the
existing TT decomposition algorithms, including the TT-SVD and randomized TT-SVD,
is successful in the field, but neither can both accurately and efficiently decompose
large-scale sparse tensors. Based on previous research, this paper proposes a new quasi-
optimal fast TT decomposition algorithm for large-scale sparse tensors with proven
correctness and the upper bound of computational complexity derived. It can also
efficiently produce sparse TT with no numerical error and slightly larger TT-ranks
on demand. In numerical experiments, we verify that the proposed algorithm can
decompose sparse tensors in a much faster speed than the TT-SVD, and have advantages
on speed, precision and versatility over the randomized TT-SVD and TT-cross. And,
with it we can realize large-scale sparse matrix TT decomposition that was previously
unachievable, enabling the tensor decomposition based algorithms to be applied in more
scenarios.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

In the fields of physics, data analytics, scientific computing, digital circuit design, machine learning, etc., data are often
rganized into a matrix or tensor so that various sophisticated data processing techniques can be applied. One example of
uch a technique is the low-rank matrix decomposition. It is often implemented through the well-known singular value
ecomposition (SVD).

A = UΣV⊤,

here A ∈ Rn×m,U ∈ Rn×n,Σ ∈ Rn×m,V ∈ Rm×m. U and V are orthogonal matrices, and Σ is a diagonal matrix whose
iagonal elements (a.k.a. singular values) σi, (1 ≤ i ≤ min(m, n)) are non-negative and non-ascending.
In recent years, tensors, as a high-dimensional extension of matrices, have also been applied as a powerful and

niversal tool. In order to overcome the curse of dimensionality (the data size of a tensor increases exponentially with
he increase of the dimensionality of the tensor), people have extended the notion of a low-rank matrix decomposition

✩ This work is partially supported by the National Natural Science Foundation of China (grant number 61872206) and Tsinghua University Initiative
Scientific Research Program.

∗ Corresponding author.
E-mail addresses: li-lj18@mails.tsinghua.edu.cn (L. Li), yu-wj@tsinghua.edu.cn (W. Yu), k.batselier@tudelft.nl (K. Batselier).
https://doi.org/10.1016/j.cam.2021.113972
0377-0427/© 2021 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.cam.2021.113972
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2021.113972&domain=pdf
mailto:li-lj18@mails.tsinghua.edu.cn
mailto:yu-wj@tsinghua.edu.cn
mailto:k.batselier@tudelft.nl
https://doi.org/10.1016/j.cam.2021.113972

L. Li, W. Yu and K. Batselier Journal of Computational and Applied Mathematics 405 (2022) 113972

t
d
s
i

r
A
m
i
s
i

i
T
g
s
t
t
t
i
s
s
p
a
p
T
a

2

d

2

v
d

D
v
d

D

to tensors, proposing tensor decompositions such as the CP decomposition [1], the Tucker decomposition [2] and the
tensor train (TT) decomposition [3]. Among them, the TT decomposition transforms the storage complexity of an nd

ensor into O(dnr2), where r is the maximal TT rank, effectively removing the exponential dependence on d. The TT
ecomposition is advantageous for processing large data sets and has been applied to problems like linear equation
olution [4], electronic design automation (EDA) [5–7], system identification [8], large-scale matrix processing [9–11],
mage/video inpainting [12,13], data mining [14] and machine learning [15–17].

To realize the TT decomposition, the TT-SVD algorithm [3] was proposed. It involves a sequence of SVD computations on
eshaped matrices. For a large-scale sparse tensor, the TT-SVD consumes excessive computing time and memory usage.
nother method employs ‘‘cross approximation’’ to perform low-rank TT-approximations [18,19], but it still needs too
any calculations to find a good representation. Recently, a randomized TT-SVD algorithm [20] was proposed, which

ncorporates the randomized SVD algorithm [21] into the TT-SVD algorithm so as to reduce the runtime for converting a
parse tensor. However, due to the inaccuracy of the randomized SVD, the randomized TT-SVD algorithm usually results
n the TT with exaggerated TT ranks or insufficient accuracy. This largely limits its application.

In this work, we propose a fast and effective TT decomposition algorithm specifically for large sparse data tensors. It
ncludes the steps of constructing an exact TT with nonzero fibers, more efficient parallel-vector rounding and revised
T-rounding. The new algorithm, called FastTT, produces the same compact TT representation as the TT-SVD algorithm [3]
iven the same error bound, but exhibits a significant runtime advantage for large sparse data. The algorithm can also
kip the revised TT-rounding procedure on demand, resulting in sparse output with no numerical error and much less
ime consumption at the price of slightly larger TT-ranks. We have also extended the algorithm to convert a matrix into
he ‘‘matrix in TT-format’’, also known as a matrix product operator (MPO). In addition, dynamic approaches are proposed
o choose the parameters in the FastTT algorithm. Experiments are carried out on sparse data in problems of image/video
npainting, linear equation solution, and data analysis. The results show that the proposed algorithm is several times to
everal hundreds times faster than the TT-SVD algorithm without loss of accuracy or an increase of the TT ranks. The
peedup ratios are up to 9.6X for the image/video inpainting, 240X for the linear equation and 35X for the sparse data
rocessing, respectively. In cases where only sparse output is demanded, FastTT can process the adjacency matrix of
sparse undirected graph with 106 nodes in only 39.9s. The experimental results also reveal the effectiveness of the
roposed dynamic approaches for choosing the parameters in the FastTT algorithm, and the advantages of FastTT over
T-cross and the randomized TT-SVD algorithm [20]. For reproducibility, we have shared the C++ codes of the proposed
lgorithms and experimental data on https://github.com/lljbash/FastTT.

. Notations and preliminaries

In this article we use boldface capital calligraphic letters (e.g. A) to denote tensors, boldface capital letters (e.g. A) to
enote matrices, boldface letters (e.g. a) to denote vectors, and roman (e.g. a) or Greek (e.g. α) letters to denote scalars.

.1. Tensor

Tensors are a high-dimensional generalization of matrices and vectors. A one-dimensional array a ∈ Rn is called a
ector, and a two-dimensional array A ∈ Rn1×n2 is called a matrix. When the dimensionality is extended to d ≥ 3, the
-dimensional array A ∈ Rn1×n2×···×nd is called a d-way tensor. The positive integer d is defined as the order of the

tensor. (n1, n2, . . . , nd) are the dimensions of the tensor, where each nk is the dimension of a particular mode. Vectors
and matrices can be considered as 1-way and 2-way tensors, respectively.

2.2. Basic tensor arithmetic

Definition 1 (Vectorization). If we rearrange the entries of A ∈ Rn1×···×nd into a vector b ∈ R
∏d

k=1 nk , where

ai1,i2,...,id = b
id+

∑d−1
k=1

[
(ik−1)

∏d
l=k+1 nl

],
then the vector b is called the vectorization of the tensor A, represented as vec(A).

efinition 2 (Reshaping). Like vectorization, if we rearrange the entries of A into anther tensor B satisfying vec(A) =

ec(B), then the tensor B is called the reshaping of A, represented as reshape(A,Dims), where Dims denotes the
imensions of B. In fact, vectorization is a special kind of reshaping.

efinition 3 (Unfolding [3]). Unfolding is also a kind of reshaping. If we reshapeA ∈ Rn1×n2×···×nd into a matrix B ∈ Rm1×m2

where m =
∏k n ,m =

∏d n , then B is called the k-unfolding of A, represented as unfold (A).
1 j=1 j 2 j=k+1 j k

2

https://github.com/lljbash/FastTT

L. Li, W. Yu and K. Batselier Journal of Computational and Applied Mathematics 405 (2022) 113972
Fig. 1. Graphical illustrations of the tensor train (TT) decomposition, where a 3-way tensor A is decomposed into two 2-way tensors G(1),G(3) and
a 3-way tensor G(2) .

Definition 4 (Contraction). Contraction is the tensor generalization of matrix product. For two tensors A ∈ Rn1×n2×···×nd1

and B ∈ Rm1×m2×···×md2 satisfying nk1 = mk2 , their (k1, k2)-contraction C = A ◦
k2
k1

B is defined as

ci1···ik1−1j1···jk2−1jk2+1···jd2 ik1+1···id1
=

nk1∑
l=1

ai1···ik1−1 lik1+1···id1
bj1···jk2−1 ljk2+1···jd2

,

where C ∈ Rn1×···×nk1−1×m1×···×mk2−1×mk2+1×···×md2×nk1+1×···×nd1 . If k1 and k2 are not specified, A ◦ B means the (d1, 1)-
contraction of A and B.

Definition 5 (Tensor–Matrix Product). The k-product of a tensor A and a matrix B can be defined as tensor contraction if
the matrix is treated as a 2-way tensor B.

A ×k B = A ◦
1
k B.

Definition 6 (Rank-1 Tensor). A rank-1 d-way tensor can be written as the outer product

A = u(1)
◦ u(2)

◦ · · · ◦ u(d),

of d column vectors u(1)
∈ Rn1 , . . . , u(d)

∈ Rnd . The entries of A can be computed as ai1i2···id = u(1)
i1
u(2)
i2

· · · u(d)
id
.

2.3. Tensor train decomposition

A tensor train decomposition [3], shown in Fig. 1(a), represents a d-way tensor A ∈ Rn1×n2×···×nd with two 2-way
tensors and (d − 2) 3-way tensors:

A = G(1)
◦ G(2)

◦ · · · ◦ G(d),

where G(k)
∈ Rrk−1×nk×rk is the kth core tensor. Per definition, r0 = rd = 1 such that G(1) and G(d) are actually matrices.

The dimensions r0, r1, . . . , rd of the auxiliary indices are called the tensor-train (TT) ranks. When all the TT ranks have
the same value, then we can just call it the TT rank.

Fig. 1(b) shows a very convenient graphical representation [8] of a tensor train. In this diagram, each circle represents
a tensor where each ‘‘leg’’ attached to it denotes a particular mode of the tensor. The connected line between two circles
represents the contraction of two tensors. The dimension is labeled besides each ‘‘leg’’. Fig. 1(b) also illustrates a simple
tensor network, which is a collection of tensors that are interconnected through contractions. By fixing the second index
of G(k) to ik, we obtain a matrix G(k)

ik
(actually a vector if k = 1 or k = d). Then the entries of A can be computed as

ai1 i2···id = G(1)
i1

G(2)
i2

· · ·G(d)
id

.

The tensor train decomposition can be computed with the TT-SVD algorithm [3], which consists of doing d − 1
consecutive reshapings and matrix SVD computations. It is described as Algorithm 1. The expression rankδ(C) denotes
the number of remaining singular values after the δ-truncated SVD. An advantage of TT-SVD is that a quasi-optimal1
approximation can be obtained with a given error bound and an automatic rank determination [7].

We define the FLOP count of the TT-SVD algorithm as fTTSVD. Then

fTTSVD ≈

d−1∑
i=1

⎡⎣fSVD

⎛⎝ri−1ni,

d∏
j=i+1

nj

⎞⎠⎤⎦ , (1)

where fSVD(m, n) is the FLOP count of performing the economic SVD for an m × n dense matrix. Approximately, we have

fSVD(m, n) = CSVD · mn · min(m, n) ,

where CSVD is a constant.

1 Here, quasi-optimal means that the resulted TT-ranks are as small as possible in the given error bound.
3

L. Li, W. Yu and K. Batselier Journal of Computational and Applied Mathematics 405 (2022) 113972

w
d
c
t

s
m
h
o

2

s
r
a
w

Algorithm 1 TT-SVD [3, p. 2301].

Input: a tensor A ∈ Rn1×n2×...×nd , desired accuracy tolerance ε.
Output: Core tensors G(1), . . . ,G(d) of the TT-approximation B to A with TT ranks rk (k = 0, 1, · · · , d) satisfying

∥A − B∥F ≤ ε∥A∥F .

1: Compute truncation parameter δ =
ε

√
d−1

∥A∥F .
2: C := A, r0 := 1.
3: for k = 1 to d − 1 do
4: C := reshape(C, [rk−1nk,

∏d
i=k+1 ni]).

5: Compute δ-truncated SVD: C = UΣV T
+ E , ∥E∥F ≤ δ, rk := rankδ(C).

6: G(k)
:= reshape(U , [rk−1, nk, rk]).

7: C := ΣV T .
8: end for
9: G(d)

:= C
10: Return tensor B in TT-format with cores G(1), . . . ,G(d).

A big problem with Algorithm 1 is the large computation cost of δ-truncated SVD on large-scale unfolded matrices
hen the dimensions grow. A possible solution is to replace SVD with more economic decomposition like pseudo-skeleton
ecomposition [22]. TT-cross [18,19] is a multidimensional generalization of the skeleton decomposition to the tensor
ase. The algorithm uses a sweep strategy and can produce TT-approximates with given accuracy or maximal ranks. The
ime complexity of TT-cross depends on d linearly.

As for decomposing large-scale sparse tensors, a simple idea is to employ the truncated SVD algorithm based on Krylov
ubspace iterative method, e.g. the built-in function svds in Matlab. Another common approach is to utilize matrix-free
ethods like SLEPc [23]. However, both of them requests a truncation rank as input, and thus cannot be directly applied
ere. Moreover, the sparsity can only be taken advantage of at the first iteration step of Algorithm 1. After that, the matrix
f right singular vectors is processed, which is definitely a dense matrix, and thus no more sparsity can be leveraged.

.4. Rounding

Sometimes one is given tensor data already in the TT-format but with suboptimal TT-ranks. In order to save storage and
peed up the following computation, one can reduce the TT-ranks while maintaining accuracy, through a procedure called
ounding. It is realized with the TT-rounding algorithm [3] (Algorithm 2). The algorithm is based on the same principle
s TT-SVD and also produces quasi-optimal TT-ranks with a given error bound. TT-rounding can be of great use in cases
here a large tensor is represented in TT-format.

Algorithm 2 TT-rounding [3, p. 2305].

Input: Cores G(1), . . . ,G(d) of the TT-format tensor A with TT-ranks r1, . . . , rd−1, desired accuracy tolerance ε.
Output: Cores G(1), . . . ,G(d) of the TT-approximation B to A in the TT-format with TT-ranks r1, . . . , rd−1. The computed

approximation satisfies

||A − B||F ≤ ε||A||F .

1: Compute truncation parameter δ =
ε

√
d−1

∥A∥F .
2: for k = d, . . . , 2 do
3: G := unfoldT

1(G
(k)).

4: Compute economic QR decomposition G = QR, rk−1 := rank(G).
5: G(k)

:= reshape(Q T , [rk−1, nk, rk]), G(k−1)
:= G(k−1)

×3 RT .

6: end for
7: for k = 1, . . . , d − 1 do
8: G := unfold2(G(k)).
9: Compute δ-truncated SVD: G = UΣV T

+ E , ∥E∥F ≤ δ, rk := rankδ(C).
10: G(k)

:= reshape(U , [rk−1, nk, rk]), G(k+1)
:= G(k+1)

×1 (ΣV T).
11: end for
12: G(d)

:= C
13: Return tensor B in TT-format with cores G(1), . . . ,G(d).
4

L. Li, W. Yu and K. Batselier Journal of Computational and Applied Mathematics 405 (2022) 113972

1
1
1
1

t
e
d

3

t
b

Fig. 2. A 1-fiber, a 2-fiber and a 3-fiber of tensor A ∈ Rn1×n2×n3 .

Parallel-vector rounding [24] is another rounding method which replaces the truncated SVD with Deparallelisation
(Algorithm 3). It removes the paralleled columns of an a×b matrix in O(abα) time, where α is the number of non-parallel
columns. Parallel-vector rounding is lossless, runs much faster than TT-rounding and can preserve the sparsity of TT.
However, it usually cannot reduce the TT-ranks much; its effectiveness highly depends on the parallelism in TT-cores.
Therefore, the parallel-vector rounding is suitable for a constructed sparse TT, rather than the construction of a TT.

Algorithm 3 Deparallelisation [24, Appendix B].

Input: Matrix M ∈ Ra×b.
Output: Matrix N ∈ Ra×β , T ∈ Rβ×b s.t. M = M̃ × T and N has at most as many columns as M and no two columns

which are parallel to each other.
1: Let K be the set of kept columns, empty initially.
2: Let T be the dynamically-resized transfer matrix.
3: for every column index j ∈ [1, b] do
4: for every kept index i ∈ [1, |K |] do
5: if the j-th column M :j is parallel to column Ki then
6: Set Ti,j to the prefactor between the two columns.
7: else
8: add M :j to K , set T|K |,j = 1.
9: end if
0: end for
1: end for
2: Construct N by horizontally concatenating the columns stored in K .
3: Return N and T .

3. Faster tensor train decomposition of sparse tensor

The TT-SVD algorithm does not take advantage of the possible sparsity of data since the δ-truncated SVD is used. In
his section, we propose a new algorithm for computing the TT decomposition of a sparse tensor whereby the sparsity is
xplicitly exploited. The key idea is to rearrange the data in such a way that the desired TT decomposition can be written
own explicitly, followed by a parallel-vector rounding step.

.1. Constructing TT with nonzero p-fibers

For a tensor A ∈ Rn1×···×nd and a given integer p that satisfies 1 ≤ p ≤ d, we define a p-fiber of a tensor as a fiber of
he tensor in the direction ep. Fig. 2 shows a 1-fiber, a 2-fiber and a 3-fiber of a 3-d tensor. We can specify a p-fiber of A
y fixing the indices except the pth dimension ip = (i1, . . . , ip−1, ip+1, . . . , id),

vp(ip) := A(i1, . . . , ip−1, :, ip+1, . . . , id). (2)

Then a tensor A1 with only one non-zero p-fiber vp(ip) can be easily formed as the outer product of the p-fiber and d− 1
standard basis vector and is thus a rank-1 tensor,

A = e ◦ · · · ◦ e ◦ v (i) ◦ e ◦ · · · ◦ e . (3)
1 i1 ip−1 p p ip+1 id

5

L. Li, W. Yu and K. Batselier Journal of Computational and Applied Mathematics 405 (2022) 113972
Suppose we have R nonzero p-fiber of sparse tensor A with indices (i1, . . . , ip−1, ip+1, . . . , id) forming a set Sp with
|Sp| = R. Then, A can be represented as the sum of R rank-1 tensors,

A =

∑
(i1,...,ip−1,ip+1,...,id)∈Sp

ei1 ◦ · · · ◦ eip−1 ◦ vi1,...,ip−1,ip+1,...,id ◦ eip+1 ◦ · · · ◦ eid , (4)

where eik ∈ Rnk is the standard basis vector. Next, we are going to construct a tensor train based on this representation.

Lemma 1. Any rank-1 tensor is equivalent to a tensor train whose TT rank is 1.

v1 ◦ v2 ◦ . . . ◦ vd = V (1)
◦ V (2)

◦ . . . ◦ V (d), (5)

where vk ∈ Rnk , (k = 1, . . . , d), V (1)
= reshape(v1, [n1, 1]), V (d)

= reshape(vd, [1, nd]), and V (k)
= reshape(vk, [1, nk, 1])

for 1 < k < d.

Lemma 2 ([3, p. 2308]). Suppose we have two tensors A ∈ Rn1×n2×···×nd and B ∈ Rn1×n2×···×nd in the TT format,

ai1i2···id = A(1)
i1

A(2)
i2

· · ·A(d)
id

,

bi1i2···id = B(1)
i1

B(2)
i2

· · ·B(d)
id

.

The TT cores of the sum C = A + B in the TT format then satisfy

C(k)
ik

=

[
A(k)

ik
O

O B(k)
ik

]
, k = 2, . . . , d − 1,

C(1)
i1

=

[
A(1)

i1
B(1)

i1

]
, C(d)

id
=

[
A(d)

id
B(d)

id

]
,

(6)

where O denotes a zero matrix of appropriate dimensions.

The proof of Lemmas 1 and 2 can be easily derived from Definitions 4–6 and the definition of the tensor train
decomposition.

Based on (4) and Lemmas 1 and 2, we have the following theorem.

Theorem 3. A sparse tensor A ∈ Rn1×n2×···×nd can be transformed into an equivalent tensor train with TT rank R, where R
is the number of nonzero p-fiber in A (1 ≤ p ≤ d). If p ̸= 1 or d,

A = P (1)
◦ . . . ◦ P (p−1)

◦ V ◦ P (p+1)
◦ . . . ◦ P (d), (7)

where P (k)
∈ {0, 1}R×nj×R, (2 ≤ k ≤ d, k ̸= p), P (1)

∈ {0, 1}1×n1×R, P (d)
∈ {0, 1}R×nd×1, and V ∈ RR×np×R. Similar expressions

hold for the situations with p = 1 or d.

The TT cores P (k) and V in Theorem 3 are sparse tensors, whose nonzero distributions are illustrated in Fig. 3. Each
horizontal bar depicted in Fig. 3 is a standard basis vector eik for P (k) or a p-fiber v for V . The derived matrices (P (k)

ik
and V ip) from these TT cores are all diagonal matrices. Furthermore, each of the P (k) cores is very sparse, as the nonzero
elements consist of only R 1’s.

3.2. More efficient parallel-vector rounding

From Fig. 3, it is obvious that P (k) are very sparse and the elements are arranged regularly. Hence parallel-vector
rounding should be very effective on the TT obtained in Theorem 3. In order to maximize the effect of Deparallelisation, we
modify the original algorithm so that the decomposition on the less regular core V is avoided. By combining this modified
algorithm with Theorem 3, we obtain a lossless sparse tensor to TT conversion algorithm, described as Algorithm 4, where
Depar refers to the Deparallelisation algorithm.

The correctness of Algorithm 4 is due to Theorem 3 and the associative property of matrix multiplications. The graphical
representations of the decomposition forms during the algorithm execution are shown in Fig. 4 for a 4-way TT.

The original Deparallelisation algorithm (Algorithm 3) does not consider the special pattern of the core tensors. An
important observation from Fig. 3 is that each P (k) obtained by Theorem 3 is consisted of R ‘‘diagonally’’ 2-fiber with only
one ‘‘1’’. This means all unfoldings unfold2(P (k)) for k < p and unfoldT

1(P
(k)) for k > p are so-called quasi-permutation

matrices.

Definition 7 (Quasi-Permutation Matrix). If each column of a matrix has only one nonzero element with a value of 1, then
the matrix is called a quasi-permutation matrix. A quasi-permutation matrix A ∈ Rn×m can be represented as[

e e · · · e
]

A = i1 i2 im , (8)

6

L. Li, W. Yu and K. Batselier Journal of Computational and Applied Mathematics 405 (2022) 113972

O

Fig. 3. The nonzero distributions of P (k), (2 ≤ k ≤ d, k ̸= p) and V .

Algorithm 4 Sparse TT conversion with modified parallel-vector rounding.

Input: A sparse tensor A ∈ Rn1×n2×...×nd , an integer p (1 ≤ p ≤ d).
utput: Core tensors G(1), . . . ,G(d) of TT-format tensor B which is equivalent to A with TT ranks r̃k (k = 0, 1, · · · , d).
1: Initialize empty cores G(1), . . . ,G(d) for TT-format tensor B.
2: for every v ∈ {all R nonzero p-fibers of A} do
3: Determine (d − 1) ei vectors in (4).
4: Construct rank-1 TT T with v and e vectors as Lemma 1.
5: B := B + T , which means G(1), . . . ,G(d) are update with (6).
6: end for
7: r̃0 := 1.
8: for k = 1, . . . , p − 1 do
9: [N , T] := Depar(unfold2(G(k))), where N ∈ Rr̃k−1nk×r̃k , T ∈ Rr̃k×R.

10: G(k)
:= reshape(N , [r̃k−1, nk, r̃k]).

11: G(k+1)
:= G(k+1)

×1 T T .
12: end for
13: r̃d := 1.
14: for k = d, . . . , p + 1 do
15: [N , T] := Depar(unfoldT

1(G
(k))), where N ∈ Rr̃knk×r̃k−1 , T ∈ Rr̃k−1×R.

16: G(k)
:= reshape(N T , [r̃k−1, nk, r̃k]).

17: G(k−1)
:= G(k−1)

×3 T T .
18: end for
19: Return tensor B in TT-format with cores G(1), . . . ,G(d).

where ek denotes a standard basis vector in the n-dimensional Euclidean space Rn with a 1 in the kth coordinate and 0’s
elsewhere.

Example 1. Obviously, a permutation or identity matrix belongs to the class of quasi-permutation matrices.

Corollary 4. For Algorithm 3, if the input matrix M is a quasi-permutation matrix, matrix N and the transfer matrix T will
also be quasi-permutation matrices.

It turns out that this property of P (k) is maintained throughout the whole process of parallel-vector rounding, which
will enable a more efficient implementation of Deparallelisation.

Theorem 5. In Algorithm 4, each input matrix of the function Depar is a quasi-permutation matrix.

Proof. G(1) is definitely a quasi-permutation matrix according to (5) and (6). For 2 ≤ k < p, G(k) changes twice during
Algorithm 4 — once in iteration k− 1 and once in iteration k. Like in Fig. 4, we use P (k), Ṗ (k) and P̈ (k) to denote the three
stages of G(k). The input matrix of Depar in iteration k is unfold2(Ṗ

(k)). Ṗ (k) is computed as P (k)
×1 T T in iteration k − 1,

which is equivalent to

unfold (Ṗ (k)) = T × unfold (P (k)). (9)
1 1

7

L. Li, W. Yu and K. Batselier Journal of Computational and Applied Mathematics 405 (2022) 113972

O

Fig. 4. The graphical representations of the decomposition forms during Algorithm 4 execution for a 4-way TT (p = 3).

We can deduce from Fig. 3 that unfold1(P (k)) has the following structure⎡⎢⎢⎣
x11 0 · · · 0 x12 0 · · · 0 · · · x1nk 0 · · · 0
0 x21 · · · 0 0 x22 · · · 0 · · · 0 x2nk · · · 0
...

...
. . .

...
...

...
. . .

... · · ·
...

...
. . .

...

0 0 · · · xR1 0 0 · · · xR2 · · · 0 0 · · · xRnk

⎤⎥⎥⎦ ,

where ∀j = 1, 2, . . . , R, vector [xj1 xj2 · · · xjnk]
T is a particular standard basis vector. Let T = [ei1 ei2 · · · eiR] according to

Corollary 4. Then unfold1(Ṗ
(k)) will have the structure[

x11ei1 x21ei2 · · · xR1eiR · · · x1ndei1 x2ndei2 · · · xRnkeiR
]
,

and thus the structure of unfold2(Ṗ
(k)) will be⎡⎢⎢⎣

x11ei1 x21ei2 · · · xR1eiR
x12ei1 x22ei2 · · · xR2eiR

...
...

. . .
...

x1nkei1 x2nkei2 · · · xRnkeiR

⎤⎥⎥⎦ .

From this it follows that unfold2(Ṗ
(k)) is a quasi-permutation matrix. The same line of reasoning can be used to prove the

theorem for k > p. □

Now, we consider how to perform Deparallelisation for a quasi-permutation matrix. Our aim is to express a matrix
M as the product of two smaller matrices: M = NT . For a quasi-permutation matrix, we need to remove the duplicate
columns in M . As shown in Corollary 4, the result T itself is a quasi-permutation matrix. Therefore, N = I and T = M ,
where I is an identity matrix, can be regarded as the result of performing Deparallelisation on a quasi-permutation matrix,
except that the duplicate columns in M have not yet been removed. What remains to be done is the removal of zero rows
of T and the corresponding columns in N . This is described as Algorithm 5.

Algorithm 5 Deparallelisation for a quasi-permutation matrix.

Input: A quasi-permutation matrix M ∈ Rn1×n2 .
utput: Matrices N ∈ Rn1×β , T ∈ Rβ×n2 so that M = NT , and N is also a quasi-permutation matrix, T contains all
nonzero rows of M .

1: Let T ∈ Rβ×n2 contains all nonzero rows of M , where β is the number of nonzero rows.
2: Let N ∈ Rn1×β be a zero-initialized matrix.
3: for i = 1, 2, · · · , β do
4: N (j, i) := 1, where j is the row index of T (i, :) in the original matrix M .
5: end for
6: Return N and T .
8

L. Li, W. Yu and K. Batselier Journal of Computational and Applied Mathematics 405 (2022) 113972

t

f

For a quasi-permutation matrix, each column can be represented by the position of 1 in it. Thus, Algorithm 5 has a
ime complexity of O(n1 + n2), where n1 and n2 are the dimensions of M . It can be executed much more efficiently than
a general Deparallelisation algorithm. From Algorithm 5 we can also observe, that the resulting matrix size β must be no
more than n1, even if n2 ≫ n1.

According to Theorem 5 and the above analysis, with Algorithm 4 the TT ranks will be reduced to r̃ satisfying the
ollowing upper bounds

r̃k ≤ r̄k =

⎧⎨⎩ min
(
R,

∏k
i=1 ni

)
if 1 ≤ k < p,

min
(
R,

∏d
i=k+1 ni

)
if p ≤ k < d.

(10)

where R is the number of nonzero p-fibers in the original tensor A. From Fig. 3, it is obvious that the constructed TT
contains Z + (d− 1)R nonzeros before parallel-vector rounding, where Z is the number of nonzeros in the original tensor
A. After the parallel-vector rounding, the number of nonzeros in the TT representation should be reduced to Z +

∑d−1
k=1 r̃k.

3.3. More efficient TT-rounding and the FastTT algorithm

Algorithm 4 can already provide rank-reduced TT for sparse tensors while keeping the sparsity and with no precision
loss. However, if lower ranks are desired, we can further apply TT-rounding on the TT. This could be useful for applications
which do not care about the sparsity. Based on the property of TT obtained in Algorithm 4, we modified the original
Algorithm 2 in order to make it more efficient, described as Algorithm 6. Instead of performing a right-to-left QR-sweep
and then a left-to-right SVD-sweep, we perform 2 middle-to-edge SVD-sweep from core p. The QR-sweep in our algorithm
is proved to be extremely fast due to the orthogonality obtained in Algorithm 4 and former SVD, and that is why our
algorithm is more efficient. The truncation parameters in Algorithm 6 is set as (11) to meet the error bound,

δk :=
ε

√
p − 1 +

√
d − p

∥A∥F , k = 1 . . . d − 1. (11)

The correctness of Algorithm 6 is explained as follows.

Lemma 6. A quasi-permutation matrix with no duplicate columns is an orthonormal matrix.

Lemma 6 can be easily proved based by Definition 7 and the definition of an orthonormal matrix.
In Steps 9 and 15 of Algorithm 4, the duplicate columns in the input quasi-permutation matrix (according to Theorem 5)

are removed. Then, based on Lemma 6, we have the following statement.

Corollary 7. Suppose the TT cores G(k) are obtained with Algorithm 4. Then the matrices unfold2(G(k)), k < p and
unfoldT

1(G
(k)), k > p are all orthonormal matrices.

Lemma 8. Suppose U (i), i = 1, . . . , d are the cores of a tensor train. If matrix unfold2(U (i)) is an orthonormal matrix for all
i = 1, . . . , k (1 ≤ k ≤ d), then the matrix unfoldj(U (1)

◦ · · · ◦ U (j)) is an orthonormal matrix for all j = 1, . . . , k.

The proof of Lemma 8 can be found in [14, Appendix B]. We can now derive the following theorem.

Theorem 9 (Correctness of Algorithm 6). The approximation B obtained in Algorithm 6 always satisfies ∥A − B∥F ≤ ε∥A∥F .

Proof. For simplicity, we let

• C denote the TT-format tensor after first SVD-sweep,
• D denote the TT-format tensor before second SVD-sweep,
• Ci denote the TT-format tensor after the k = i iteration in first SVD-sweep,
• A(i...j) denote the contraction of ith to jth core G(i)

◦ · · · ◦ G(j) of a TT-format tensor A.

It is obvious that C = D, hence

∥A − B∥F ≤ ∥A − C∥F + ∥D − B∥F .

Based on the observation that A(1...p−1)
= C(1...p−1), we let A = A(1...p−1)

◦A(p...d) and C = A(1...p−1)
◦ C(p...d). According

to Corollary 7 and Lemma 8, unfoldp−1(A(1...p−1)) is an orthonormal matrix. Thus

∥A − C∥F = ∥A(p...d)
− C(p...d)

∥F .

Let us concentrate on the first iteration (k = p) of first SVD-sweep. The truncated-SVD can be rewritten as A(p)
=

C(p)
× ΣV T

+ E , where ∥E ∥ ≤ δ and C(p)
◦
3 E = 0. From line 7 we know C(p+1...d)

= A(p+1...d)
× VΣ .
1 3 p p F p 1 3 p 1 1

9

L. Li, W. Yu and K. Batselier Journal of Computational and Applied Mathematics 405 (2022) 113972
Algorithm 6 More efficient TT-rounding for the sparse TT conversion.

Input: Cores G(1), . . . ,G(d) of the TT-format tensor A with TT-ranks r1, . . . , rd−1, desired accuracy tolerance ε, an integer
p (1 ≤ p ≤ d).

Output: Cores G(1), . . . ,G(d) of the TT-approximation B to A in the TT-format with TT-ranks r1, . . . , rd−1. The computed
approximation satisfies

||A − B||F ≤ ε||A||F .

1: Set truncation parameters according to (11).
2: (First SVD-sweep)
3: for k = p, . . . , d − 1 do
4: G := unfold2(G(k)).
5: Compute δk-truncated SVD: G = UΣV T

+ Ek, ∥Ek∥F ≤ δk,
rk := rankδk (G).

6: G(k)
:= reshape(U , [rk−1, nk, rk]).

7: G(k+1)
:= G(k+1)

×1 (VΣ).
8: end for
9: (QR-sweep)

10: for k = d, . . . , p + 1 do
11: G := unfoldT

1(G
(k)).

12: Compute economic QR decomposition: G = QR.
13: G(k)

:= reshape(Q T , [rk−1, nk, rk]).
14: G(k−1)

:= G(k−1)
×3 RT .

15: end for
16: (Second SVD-sweep)
17: for k = p, . . . , 2 do
18: G := unfoldT

1(G
(k)).

19: Compute δk−1-truncated SVD: G = UΣV T
+ Ek−1, ∥Ek−1∥F ≤ δk−1,

rk−1 := rankδk−1 (G).
20: G(k)

:= reshape(U T , [rk−1, nk, rk]).
21: G(k−1)

:= G(k−1)
×3 (VΣ).

22: end for
23: Return G(1), . . . ,G(d) as cores of B.

Thus,

∥A(p...d)
− C(p...d)

∥
2
F = ∥A(p)

◦ A(p+1...d)
− C(p)

1 ◦ C(p+1...d)
∥
2
F

= ∥(C(p)
1 ×3 ΣV T

+ Ep) ◦ A(p+1...d)
− C(p)

1 ◦ C(p+1...d)
∥
2
F

= ∥C(p)
1 ◦ C(p+1...d)

1 + Ep ◦ A(p+1...d)
− C(p)

1 ◦ C(p+1...d)
∥
2
F

= ∥Ep ◦ A(p+1...d)
∥
2
F + ∥C(p)

1 ◦ (C(p+1...d)
1 − C(p+1...d))∥2

F

= δ2p + ∥C(p+1...d)
1 − C(p+1...d)

∥
2
F

Proceeding by induction, we have

∥A − C∥
2
F =

d−1∑
k=p

δ2k .

Similarly we have

∥D − B∥
2
F =

p∑
k=2

δ2k−1.

According to (11),

∥A − B∥F ≤

√d−1∑
δ2k +

√ p∑
δ2k−1 ≤ ε∥A∥F . □ (12)
k=p k=2

10

L. Li, W. Yu and K. Batselier Journal of Computational and Applied Mathematics 405 (2022) 113972

A

b
T
a

T

A

T
o
e
o

3

s
t
w
a

a
t
a
r
M

w
d
w

3

t
b
t

Now, we are ready to describe the whole algorithm for the conversion of a sparse tensor into a TT, presented as
lgorithm 7.

Algorithm 7 Tensor train decomposition of sparse tensor (FastTT)

Input: A sparse tensor A ∈ Rn1×n2×...×nd , desired accuracy tolerance ε, an integer p (1 ≤ p ≤ d).
Output: Cores G(1), . . . ,G(d) of the TT-approximation B to A in the TT-format with TT-ranks rk. The computed

approximation satisfies

||A − B||F ≤ ε||A||F .

1: Obtain B in the TT-format with cores G(1), . . . ,G(d) by Algorithm 4, where Depar is implemented as Algorithm 3.
2: Reduce the TT ranks of B with Algorithm 6, or skip this step if sparse output is demanded.
3: Return the TT-approximation B.

It should be pointed out that if the accuracy tolerance ε is set to zero,2 the obtained TT ranks with Algorithm 7 will
e maximal and equal to the TT-ranks obtained from the TT-SVD algorithm. We take p = 1 as an example to discuss the
T-rank r1 case. In the TT-SVD algorithm, r1 is obtained by computing the SVD of C = unfold1(A). A can also represented
s the contraction of the TT cores obtained by Algorithm 4.

A = G(1)
◦ G(2)

◦ · · · ◦ G(d).

hus,

C = unfold2(G(1)) unfold1(G(2)
◦ · · · ◦ G(d)).

ccording to Corollary 7 and Lemma 8, L = unfoldT
1(G

(2)
· · ·G(d)) is an orthonormal matrix, i.e. LTL = I .

CC T
= unfold2(G(1))LTL unfoldT

2(G
(1)) = unfold2(G(1)) unfoldT

2(G
(1)).

his means matrix unfold2(G(1)) has the same singular values as C . For Algorithm 1, r1 equals rankδ(C), while the r1
btained with Algorithm 7 is rankδ1 (unfold2(G(1))) (see lines 4 and 5 of Algorithm 6). These numerical ranks are therefore
qual when δ = δ1. Similar results for the other TT ranks and for p ̸= 1 can be derived. For a sparse tensor the runtime
f Algorithm 7 may be smaller than the TT-SVD algorithm, as the SVD is performed on smaller matrices.

.4. Fixed-rank TT approximations and matrices in TT-format

Sometimes we need a TT approximation of a tensor with given TT-ranks. We can slightly modify Algorithm 6 to fit this
cenario. Specifically, the desired accuracy tolerance ε is not needed and thus substituted with the desired TT-ranks. The
runcation parameters δi will not be computed either. In the truncated SVD computation we simply truncate the matrices
ith the given ranks instead of truncating them according to the accuracy tolerance. This technique could be useful in
pplications like tensor completion [13].
Some other applications require matrix–vector multiplications, which are convenient if both the matrix and the vector

re in TT-format (as shown in Fig. 5). A vector v ∈ RN can be transformed into TT-format if we first reshape it into a
ensor V ∈ Rn1×···×nd , where N = n1 · · · nd, and then decompose it into a TT. A ‘‘matrix in TT-format’’[3, pp. 2311–2313],
lso known as a matrix product operator (MPO), is similar but more complicated. The elements of matrix M ∈ RM×N are
earranged into a tensor M ∈ Rm1×n1×···×md×nd , where M = m1 · · ·md,N = n1 · · · nd. The cores M(i)(i = 1, . . . , d) of the
PO satisfy

M(i1, j1, . . . , id, jd) = M(1)(:, i1, j1, :) · · ·M(d)(:, id, jd, :),

here M(i)
∈ Rri−1×mi×ni×ri (i = 1, . . . , d), r0 = rd = 1. The matrix-to-MPO algorithm is basically computing a TT-

ecomposition of the d-way tensor M′
∈ Rm1n1×···×mdnd , along with a few necessary reshapings, which can also be done

ith Algorithm 7.

.5. A dynamic method to choose the truncation parameters

The actual relative error of the truncated SVD is usually not very close to the truncation parameter δk, which implies
hat if the truncation parameters are set statically at the beginning with (11), some of the desired accuracy tolerant ε will
e ‘‘wasted’’. The main idea of the dynamic method is to compute the truncation parameters dynamically to make use of
hose ‘‘wastes’’. One of the possible approaches is shown in Algorithm 8. In each step of the truncated SVD, an expected

2 In practice, ε is usually set to a small value like 10−14 due to the inevitable round-off error.
11

L. Li, W. Yu and K. Batselier Journal of Computational and Applied Mathematics 405 (2022) 113972

e
S
t

1

1

1
1

w
o
e

Fig. 5. Diagram of matrix–vector-multiplication in the TT-format.

rror is calculated with the current ‘‘total error remainder’’ and used as the truncation parameter. After each truncated
VD, the ‘‘total error remainder’’ is decreased according to the actual error. Such an adaptive approach to setting the
runcation parameters can lead to lower TT ranks while keeping the relative error smaller than ε.

Algorithm 8 The revised TT-rounding for the sparse TT conversion.

Input: (same as Algorithm 6)
Output: (same as Algorithm 6)
1: δright :=

√
d−p

√
d−p+

√
p−1ε∥A∥F , δleft :=

√
p−1

√
d−p+

√
p−1ε∥A∥F .

2: for k = p, . . . , d − 1 do
3: δk :=

δright
√
d−k

.
4: Steps 4–7 of Algorithm 6.
5: δright :=

√
δ2right − ∥Ek∥

2
F .

6: end for
7: Steps 10–15 of Algorithm 6.
8: for k = p, . . . , 2 do
9: δk−1 :=

δleft√
k−1

.
0: Steps 18–21 of Algorithm 6.

1: δleft :=

√
δ2left − ∥Ek−1∥

2
F .

2: end for
3: Return G(1), . . . ,G(d) as cores of B.

Theorem 10 (Correctness of Algorithm 8). The approximation B obtained in Algorithm 8 always satisfies ∥A−B∥F ≤ ε∥A∥F .

The proof of Theorem 10 is based on a loop invariant [25, pp. 18–19] and provided in the Appendix.

3.6. Complexity analysis

Finding nonzero p-fibers can be accelerated by employing balanced binary search trees or hash tables, while parallel-
vector rounding will be efficient if Depar is implemented as Algorithm 5. Notice that, there is no floating point operation
in these procedures. Therefore, the time complexity of Algorithm 7 mainly depends on Algorithm 6, where the cost of
SVD is of major concern. The FLOP count ffasttt can thus be estimated as

ffasttt ≈ fSVD(r̃p−1np, r̃p) +

d−1∑
i=p+1

fSVD(ri−1ni, r̃i) +

p∑
i=2

fSVD(r̃i−1, niri), (13)

here {r̃k} and {rk} are the TT-ranks before and after executing Algorithm 6. According to (10), where the upper bound
f r̃k, i.e., r̄k, is given, we can estimate the upper bound of the FLOP count before any actual computation. With this
stimation, p can be automatically selected as described in Algorithm 9. In line 3, {r̃k} can be obtained alternatively by

actually executing Depar for a more precise estimation since it will not take much time after all. In line 4, if the actual
final TT-ranks are already known or easy to predict, we can explicitly specify rk for a better estimation as well.

For a more intuitive view of the time complexity, we analyze the FLOP counts for an example from Section 4.1. Suppose
we are computing a fixed rank-10 TT-approximation of a sparse 7-way tensor A ∈ R10×20×20×10×15×20×3 with density
σ = 0.001. According to (1), the approximate FLOP count of TT-SVD is

fTTSVD ≈fSVD(10, 20 × 20 × 10 × 15 × 20 × 3) + fSVD(20r, 20 × 10 × 15 × 20 × 3)
+ f (20r, 10 × 15 × 20 × 3) + · · · + f (20r, 3)
SVD SVD

12

L. Li, W. Yu and K. Batselier Journal of Computational and Applied Mathematics 405 (2022) 113972

A
b

o
c

a
o
T

f
s

4

n
C
r
c
s
a
F
e

Algorithm 9 Automatically select p.

Input: A sparse tensor A ∈ Rn1×n2×...×nd .
Output: Selected p̄ for best estimated performance in Algorithm 7.
1: for p = 1, . . . , d do
2: R := the number of nonzero p-fibers of A.
3: {r̃k} := {r̄k} given in (10), or executing Depar with p for better estimation.
4: {rk} := {r̃k}, or specified by users.
5: Calculate the estimated FLOP count fp with {r̃k} and {rk} as (13).
6: end for
7: Return p̄ = argmin pfp.

≈(3.6 × 108
+ 7.6r2 × 107)CSVD

≈(8 × 109)CSVD.

s for ffasttt, we let p = 7. Since the elements of A are grouped in triples stored in the last dimension, the num-
er of nonzero 7-fibers R satisfies R ≤ nnz(A)/3 = 12000, which means {r̄k} given in (10) is no more than

{10, 200, 4000, 12000, 12000, 12000}. According to (13), we have

ffasttt ≈fSVD(3, 12000) + fSVD(20r, 12000) + fSVD(15r, 12000)
+ fSVD(10r, 4000) + fSVD(20r, 200)

≈(1.08 × 105
+ 8r2 × 106)CSVD

≈(8 × 108)CSVD.

In this case, Algorithm 7 is about 10X faster than TT-SVD. The actual speedup will be a bit lower due to the uncounted
perations such as those in Algorithm 4. If we increase the density σ to 0.01, fTTSVD will remain the same and ffasttt will
hange into

ffasttt ≈fSVD(3, 120000) + fSVD(20r, 120000) + fSVD(15r, 40000)
+ fSVD(10r, 4000) + fSVD(20r, 200)

≈(1.08 × 106
+ 5.7r2 × 107)CSVD

≈(5.7 × 109)CSVD,

nd the speedup drops to 1.4. The actual speedup will be a bit higher because we overestimate {r̃k} and the uncounted
perations become insignificant with the increasing SVD cost. For matrix-to-MPO applications, the main operation is the
T-decomposition of M′

∈ Rm1n1×···×mdnd , hence (13) also works here. We just need to replace ni with mini.
We now look at the memory cost of the FastTT algorithm. Before the TT-rounding step, all data are stored in a sparse

ormat. Therefore, the extra memory cost occurs in the TT-rounding which is similar to the TT-SVD algorithm and is of
imilar size to the cores in the obtained TT.

. Numerical experiments

In order to provide empirical proof of the performance of the developed FastTT algorithm, we conduct several
umerical experiments. Since Algorithm 4 is not friendly to MATLAB, FastTT is implemented in C++ based on the xerus
++ toolbox [26] and with Intel Math Kernel Library.3 The xerus library also contains implementations of TT-SVD and
andomized TT-SVD (rTTSVD) [20]. As no C++ implementation of the TT-cross method [18] is available, we use TT-
ross from TT-toolbox4 in MATLAB. Since the TT-cross algorithm involves mostly matrix computations, there should be no
ignificant performance difference between its MATLAB and C++ implementations.5 All experiments are carried out on
x86-64 Linux server with 32 CPU cores and 512G RAM. The desired accuracy tolerance ε of TT-SVD, TT-cross and our
astTT algorithms is 10−14, unless otherwise stated. The oversampling parameter of rTTSVD algorithm is set to 10. In all
xperiments, the CPU time is reported.

3 https://software.intel.com/en-us/mkl.
4 https://github.com/oseledets/TT-Toolbox.
5 In fact, the MATLAB implementation of TT-SVD from TT-toolbox is just as efficient as the C++ implementation from xerus on our machine.
13

https://software.intel.com/en-us/mkl
https://github.com/oseledets/TT-Toolbox

L. Li, W. Yu and K. Batselier Journal of Computational and Applied Mathematics 405 (2022) 113972

t

Table 1
Experimental results on an image and a video with different observation ratios and preset TT-ranks.
Data TT-rank σ time (s) Speedup

TT-SVD TT-cross rTTSVD FastTT

image

10 0.001 32.9 20.2 24.1 3.43 9.6X
10 0.005 32.3 22.7 23.9 10.9 3.0X
10 0.01 32.8 23.7 26.0 14.2 2.3X
30 0.001 42.7 68.1 38.1 12.2 3.5X
30 0.005 42.9 70.9 33.8 20.5 2.1X
100 0.001 67.3 366 91.5 23.7 2.8X

video

10 0.001 66.2 24.9 56.0 10.4 6.4X
10 0.005 66.6 30.3 60.5 26.2 2.5X
10 0.01 66.9 31.2 62.7 33.3 2.0X
30 0.001 103 122 108 26.5 3.9X
30 0.005 110 140 94.2 47.6 2.3X
100 0.001 232 1080 221 107 2.2X

4.1. Image/video inpainting

Applications like tensor completion [13] require a fixed-rank TT-approximate of the given tensors. The tensors used in
his section are a large color image Dolphin6 which has been reshaped into a 10× 20× 20× 10× 15× 20× 3 tensor and
a color video Mariano Rivera Ultimate Career Highlights7 which has been reshaped into a 20× 18× 20× 32× 12× 12× 3
tensor. Most pixels of the image/video are not observed and are regarded as zeros whereas the observed pixels are chosen
randomly. The observation ratio σ is the ratio of observed pixels to the total number of pixels. Table 1 shows the results
for different specified TT-ranks and observation ratios.

It can be seen from Table 1 that our algorithm can greatly speed up the calculation of a TT-approximation when the
observation ratio is small. We have also tested the TT-cross algorithm and the rTTSVD algorithm which also speed up the
calculation in some cases. However, the speedup of them is not as great as ours, and in cases where the preset TT-rank is
high we observe that they are even slower than the TT-SVD algorithm. In addition, the quality of the TT-approximation
calculated by the TT-cross/rTTSVD algorithm is not as good as ours. For example, in the image inpainting task where
the TT-rank is 100 and the observation ratio σ is 0.001, the mean square error (MSE) of both TT-SVD algorithm and our
algorithm is 22.3, while the MSE of TT-cross and rTTSVD is 66.0 and 23.5, correspondingly.

It is also worth noting that the output from FastTT is already in site-p-mixed-canonical form [13], while the output
from TT-cross or rTTSVD is not. Tensor train in site-p-mixed-canonical form is very important for collaborating with the
regularization techniques [13], which has been successful to tackle the tensor completion problems.

For each of the experiments the integer p is selected automatically by the FLOP estimation in Algorithm 9. Now, we
validate this FLOP estimation. For the parameters TT-rank = 100, σ = 0.001 in the image experiment we run Algorithm 7
several times while manually setting different integer p and plot the CPU time for each p along with the estimated FLOP
count. The results are shown in Fig. 6, where we can see that the trend of the two curves is basically consistent. The
integer p selected by Algorithm 9 is p = 7, with which the exact CPU time is only slightly more than the best selection
at p = 6. Although Algorithm 9 does not always produce the best p, it certainly avoids bad values like p = 3 in this case.

4.2. Linear equation in finite difference method

The finite difference method (FDM) is widely used for solving partial differential equations, in which finite differences
approximate the partial derivatives. With FDM, a linear equation system with sparse coefficient matrix is solved. We
consider simulating a three-dimensional rectangular domain with FDM. The resulted linear equation system can be
transformed into the matrix TT format (i.e. MPO) and then solved with an alternating least squares (ALS) method [4]
or AMEn [27].

For a domain partitioned into n×m× k grids, FDM produces a coefficient matrix A ∈ RN×N , where N = n×m× k. For
example, the sparsity pattern of the coefficient matrix A for FDM with 20 × 20 × 20 grids is shown in Fig. 7. Naturally, the
A matrix can be regarded as a 6-way tensor A ∈ Rn×n×m×m×k×k, which is then converted into an MPO. Since the tensor
A is very sparse, replacing the TT-SVD with FastTT will speed up the procedure of computing its TT-decomposition. In
this experiment we construct the coefficient matrix with different grid partition, while the coefficients either follow a
particular pattern, or are randomly generated. The results for converting the matrix to an MPO are shown in Table 2.

As seen from Table 2, FastTT can convert large sparse matrices much faster than the TT-SVD with up to 240X speedup.
These experiments also prove that the Depar procedure can greatly reduce the TT-rank and thus simplify the computation
of the TT-rounding procedure. Like in the first experiment, the TT-cross algorithm is faster when the TT-ranks are low

6 http://absfreepic.com/absolutely_free_photos/original_photos/dolphin-4000x3000_21859.jpg.
7 https://www.youtube.com/watch?v=UPtDJuJMyhc.
14

http://absfreepic.com/absolutely_free_photos/original_photos/dolphin-4000x3000_21859.jpg
https://www.youtube.com/watch?v=UPtDJuJMyhc

L. Li, W. Yu and K. Batselier Journal of Computational and Applied Mathematics 405 (2022) 113972

a
n
o
d
A

Fig. 6. The CPU time and estimated FLOPs with (13) of the FastTT algorithm for different p values.

Fig. 7. The sparsity pattern of the coefficient matrix for FDM with 20 × 20 × 20 grids.

but gets slower when the ranks grow. The results of rTTSVD are obtained by setting the TT-ranks same as those obtained
by TT-SVD and FastTT. From the result we can see the rTTSVD algorithm is not as fast as FastTT even if we know the
proper TT-ranks. If we set n = 40 with random coefficients, the TT-SVD/TT-cross algorithm cannot produce any result in
a reasonable time, while FastTT finishes in 57.5 s with a resulting TT-rank of r = 118.

4.3. Data of road network

A directed/undirected graph with N nodes is equivalent to its adjacency matrix A ∈ RN×N , which can also be
decomposed into an MPO if we properly factorize its order N = n1 × · · · × nd. This may benefit some data mining
pplications. In this experiment we use the undirected graph roadNet-PA8 from SNAP [28], which contains 1088092
odes and 1541898 undirected edges. Since the graph is fairly large, we take the subgraph of the first N nodes as
ur data and preprocess its adjacency matrix by performing reverse Cuthill–McKee ordering [29]. Additionally, different
esired accuracy tolerances ε and the actual relative error are tested in this experiment. The truncation parameters in
lgorithm 6 are either set as δk =

ε
√
p−1+

√
d−p∥A∥F or determined by Algorithm 8. The results are shown in Table 3.

The TT-cross/rTTSVD algorithm is not tested because both of them require the TT-ranks to be set the same, which is not
possible in this experiment.

8 Road network of Pennsylvania. http://snap.stanford.edu/data/roadNet-PA.html.
15

http://snap.stanford.edu/data/roadNet-PA.html

L. Li, W. Yu and K. Batselier Journal of Computational and Applied Mathematics 405 (2022) 113972

T
E

A

7

5

f
d

Table 2
Experimental results on the coefficient matrices for the FDM with n × n × n grids.
n coefficients method time(s) speedup εactual

a TT-ranksb

20 pattern

TT-SVD 43.6 – 4.0×10−16 r : 2, 2
TT-cross 7.96 5.5X 2.0×10−16 r : 2, 2
rTTSVD 1.29 34X 1.2×10−15 r : 2, 2
FastTT 0.788 55X 9.6×10−16 R :1920; r̃ :58,58; r :2,2

30 pattern

TT-SVD 690 – 2.0×10−15 r : 2, 2
TT-cross 26.5 26X 8.8×10−16 r : 2, 2
rTTSVD 19.3 36X 1.6×10−15 r : 2, 2
FastTT 2.88 240X 1.1×10−15 R :4380; r̃ :88,88; r :2,2

20 random

TT-SVD 53.4 – 2.5×10−15 r : 58, 58
TT-cross 226 0.24X 1.1×10−15 r : 58, 58
rTTSVD 23.4 2.3X 4.8×10−15 r : 58, 58
FastTT 1.67 32X 2.4×10−15 R :1920; r̃ :58,58; r :58,58

30 random

TT-SVD 762 – 3.4×10−15 r : 88, 88
TT-cross 2725 0.28X 6.2×10−15 r : 88, 88
rTTSVD 67.0 11X 4.2×10−15 r : 88, 88
FastTT 12.4 61X 3.3×10−15 R :4380; r̃ :88,88; r :88,88

40 random

TT-SVD NA – NA NA
TT-cross NA – NA NA
rTTSVD 597 – 5.0×10−15 r : 118, 118
FastTT 57.5 – 2.6×10−15 R :7840; r̃ :118,118; r :118,118

aεactual =
∥A−B∥F

∥A∥F
. The same below.

bR is the number of nonzero p-fibers. r̃ is the TT-ranks after parallel-vector rounding. r is the final TT-ranks.

able 3
xperimental results on converting the data of roadNet-PA.
N ε methoda time (s) speedup TT-ranks εactual

203 1 × 10−14
TT-SVD 75.4 – 58, 400 3.7 × 10−15

FastTT 14.1 5.3X 58, 400 3.3 × 10−15

FastTTsp 0.065 1160X 58, 400 <10−15

203 5 × 10−1
TT-SVD 62.2 – 31, 281 4.8 × 10−1

FastTT 11.8 5.3X 31, 281 4.8 × 10−1

FastTT+ 10.4 6.0X 55, 209 5.0 × 10−1

104 1 × 10−14
TT-SVD 833 – 28, 1407, 70 3.9 × 10−15

FastTT 23.3 34X 28, 1407, 70 4.3 × 10−15

FastTTsp 0.089 9360X 28, 1446, 70 <10−15

104 1 × 10−2
TT-SVD 839 – 28, 1390, 70 5.5 × 10−3

FastTT 24.4 34X 28, 1395, 70 3.8 × 10−3

FastTT+ 24.2 35X 28, 1377, 70 9.8 × 10−3

1003 1 × 10−14 TT-SVD NA – NA NA
FastTTsp 39.9 – 298, 5442 <10−15

aFastTT: use Algorithm 6 for TT-rounding; FastTT+: use Algorithm 8 for TT-rounding; FastTTsp: use FastTT without TT-rounding.

Again, for sparse graphs our FastTT algorithm is much faster than TT-SVD. Also, the actual relative errors are shown
to be less than the given ε. If ε is small enough, the TT-rank obtained by FastTT is the same as those obtained by TT-
SVD. Otherwise, Algorithm 8 (used in FastTT+) usually produces lower TT-ranks and a little bit higher relative error than
lgorithm 6 (used in FastTT) which sets unified truncation parameters.
If we do not demand an output whose TT-ranks are exactly as small as those from TT-SVD, we can use FastTTsp which

skips TT-rounding and produces sparse output without precision loss. From the results on the 1st data and the 3rd data in
Table 3, we can observe that FastTTsp is much faster and the resulted TT-ranks are almost as good as those from TT-SVD.
For the last data in Table 3, we see that FastTTsp can process nearly the whole roadNet-PA with 2836814 nonzeros and
9957 nonzero fibers in only 39.9s, while the other counterparts cannot produce any result in a reasonable time.

. Conclusions

This paper analyzes several state-of-the-art algorithms for the computation of the TT decomposition and proposes a
aster TT decomposition algorithm for sparse tensors. We prove the correctness and complexity of the algorithm and
emonstrate the advantages and disadvantages of each algorithm.
16

L. Li, W. Yu and K. Batselier Journal of Computational and Applied Mathematics 405 (2022) 113972

t
e
a
q
a

A

P

r

i

R

In the subsequent experiments, we have verified the actual performance of each algorithm and confirmed our
heoretical analysis. The experimental results also show that the proposed FastTT algorithm for sparse tensors is of good
fficiency and versatility. Previous state-of-the-art algorithms are mainly limited by the tensor size whereas our proposed
lgorithm is mainly limited by the number of non-zero elements. As a result, the TT decomposition can be computed
uickly regardless of the number of dimensions. The proposed algorithm is therefore very promising to tackle tensor
pplications that were previously infeasible.

ppendix. Proof of Theorem 10

roof. From the proof of Theorem 9, we know that

∥A − B∥F ≤

√d−1∑
k=p

∥Ek∥
2
F +

√ p∑
k=2

∥Ek−1∥
2
F .

Now we are going to use a loop invariant to prove the correctness of Algorithm 8. The loop invariant for Loop 2–6 is

δ2right +

k−1∑
i=p

∥E i∥
2
F =

d − p
√
d − p +

√
p − 1

ε2
∥A∥

2
F .

Initialization: Before the first iteration k = p,
∑k−1

i=p ∥E i∥
2
F = 0 and δright =

√
d−p

√
d−p+

√
p−1ε∥A∥F . Thus the invariant is

satisfied.
Maintenance: After each iteration, δ2right is decreased by ∥Ek∥

2
F and

∑k−1
i=p ∥E i∥

2
F is increased by ∥Ek∥

2
F . Thus the invariant

emains satisfied.
Termination: When the loop terminates at k = d. Again the loop invariant is satisfied. This means that

δ2right +

d−1∑
i=p

∥E i∥
2
F =

d − p
√
d − p +

√
p − 1

ε2
∥A∥

2
F

⇒

√d−1∑
k=p

∥Ek∥
2
F ≤

√
d − p

√
d − p +

√
p − 1

ε∥A∥F .

Similarly we can prove that√ p∑
k=2

∥Ek−1∥
2
F ≤

√
p − 1

√
d − p +

√
p − 1

ε∥A∥F ,

s satisfied after Loop 8–12.
Thus

∥A − B∥F ≤

√d−1∑
k=p

∥Ek∥
2
F +

√ p∑
k=2

∥Ek−1∥
2
F .

≤

√
d − p

√
d − p +

√
p − 1

ε∥A∥F +

√
p − 1

√
d − p +

√
p − 1

ε∥A∥F

= ε∥A∥F . □

eferences

[1] Frank L. Hitchcock, The expression of a tensor or a polyadic as a sum of products, Stud. Appl. Math. 6 (1–4) (1927) 164–189.
[2] Ledyard R. Tucker, Some mathematical notes on three-mode factor analysis, Psychometrika 31 (3) (1966) 279–311.
[3] Ivan V. Oseledets, Tensor-train decomposition, SIAM J. Sci. Comput. 33 (5) (2011) 2295–2317.
[4] Ivan V. Oseledets, S.V. Dolgov, Solution of linear systems and matrix inversion in the TT-format, SIAM J. Sci. Comput. 34 (5) (2012) A2718–A2739.
[5] Zheng Zhang, Xiu Yang, Ivan V Oseledets, George E Karniadakis, Luca Daniel, Enabling high-dimensional hierarchical uncertainty quantification

by ANOVA and tensor-train decomposition, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 34 (1) (2014) 63–76.
[6] Haotian Liu, Luca Daniel, Ngai Wong, Model reduction and simulation of nonlinear circuits via tensor decomposition, IEEE Trans. Comput.-Aided

Des. Integr. Circuits Syst. 34 (7) (2015) 1059–1069.
[7] Zheng Zhang, Kim Batselier, Haotian Liu, Luca Daniel, Ngai Wong, Tensor computation: A new framework for high-dimensional problems in

EDA, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 36 (4) (2017) 521–536.
[8] Kim Batselier, Zhongming Chen, Ngai Wong, Tensor network alternating linear scheme for MIMO Volterra system identification, Automatica 84

(2017) 26–35.
[9] Ivan V. Oseledets, Approximation of 2d

× 2d matrices using tensor decomposition, SIAM J. Matrix Anal. Appl. 31 (4) (2010) 2130–2145.
17

http://refhub.elsevier.com/S0377-0427(21)00572-0/sb1
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb2
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb3
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb4
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb5
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb5
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb5
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb6
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb6
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb6
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb7
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb7
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb7
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb8
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb8
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb8
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb9

L. Li, W. Yu and K. Batselier Journal of Computational and Applied Mathematics 405 (2022) 113972
[10] Daniel Kressner, André Uschmajew, On low-rank approximability of solutions to high-dimensional operator equations and eigenvalue problems,
Linear Algebra Appl. 493 (2016) 556–572.

[11] Kim Batselier, Wenjian Yu, Luca Daniel, Ngai Wong, Computing low-rank approximations of large-scale matrices with the tensor network
randomized SVD, SIAM J. Matrix Anal. Appl. 39 (3) (2018) 1221–1244.

[12] Wenqi Wang, Vaneet Aggarwal, Shuchin Aeron, Efficient low rank tensor ring completion, in: IEEE International Conference on Computer Vision,
ICCV, 2017, pp. 5698–5706.

[13] Ching-Yun Ko, Kim Batselier, Wenjian Yu, Ngai Wong, Fast and accurate tensor completion with total variation regularized tensor trains, 2018,
arXiv preprint arXiv:1804.06128.

[14] Wenqi Wang, Vaneet Aggarwal, Shuchin Aeron, Tensor train neighborhood preserving embedding, IEEE Trans. Signal Process. 66 (10) (2018)
2724–2732.

[15] Yongkang Wang, Weicheng Zhang, Zhuliang Yu, Zhenghui Gu, Hao Liu, Zhaoquan Cai, Congjun Wang, Shihan Gao, Support vector machine based
on low-rank tensor train decomposition for big data applications, in: 2017 12th IEEE Conference on Industrial Electronics and Applications,
ICIEA, IEEE, 2017, pp. 850–853.

[16] Zhongming Chen, Kim Batselier, Johan AK Suykens, Ngai Wong, Parallelized tensor train learning of polynomial classifiers, IEEE Trans. Neural
Netw. Learn. Syst. 29 (10) (2017) 4621–4632.

[17] Xiaowen Xu, Qiang Wu, Shuo Wang, Ju Liu, Jiande Sun, Andrzej Cichocki, Whole brain fMRI pattern analysis based on tensor neural network,
IEEE Access 6 (2018) 29297–29305.

[18] Ivan Oseledets, Eugene Tyrtyshnikov, TT-Cross approximation for multidimensional arrays, Linear Algebra Appl. 432 (1) (2010) 70–88.
[19] Dmitry Savostyanov, Ivan Oseledets, Fast adaptive interpolation of multi-dimensional arrays in tensor train format, in: The 2011 International

Workshop on Multidimensional (ND) Systems, IEEE, 2011, pp. 1–8.
[20] Benjamin Huber, Reinhold Schneider, Sebastian Wolf, A randomized tensor train singular value decomposition, in: Compressed Sensing and Its

Applications, Springer, Cham, 2017, pp. 261–290.
[21] Nathan Halko, Per-Gunnar Martinsson, Joel A. Tropp, Finding structure with randomness: Probabilistic algorithms for constructing approximate

matrix decompositions, SIAM Rev. 53 (2) (2011) 217–288.
[22] Sergei A Goreinov, Eugene E Tyrtyshnikov, Nickolai L Zamarashkin, A theory of pseudoskeleton approximations, Linear Algebra Appl. 261 (1–3)

(1997) 1–21.
[23] Vicente Hernandez, Jose E. Roman, Vicente Vidal, SLEPC: A scalable and flexible toolkit for the solution of eigenvalue problems, ACM Trans.

Math. Softw. 31 (3) (2005) 351–362.
[24] C. Hubig, I.P. McCulloch, U. Schollwöck, Generic construction of efficient matrix product operators, Phys. Rev. B 95 (3) (2017) 035129.
[25] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, Clifford Stein, Introduction to Algorithms, MIT Press, 2009.
[26] Benjamin Huber, Sebastian Wolf, Xerus - a general purpose tensor library, 2014–2017.
[27] Sergey V. Dolgov, Dmitry V. Savostyanov, Corrected one-site density matrix renormalization group and alternating minimal energy algorithm,

in: Numerical Mathematics and Advanced Applications-ENUMATH 2013, Springer, 2015, pp. 335–343.
[28] Jure Leskovec, Andrej Krevl, SNAP Datasets: Stanford large network dataset collection, 2015.
[29] Alan George, Joseph W. Liu, Computer Solution of Large Sparse Positive Definite, Prentice Hall Professional Technical Reference, 1981.
18

http://refhub.elsevier.com/S0377-0427(21)00572-0/sb10
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb10
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb10
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb11
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb11
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb11
http://arxiv.org/abs/1804.06128
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb14
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb14
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb14
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb15
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb15
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb15
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb15
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb15
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb16
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb16
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb16
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb17
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb17
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb17
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb18
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb19
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb19
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb19
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb20
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb20
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb20
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb21
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb21
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb21
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb22
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb22
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb22
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb23
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb23
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb23
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb24
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb25
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb26
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb27
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb27
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb27
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb28
http://refhub.elsevier.com/S0377-0427(21)00572-0/sb29

	Faster tensor train decomposition for sparse data
	Introduction
	Notations and preliminaries
	Tensor
	Basic tensor arithmetic
	Tensor train decomposition
	Rounding

	Faster tensor train decomposition of sparse tensor
	Constructing TT with nonzero p-fibers
	More efficient parallel-vector rounding
	More efficient TT-rounding and the FastTT algorithm
	Fixed-rank TT approximations and matrices in TT-format
	A dynamic method to choose the truncation parameters
	Complexity analysis

	Numerical experiments
	Image/video inpainting
	Linear equation in finite difference method
	Data of road network

	Conclusions
	Appendix . Proof of Theorem 10
	References

