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Abstract 
    Ordered escape routing (OER) is an important research 

topic in PCB design, which means the wires need to be routed 

in a given order at the boundary of pin array. Although OER 

has been widely investigated, most works assume the routing 

capacity between two adjacent pins is just 1. In this paper, we 

focus on multi-capacity OER (MC-OER), which means 

multiple wires are allowed to pass through between two 

adjacent pins. We first analyze the limitation of existing 

model based on min-cost multi-commodity flow graph, i.e. 

MMCF model, and point out the reason why it cannot support 

multi-capacity. Based on the MMCF model, a multi-capacity 

multi-commodity flow (MC-MCF) model is proposed for the 

MC-OER problem. To accelerate the solution based on MC-

MCF model, a wiring resource driven partition strategy is 

further proposed which results in an accelerated MC-MCF 

algorithm for the MC-OER problem with objective of 

minimizing wiring length. Experiments on various grid pin 

array cases (with up to 308 pins) show that the proposed 

method achieves 100% routability within reasonable time. 

And, it performs similarly well or better than existing 

methods when solving single-capacity OER problem. 

Keywords 
Ordered escape routing, multi-capacity, multi-commodity 

flow 

1. Introduction 
Escape routing, which can be classified into unordered 

escape routing (UER) and ordered escape routing (OER) [1], 

is an important research topic in PCB design. To 

accommodate the fast growing number of pins in modern 

PCB designs, efficient and automatic routing methods are 

required. For the UER problem, rule-based approach [2], [3] 

and network flow-based approach [4]–[6] are commonly 

used. For the OER problem, Tomioka et al. proposed a 

method that can solve it while satisfying monotonicity [7]. 

Fang et al. proposed a method that can solve the cyclic OER 

problem based on the integer linear programming (ILP) [8]. 

In 2008, Luo et al. converted the OER problem into boolean 

satisfiability (SAT) problem and solved it using a SAT solver 

[9]. Later on, a simple partitioning method was proposed to 

improve the efficiency of the SAT method by exploiting the 

characteristics of the OER in industry [10]. In 2010, Yan et 

al. proposed a more efficient method based on hierarchical 

bubble sorting [11]. However, it reduces the size of solution 

space and loses many solutions of the problem. It should be 

pointed out that, none of these works can solve the OER with 

optimization objective. 

In 2015, Satter and Naveed proposed a network flow 

method that works to maximize the number of escape nets 

[12]. Then, Jiao and Dong proposed the min-cost multi-

commodity flow (MMCF) model [13], which is the first 

model that minimizes the total wiring length for OER 

problem. In a recent study [14], Liao and Dong proposed a 

compact MMCF model with a partitioning strategy to 

improve the efficiency and achieved more than 100X speedup 

over the method of [13]. With the development of machine 

learning, neural network is gradually applied to the field of 

PCB designs. Chen et al. proposed a machine learning based 

method [15], which reduces the solution space of ordered 

escape problem and achieves an acceleration of 4∼370X over 

the method of [9], [13]. However, these works assume the 

routing capacity between two adjacent pins is just 1 and none 

of them considers the multi-capacity ordered escape routing 

(MC-OER) problem with optimization objective. 

Usually, the pin array of PCB design is classified into grid 

pin array (GPA) and staggered pin array (SPA) [16]. In this 

work, we focus on the MC-OER problem for GPA (see Fig. 

1(a) as an example) and consider minimizing the total wiring 

length as the objective. Our contributions are as follows. 

1) We propose a model supporting MC-OER, i.e. multi-

capacity multi-commodity flow (MC-MCF) model, which is 

based on stackable reconstructions of three main structures in 

the MMCF model and apply it to the MC-OER problem with 

objective of minimizing the wiring length. 

2) A wiring resource driven partition strategy (WRDPS) is 

proposed to reduce the problem size, which considers 

candidate terminal nodes in MC-MCF graph as a basis for 

partition. Based on it, an accelerated MC-MCF algorithm is 

presented to speed up model solving where fine-grained 

partition strategy is applied. These approaches largely 

accelerate the MC-MCF model based method with less 

sacrifice on wiring length. 

3) Experimental results show that the proposed method 

achieves 100% routability in various test cases and can solve 

large-scale MC-OER problem (>300 pins) in reasonable time 

(<38 minutes). The accelerated MC-MCF algorithm achieves 

an average speedup of over 231X. Compared to previous 

works [13], [14], our method costs similar or less time for 

single-capacity OER problem. 

                        (a)                                                             (b) 

Figure 1: (a) MC-OER on GPA. (b) Some concepts for MC-

OER. 
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2. Background 

2.1. Problem formulation 
An � ×  � grid pin array (GPA) consists of � rows and � 

columns. Each row and each column of pins are aligned. 

Every four adjacent pins form a square, called tile, and we 

assume that there is a tile node at the center of each tile, as 

shown in Fig. 1(b). We call the edge between adjacent tile 

nodes routing channel. 

There are two kinds of routing capacities in GPA: �� refers 

to the number of wires that can pass through the routing 

channel and �� refers to the number of wires that can pass 

through the tile node in diagonal direction. In this work, we 

assume that ��  =  2�� . The ordered escape routing (OER) 

problem is: Given an � ×  � GPA with a sequence of pins 

� =  {
�, 
�, … , 
�}, route all the pins to the boundary of 

GPA without wire crossing (non-crossing constraint) and 

violating the two routing capacities (capacity constraint), 

while satisfying the given order at the boundary of GPA 

(ordering constraint). When �� is greater than 1, we call the 

problem a multi-capacity ordered escape routing (MC-OER) 

problem. For the example in Fig. 1(a), ��=2, which means the 

routing capacity for passing through the routing channel is 2. 

If all pins are required to be escaped on a single side of 

GPA, the problem is called a 1-side OER problem. Similarly, 

we can define the 2-side, 3-side and 4-side OER problems. 

The optimization objective can be minimizing the wiring 

length, minimizing the number of wiring layers, or 

maximizing the number of escape pins. In this work, we focus 

on minimizing the wiring length. 

2.2. MMCF model for OER 

The min-cost multi-commodity flow (MMCF) graph [13] 

is illustrated in Fig. 2. Each pin to be routed is a source node 

in the model, which ships 1 unit of commodities to the 

boundary. The model encodes the non-crossing constraint, 

capacity constraint and ordering constraint within a 

commodity flow graph, so that the solution space of the min-

cost multi-commodity flow problem equals to that of OER 

problem. As shown in Fig. 2, the non-crossing constraint is 

satisfied by special transformations of tile nodes and 

undirected edges, while the capacity constraint is naturally 

satisfied. The ordering constraint can be satisfied by setting 

the destination node of commodity in a given order. For the 

example in Fig. 2, we set T1, T2 and T3 as the destination 

nodes of pins P1, P2 and P3, respectively. Since each node in 

GPA can find the corresponding node in the commodity flow 

graph (for example, tile node in GPA ↔ transferred tile node 

in MMCF graph), it is easy to find out the correspondence 

between the OER solution and the MMCF graph solution, as 

shown in Fig. 3. Therefore, the OER with objective of 

minimizing wiring length is equivalent to solving the MMCF 

problem. 

When capacity �� ≥ 2 , this MMCF model does not 

guarantee that the non-crossing constraint is satisfied. In the 

MMCF model, each undirected edge is converted to directed 

edges by capacity transformation (illustrated by Fig. 4). When 

��=1, there is a mutually exclusive relationship between the 

two commodity flows passing through between two adjacent 

tile nodes. Under multi-capacity condition, the simultaneous 

existence of the two commodity flows is permitted, which 

results in wire crossing as shown in Fig. 4. This reveals that 

non-crossing constraint in MMCF model is only satisfied for  

3. MC-MCF model for MC-OER 
In this section, we propose the multi-capacity multi-

commodity flow (MC-MCF) model for solving the MC-OER 

problem. To overcome the drawback of the MMCF model 

[13], we first present a non-crossing determination theorem. 

Based on it, the method of constructing a non-crossing multi-

capacity commodity flow graph is then presented. Finally, we 

discuss the computational cost of the proposed method. 

3.1. Non-crossing determination theorem 
For a commodity flow graph �, we use � =  {��, ��, . . . } to 

denote the set of all commodity flow graph solutions. For any 

� ∈ �, there is a corresponding solution r of the OER problem 

(illustrated by Fig. 3). � =  {��, ��, . . . } denotes the set of all 

corresponding solutions. � =  {��, ��, . . . }  and � =
 {��, ��, . . . } denote the set of all its nodes and the set of all 

edges in � before the capacity transformation shown in Fig. 

4 respectively. If there is no crossing wire in any � ∈ �, the 

commodity flow graph �  is called non-crossing 

Figure 2: Illustration of the MMCF model for OER with 

��=1, ��=2 [13]. 

Figure 3: Correspondence between OER solution and 

MMCF solution. 

 

Figure 4: The capacity transformation eliminating undirected 

edges and the wire crossing issue of MMCF for ��>1. The 

edge capacities are labelled (�>1). 

 



 

commodityflow graph. Before stating the theorem, we first 

give two lemmas for the node non-crossing and edge non-

crossing conditions. 

Lemma 1 (Node non-crossing). For any node � ∈ � in a 

commodity flow graph �, if its degree is not larger than 3, 

then for any corresponding OER solution � ∈ � there is no 

crossing wire at �. 

Proof. For any � ∈  � and � ∈  �, when the degree of � is 

0, no commodity flow passes through �, then no wires pass 

through � in �, so there is no crossing wire. 

When the degree of � is 1, at most one commodity passes 

though �. In this case, one wire passes through � in � at most, 

so there is no crossing wire. 

When the degree of � is 2, �1, �2 denote the adjacent nodes 

of �. In the case where � is source (or destination) and we 

denote the commodity flow out (or in) as � → �1 (or �1 → �), 

another commodity flow through edge � ↔ �2 flows in but 

cannot flow out. Therefore, no commodity flow passes 

through edge � ↔ �2. So, only one wire passes through � in 

�. In the case where � is not source or destination, the 

commodity flow passes through � is �1 → � → �2 or �2 → � 

→ �1, which means only one wire passes through � in �. So, 

there is no crossing wire when the degree of � is 2. 

When the degree of � is 3, �1, �2, �3 denote the adjacent 

nodes of �. In the case where � is source (or destination) and 

we denote the commodity flow out (or in) as � → �1 (or �1 

→ �), the route �2 ↔ � ↔ �3 can be simplified to �2 ↔ �3. 

Therefore, no crossing wire is generated whether or not there 

is commodity flow passing through �2 ↔ �3. In the case 

where � is not source or destination, if there is a legal 

commodity flow pass throw �, it will occupy 2 edges (take � 

↔ �1, � ↔ �2 as an example), another commodity flow 

through edge � ↔ �3 flows in but cannot flow out. So, there 

is only one wire pass through � in �. Therefore, there is no 

crossing wire.                                                                          □ 

Lemma 2 (Edge non-crossing). For any edge � ∈ �  in a 

commodity flow graph �, if its capacity is 1, then for any  

corresponding OER solution � ∈  �, there is no crossing wire 

at �. 

Proof. For any � ∈ � and � ∈ �, since the capacity of � is 1, 

at most one commodity flow passes through �, which means 

at most one wire passes through � in �. Therefore, there is no 

crossing wire at �.                                                                    □ 

Theorem 1. For a commodity flow graph G, if the degree of 

any � ∈ � is less than or equal to 3 and the capacity of any 

� ∈ �  is 1, the commodity flow graph is a non-crossing 

commodity flow graph. 

Proof. Combining the statements of Lemma 1 and 2, and 

according to the definition of non-crossing commodity flow 

graph, we can derive this theorem.                                         □ 

3.2. Non-crossing commodity flow graph for MC-

OER 
In this subsection, based on Theorem 1, we will extend and 

generalize for the three main structures (routing channel, 

candidate terminal node and tile node) in MMCF model [13] 

to construct non-crossing commodity flow graph supporting 

multi-capacity. 

As shown in Fig. 5, the structure of multi-capacity routing 

channel is composed of multiple sub-routing channels for 

single-capacity. Each sub-routing channel follows the design 

of routing channel in the MMCF [13]. Remarkably, the 

construction method is stackable and it is easy to construct 

routing channel with �� > 2, as shown in Fig. 5(b). In order 

to reduce the number of nodes and edges in the commodity 

flow graph, we use 4-nodes type shown in Fig. 5(a) if the 

adjacent pins (for example, p1, p2, p3) need to be escaped. 

Otherwise, 2-nodes type shown in Fig. 5(b) is used.  

For the construction of candidate terminal nodes, a 

candidate terminal node is added for each sub-routing 

channel, which is similar to that in the MMCF [13]. Taking 

the case of ��=4 as an example, Fig. 6(a) shows a new tile 

node design in which the capacity of each undirected edge is 

1. And Fig. 6(b) shows the construction with ��=3. Notice 

that the design of tile node is also stackable. It is easy to obtain 

a design with ��=� by adding nested nodes around the design 

with �� =� -2, as shown in Fig. 6(a)(c) (For example, the 

design with �� =4 is nested inside the design with �� =6). 

Based on the above three extension structures, we propose 

multi-capacity multi-commodity flow (MC-MCF) model 

shown in Fig. 7. 

 

Figure 7: Illustration of the MC-MCF model for MC-OER 

with ��=2, ��=4. 

 

Figure 5: Routing channel for ��=2(a), ��=3(b). 

 

Figure 6: Tile node with ��=4(a), ��=3(b), ��=6(c). 

  



 

Using the MC-MCF model to solve the OER problem with 

minimizing the wiring length, we first construct the 

commodity flow graph and convert it into an integer linear 

programming (ILP) problem which aims to minimize the total 

cost. Then, we use the ILP solver (such as Gurobi [17]) to 

solve it, and finally convert it into the solution of the OER 

problem. The formulation of the ILP problem for MC-MCF 

is as follows: 

min $ �%,&,'�&,'
(&,')∈)*,%∈+

  

,. -. $ �%,&,' + /%,'
(&,')∈)*

= $ �%,',0
(',0)∈)*

, ∀
 ∈ �, ∀2 ∈ 3,   (1) 

           $ �%,&,'
%∈+

≤ 1, ∀(6, 2) ∈ �� ,                                             (2) 

where �, 3 and �� denote the sets of commodities (or pins), 

nodes and directed edges in MC-MCF graph, respectively. 

�&,'  denotes the cost of directed edge (6, 2) ∈ �� . �%,&,' 

indicates whether the commodity 
  passes through edge 

(6, 2) . If node 2  is the source (or destination) node of 

commodity 
, /%,' =1 (or -1). Otherwise, /%,' =0. Notice that 

non-crossing constraint is satisfied by the construction of 

MC-MCF graph and capacity constraint is satisfied by Eq. 

(2). Ordering constraint is satisfied by the setting of /. 

3.3. Discussion on computational cost 
Since the ILP and the OER problem have been proved to 

be NP-complete [18], we discuss the complexity of MC-MCF 

model by analyzing the number of nodes and edges in the 

commodity flow graph. A GPA with � rows, � columns and 

�� = 2�� = 27  contains (� − 1)(� − 1) tile nodes and 

[�(� −  1)  +  �(� −  1)]  routing channels. From the 

stackable structure of tile node, it’s easy to find that the 

relationship between the number of nodes, directed edges and 

�� is squared,  

    ��;�< = $ 4(26 − 1) +  2 ×  4[(6 − 1) +  (26 − 1)]
>

&?�
 

                = 167� − 47,                                                             (3)   
�<�B< = 5 $ 4[(6 − 1) + 2(6 − 1)]

>

&?�
= 307� − 107 , (4) 

where ��;�< , �<�B< imply the number of nodes, directed 

edges respectively. Similarly, the relationship between the 

number of nodes, directed edges and �� in routing channel is 

linear. Therefore, the number of nodes, directed edges and �� 

in the commodity flow graph is squared. With the increasing 

GPA scale and �� , the number of nodes and edges in 

commodity flow graph increases rapidly, leading to 

unacceptable computational cost for solving the problem. 

4. Accelerated MC-MCF model for OER 
In this section, we propose a wiring resource driven 

partition strategy (WRDPS) and an accelerated MC-MCF 

algorithm to accelerate the solution of OER problem based on 

the MC-MCF model. In previous works, like [10], [14] only 

the clustering characteristics of pins are considered. In [15], 

neural network is used to extract high-dimensional routing 

features. However, the method in [15] can only be applied to 

the GPA in a fixed scale. In our method, the candidate 

terminal nodes are also considered in the partition step, as 

they are important routing resource in the MC-MCF model. 

Then, according to the arrangement characteristics of pins, we 

apply the fine-grained partition strategy to the accelerated 

MC-MCF algorithm, which further reduces the size of the 

sub-problem for OER. 

4.1. Wiring resource driven partition strategy 
The WRDPS considers the candidate terminal nodes as a 

basis for partition and contains three steps: allocating 

candidate terminal nodes, constructing regions and selecting 

regions. The allocation step focuses on assigning the closest 

possible candidate terminal node to the pin without violating 

the ordering constraint, which is based on direct terminal 

node. In an MC-MCF graph �, for a pin node 
, if there is a 

candidate terminal node - directly connected to it, - is called 

a direct terminal node of 
, and 
 is called a direct pin of -. 

Firstly, we assign candidate terminal nodes to pins that have 

direct terminal nodes, as shown by the red arrow in Fig. 8(a). 

Then, the illegal allocation pairs are removed (e.g. if the 

ordering constraint is not satisfied). The above allocation 

divides the sequence of pins and candidate terminal nodes 

into some intervals corresponding to each other. For each 

corresponding interval, the allocation is executed according 

to the principle of minimizing the total distance between pins 

and candidate terminal nodes. For the example in Fig. 8(a), 

the allocation for pin 10 and 13 generates an interval for pin 

11 and 12. Then, the candidate terminal nodes numbered 11, 

12 will then be assigned to pins 11, 12. We use E to denote 

the result of candidate terminal node allocation and E[
] to 

denote the candidate terminal node allocated for pin 
. 

Base on the result of the allocation step, the approach of 

constructing regions is as follows (each pin corresponds to a 

region). 1) Initialize region (�&0): �&0 is the rectangular area 

containing exactly the pins numbered in [F − G�, F + G�], 

0 ≤ G�, G� ≤ GHIJ = 2, G� = max {G�| pins numbered in 

[F − G�, F]  satisfy distance constraint}, G� = max {G�|pins 

numbered in [F, F + G�] satisfy distance constraint}. Pin  , 

satisfies distance constraint if and only if  |N0 − NO|  ≤  P ∧
|R0 − RO|  ≤  P ((N0 , R0) implies the coordinates of pin F). 2) 

Expand region (�<0): �&0 is expanded in all directions by ℎ =
 0.5 unit lengths to obtain �<0 . And if �<0  does not include 

E[
0] , expand it to include E[
0]  exactly. This step is to 

provide sufficient wiring resources for the pins. As shown in 

Fig. 8(b), the dark green areas indicate �&T, �&UT and the light 

green areas indicate �<T, �<UT.  

Figure 8: Allocating terminal nodes (a) and constructing 

regions (b) in WRDPS. 

                           (a)                                                         (b) 



 

After region construction step, we need to select some 

regions as the partition result (�V ). These regions need to 

satisfy certain properties: pin continuity, mutual exclusivity, 

optimality. Pin continuity means that regions include 

continuous pin labels. Mutual exclusivity indicates that there 

is no intersection between the selected regions, and optimality 

means that the selected regions need to include as many pins 

as possible. We denote �O<W<>X  =  {��, ��, … , �Y} as regions 

that satisfy pin continuity property and Sol(], ^) as the sub-

partition result while �O<W<>X  is {�I, … , ��}(1 ≤  ] ≤  ^ ≤
 _). Sol(], ^) satisfies:  

             Sol(], ^) = [Sol (], � − 1) − `(�)] ∪ �H ∪ 

                                   [Sol(� +  1, ^) − `(�)],                    (5) 

 � = ]�g maxIc'c�{PN(Sol (], � − 1) − `(2)) + PN(�') +
                                  PN(Sol(2 + 1, ^) −  `(2))},                   (6)  

where `(�) is the set of regions in �O<W<>X  that do not satisfy 

mutual exclusivity with �H and PN(�) is the number of pins 

in �(� ⊆  �O<W<>X). Finally, we regard Sol(1, _) as �V. 

4.2. OER based on MC-MCF and WRDPS 
Based on the result of WRDPS, we can construct a MC-

MCF model for each region ∈ �V and solve the problems in 

the regions respectively. However, routing conflicts may 

occur among adjacent regions, as the routing resource at the 

junction of the partitioned regions is shared by adjacent 

regions. The approach of removing conflicts is as follow: 

Firstly, we count the conflicts for each sub-model. Then, the 

sub-model with the most conflicts is selected to re-solve with 

taking the routing results of other sub-models as constraints. 

The process is repeated until there is no conflict. For the MC-

OER problem with ��=2 shown in Fig. 9(a), two adjacent 

regions share the routing resource at the junction. During the 

solution process, there are no restrictions on each other, so 

that the routing results of pin 2 and pin 3 conflict. To remove 

the conflict between the two regions, we re-solve region 2 

with taking the routing results of region 1 as constraints, as 

shown in Fig. 9(b). 

It should be pointed out that there are pins out of the 

partitioned region. During the solution of each sub-model (for 

a region), it will cost unbearable time when there are too 

many pins in the region or the distribution of pins is complex. 

The pins generated by the above two conditions are called 

non-escaped pins and they are usually distributed 

complicatedly. For non-escaped pins, we propose a fine-

grained partition strategy based on ordering metrics of pins 

and unordered pin pair. For an MC-MCF sub-graph, 

imaginary boundary nodes are added at the escape boundary, 

which are aligned with the pin nodes. These imaginary 

boundary nodes are then labelled according to the ordering 

constraint. The label of the nearest imaginary boundary node 

to pin node 
 is noted as the ordering metric for 
 which is 

denoted as OD(
) =  label. As shown in Fig. 10, OD(
U) = 5. 

For a pin pair (
&  , 
') in an MC-MCF subgraph, if 6 k  2 and 

OD(6) > OD(2), then (
&  , 
') is said to be an unordered pin 

pair. In an MC-MCF sub-model, unordered pin pairs imply 

wire wrapping and increase the complexity of solving. 

Therefore, we can use unordered pin pairs to divide the pin 

sequence into a number of sub-sequences to improve the 

efficiency of the solution. The approach is divided into three 

sub-steps. Firstly, we find out all the unordered pin pairs and 

denote them as Pair . Secondly, for any two pairs 

(
&� , 
'�), (
&� , 
'�)  ∈  Pair , if 6�  ≤  6�  and 2�  ≥  6� , then 

we combine both as (
&� , 
HIJ('�,'�)) . Finally, each 

unordered pin pair in Pair  forms a sub-sequence, and the 

remaining pins form sub-sequences respectively. As shown in 

Fig. 10, after finding and combining, Pair =  {(
U, 
T)} and 

we can easily divide pin sequence [
�, 
m] into three sub-

sequences, i.e. [
�, 
�], [
U, 
T] and [
n, 
m] . Based on the 

three sub-sequences, the graph can be divided into three sub-

graph (orange dot lines in Fig. 10). 

We combine the techniques proposed above to obtain the 

accelerated MC-MCF algorithm presented in Alg. 1. In Alg. 

1, we first construct sub-models based on the results of the 

WRDPS and solve them separately, then remove the routing 

conflicts among the sub-models and finally route the non-

escaped pins with fine-grained partition strategy. 
 

Algorithm 1: Accelerated MC-MCF algorithm 

Input: An OER problem. 

Output: The solution of OER. 

  1: Construct an MC-MCF model for the OER problem and 

partition the graph with the WRDPS to obtain �; 

  2: for ��o6p� ∈ � do 

  3:     Using nodes and edges in ��o6p� to construct an MC-

MCF graph and convert it into ILP problem; 

  4:       Call an ILP solver to solve it; 

  5: end for 

  6: Remove conflicts among the results of ILP problems; 

  7: Route  non-escaped  pins  with  fine-grained  partition      

strategy; 

  8: Convert the results of ILP problem into the solution of 

OER; 

  9: return the solution; 

 

                           (a)                                                         (b) 

Figure 9: Illustration of routing conflicts (��=2). 

Figure 10: Illustration of the ordering metric. 



 

 

5. Experimental results 
We have implemented the proposed algorithms and the 

MMCF [13] and ConDri(P) algorithm [14] in Python. To 

demonstrate the effectiveness of proposed algorithms, the 

cases of single-capacity OER in [14] are tested for the 

comparison among the proposed MC-MCF algorithm and 

those in [13] and [14]. Then, we test some cases for MC-OER. 

They are generated randomly or from industrial PCB design. 

Then, Gurobi optimizer solver is used as ILP solver [17]. All 

experiments are carried out on a machine with Intel Xeon E5-

2630 CPU@2.40GHz and 512GB memory.  

The comparison results of our MC-MCF algorithm and 

those in [13] and [14] are listed in Table 1. MC-MCF denotes 

the MC-MCF model with ��=1. Size(#pin) indicates the grid 

number of GPA and the number of pins to be escaped. WL 

denotes the total wiring length, which is calculated by the 

same criteria as [14]. Notice that the test cases are originally 

for single-capacity OER, so that our method and method in 

[14] have achieved the solution close to optimal. From the 

table we see that, although the proposed MC-MCF algorithm 

has the unique advantage of solving multi-capacity OER 

problem, it performs similarly well as the algorithm in [14] 

for single-capacity OER problem. The runtime is similar, 

while the total wiring length of result is similar or even 

shorter. This experiment verified the effectiveness of the 

proposed method.  

The results of multi-capacity OER with the proposed 

algorithms are listed in Table 2, where MC-MCF0 denotes a 

direct implementation of MC-MCF model in Section 3 and 

MC-MCF denotes the accelerated MC-MCF algorithm in 

Section 4. #node denotes the number of nodes in the direct 

implementation of MC-MCF graph. #node(#sub) denotes the 

total number of nodes and the number of sub-graphs in the 

accelerated MC-MCF algorithm. From the table we see that, 

for the larger case the runtime of the direct MC-MCF 

algorithm is unacceptable (exceeding one day), while the 

accelerating approach in Section 4 brings several tens to over 

hundreds times speedup (see the last column). The number of 

nodes in the MC-MCF graph validate the complexity analysis 

in Section 3.3. The accelerating approach largely reduces the 

number of nodes in single MC-MCF graph. The test cases 

cover much diversity, where b1∼b3 and b9 are 2-side OER 

problems, b8 is a 1-side problem, and b4∼b7 and b10 are 4-

side problems. For all of them, the proposed accelerated MC-

MCF algorithm achieves 100% routability in reasonable time. 

For the first two cases, the accelerated algorithm still reaches 

the theoretically optimal wiring length.  And, the results show 

that the increase of the complexity of problem does not lead 

to significant increase in time. Even for the largest test cases 

(b6∼b7, more than 300 pins), the proposed algorithm solves 

them in 38 minutes. The routing results for the largest case 

(b7) and the industrial case (b10) are shown in Fig. 11. Notice 

that these cases have no solution in the case of single-

capacity. In other words, method in [13] and [14] cannot solve 

these OER problems.  

6. Conclusion 
For the first time, a multi-capacity multi-commodity flow 

(MC-MCF) model is proposed for the multi-capacity ordered 

escape routing (MC-OER) problem with optimization 

objective of minimizing the wiring length. A wiring resource 

driven partition strategy (WRDPS) is proposed. Based on it, 

an accelerated MC-MCF algorithm was proposed to speed up 

the model solving. Experimental results show that the 

proposed method achieves 100% routability and the 

accelerated MC-MCF algorithm brings an average speedup of 

more than 231X with less sacrifice on wiring length. 

Compared to the methods in [13], [14], the accelerated MC-

MCF algorithm performs similarly well or better for single-

capacity OER. And, the proposed method is able to solve 

large-scale MC-OER problems (up to 308 pins in 50×50 

GPA) in reasonable time. 
 

Table 1: Comparison of our algorithm and those in [13], [14] (Time in unit of second). 
 

Case Size(#pin) 
MMCF [13] ConDri(P) [14] MC-MCF 

WL Time WL Time WL Time 

p1 10×6(25) 53.5 9.69 53.5 0.34 53.5 0.42 

p2 20×21(42) - >86400 168 4.85 165 5.54 

p3 25×26(60) - >86400 363 23.9 302 22.7 

p4 50×50(130) - >86400 1160 80.7 1167 57.6 

 Table 2: Results of our algorithm for MC-OER. 
 

Case Size(#pin) �� 
MC-MCF0 MC-MCF 

WL Time #node WL Time #node(#sub) Sp. 

b1 10×5(28) 2 37 20.04 2537 37 0.76 1544(4) 26.4X 

b2 8×8(43) 2 98.5 45895 3734 98.5 183 7693(5) 251X 

b3 10×10(32) 2 - >86400 7427 90 158 10217(4) >547X 

b4 23×24(93) 2 - >86400 63326 338.5 206 50430(21) >419X 

b5 24×24(93) 2 - >86400 66676 412.5 1171 104287(22) >74X 

b6 50×50(300) 2 - >86400 270697 1617 2032 191174(73) >43X 

b7 50×50(308) 2 - >86400 265945 1724 1388 213045(67) >62X 

b8 30×14(90) 3 - >86400 57499 413 160 117343(20) >540X 

b9 30×30(158) 3 - >86400 139287 641 360 200245(36) >240X 

b10 20×20(171) 4 - >86400 191138 469.5 746 214450(33) >116X 
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Figure 11: The routing results produced by the accelerated MC-MCF algorithm. 

                                                 (a)  Case b7                                                                                                                  (b) Case b10 


