
Approximating Element-Wise Functions of Matrix
with Improved Streaming Randomized SVD

Yuyang Xie, Xu Feng, Xizhi Zhang, Jiezhong Qiu, Wenjian Yu∗
Dept. Computer Science & Tech., BNRist, Tsinghua University, Beijing, China.

{xyy18, fx17, zhangxz18, qiujz16}@mails.tsinghua.edu.cn, yu-wj@tsinghua.edu.cn

Abstract—The element-wise functions of a matrix are widely
used in machine learning. For the applications with large
matrices, efficiently computing the matrix-vector multiplication
of matrix element-wise function without explicitly constructed
matrix is very desired. In this work, we aim to develop an efficient
low-rank approximation of the element-wise function of matrix
with the time/memory cost linear to the matrix dimension. We
first propose a sparse-sign streaming randomized SVD (ssrSVD)
algorithm based on a streaming singular value decomposition
(SVD) algorithm and the sparse-sign random projection for the
approximation of element-wise function of general asymmetric
matrix. For symmetric positive semi-definite (SPSD) matrix,
for which the existing Nyström [1] and FastSPSD [2] method
do not perform well if the matrix’s singular value decays
slowly, we propose a theoretically proved shift skill to improve
the approximation accuracy. Combining with the ssrSVD, we
obtain the sparse-sign streaming SPSD matrix approximation
with shift (S3SPSD) algorithm. Experiments are carried out to
evaluate the proposed algorithms’ performance in approximating
element-wise functions of matrix. With the color transfer task
based on the Sinkhorn algorithm, the ssrSVD algorithm largely
reduces the approximation error (up to 105×) compared with the
state-of-the-art baselines, and results in high-quality color trans-
fer result. For the kernel matrix approximation, the proposed
S3SPSD algorithm also consistently outperforms the state-of-the-
art baselines. Experimental results finally validate the linear time
complexity of the proposed algorithms.

Index Terms—element-wise function of matrix, randomized
matrix approximation, sparse-sign random projection, streaming
algorithm, shift skill

I. INTRODUCTION

In machine learning applications, the element-wise function

of a matrix is widely used. Examples include the ReLU

activation [3] in deep neural networks—ReLU(·), the attention
mechanism in Transformer [4]—softmax(·), and the kernel
functions in kernel learning [5]. An element-wise function of

matrix can be denoted by A = f◦(M) ∈ R
m×n, where f◦(·)

is the element-wise function such as ReLU(·), softmax(·), and
exp◦(·) in radial basis function (RBF) [6], etc. Notice thatM
and f◦(M) can be of large dimensions (m and n) so that
they are not allowed to be explicitly constructed. Therefore,

how to efficiently compute the multiplication of f◦(M) and
vector without the explicitly constructedM and f◦(M) is of
great interest.

The element-wise function of matrix can be a symmetric

matrix or an asymmetric matrix. In the kernel learning, such

as kernel SVM, the matrix f◦(M) is a symmetric positive

This work is supported by NSFC under grant No. 61872206.

semidefinite (SPSD) matrix. The asymmetric matrix f◦(M)
also exists. An example is the computation of optimal transport

distance with the Sinkhorn algorithm [7]–[9], e.g. in the color

transfer task [10], where the matrix-vector multiplication of

asymmetric matrix f◦(M) is repeatedly computed.
Over the past few years, there have been some tries to

approximate f◦(M) by finding a low-rank approximation
f◦(M) ≈ UV �, where U ∈ R

m×r and V ∈ R
n×r.

The time/memory costs for the matrix-vector multiplication

of f◦(M) can thus be reduced. The related work about the
approximation of the element-wise functions of a matrix can

be divided into three categories. The first category is random

Fourier feature (RFF) methods, including [11]–[13]. These

methods are based on Monte-Carlo sampling. The second

category is tensor sketch methods, including [14], [15]. Poly-

TensorSketch [15] is one of the recently proposed methods. It

only works ifM is equal to the multiplication of two low-rank

matrices. The third category is matrix factorization methods,

mainly designed for the SPSD kernel matrix. Williams and

Drineas et al. [1], [16] introduced a Nyström method to

approximate the SPSD kernel matrix. Wang et al. [2] proposed

an effective matrix approximation method and found it to be

a generalized form of the Nyström method. Our work follows

the third category.

Randomized matrix computation [17] has gained significant

popularity in low-rank approximation of large-scale matrix in

the past decade. Halko, Tropp, and Martinsson [17], [18] pre-

sented good surveys of techniques for computing a randomized

singular value decomposition (SVD)/eigendecomposition. A

randomized Nyström approximation method is also proposed

in [19]. However, the O(n2) time/memory costs limit its
widespread use. Recently, several randomized SVD designed

for streaming data [20], [21] have been studied. These tech-

niques are general and may be beneficial for the low-rank

approximation of the element-wise functions of a matrix.

Motivation. For the low-rank approximation of the element-
wise functions of an asymmetric matrix f◦(M), there are few
of work, and none is based on the randomized SVD [17]. As

for the SPSD kernel matrix approximation, more work has

been proposed. Though the Nyström method with uniform

column sampling is widely used, it sacrifices accuracy for

efficiency. In contrast, Gaussian random projection within ran-

domized SVD [17] is more accurate, but incurs time/memory

costs of O(n2). Is there a technique that balances efficiency
and effectiveness between uniform sampling and Gaussian

122

2022 IEEE 34th International Conference on Tools with Artificial Intelligence (ICTAI)

2375-0197/22/$31.00 ©2022 IEEE
DOI 10.1109/ICTAI56018.2022.00026

random projection? As demonstrated in [22], the Nyström

method performs better than the RFF method when the input

SPSD kernel matrix is low-rank. If the SPSD kernel matrix is

not low-rank or with slowly-decayed singular values, how can

we improve the accuracy of existing methods?

Contribution. In this paper, we aim to derive an effective

low-rank approximation of element-wise functions of a matrix

with only O(m + n) time/memory costs. Firstly, we propose
a sparse-sign streaming randomized SVD (ssrSVD) algorithm

for the element-wise functions of asymmetric matrix. It com-

bines a streaming randomized SVD with sparse-sign random

projection [18], which performs similar to Gaussian random

projection, but ensures that the time/memory costs are linear

to the matrix dimension. Secondly, we propose a shift skill

to improve the approximation of the SPSD kernel matrix

with slowly decaying singular values. Theoretical analysis is

performed to reveal the rationality of the shift skill, with

which we further propose a sparse-sign streaming SPSD

matrix approximation with shift (S3SPSD) algorithm. With

the color transfer task based on the Sinkhorn algorithm,

where the related matrix is the element-wise functions of an

asymmetric matrix, we show empirically that the ssrSVD is

up to 105× better than the state-of-the-art baselines in terms

of approximation error. An experiment on SPSD kernel matrix

approximation with eight datasets shows that the performance

of S3SPSD algorithm is significantly better than the baselines.

Regarding relative approximation error, it achieves an average

of 86.29%, 83.75%, and 51.98% reduction over RFF, Nyström,

and FastSPSD for the RBF kernel computation on dataset a9a.

The code and test data are publicly available1.

II. PRELIMINARY

Suppose the element-wise function of matrix is A =
f◦(M).M is always computed asM = LR� orM(i, j) =
‖L(i, :) − R(j, :)‖22 or other operations between L and R,
where L ∈ R

m×d and R ∈ R
n×d. The singular value

decomposition (SVD) of f◦(M) can be stated as:

A = f◦(M) = UΣV �, (1)

where Σ is the diagonal matrix includes the singular values

σi of A. When A is a SPSD matrix, the eigendecomposition

and SVD are the same [23]. In addition, A’s Moore−Penrose
inverse is given by A† = V Σ−1U�. For a dense matrix
A ∈ R

m×n, the time complexity of computing full SVD is

O(min (m2n,mn2)).

The Basic Randomized SVD: We first review the idea of

basic randomized SVD [17], [18]. It is based on the fact

that random projection, such as Gaussian random projection,

can capture the dominant information of the input matrix

A ∈ R
m×n. Then, a sketch matrix Y = AC is obtained,

where C ∈ R
n×c is a Gaussian random matrix. A matrix

Q = orth(Y) is then derived, where orth(·) is an orthonor-
malization operation, such as QR factorization. Finally, we

1https://github.com/xyyphant0m/EWMA

can obtain an approximate formula as A ≈ QB, where B
is a reduced matrix and B = Q�A. We can achieve an
approximate SVD of A by performing SVD on B. For a
dense matrix A ∈ R

m×n, the basic randomized SVD costs

O(mnc) time and the memory cost is O(mn).

The Streaming Randomized SVD: Recently, several stream-
ing randomized SVD algorithms have been proposed [20],

[21] for the situation where the input matrix can only be

visited once. The input matrix A is only allowed to be

visited once during the random projection step and is not

allowed to be revisited in the following steps. In contrast, the

basic randomized SVD visits A to generate Q, but requires
revisiting A when constructing the reduced matrix B. We
describe the streaming randomized SVD algorithm [21] as

Alg. 1. In Alg. 1, four Gaussian random matrices C,H,O
and S are constructed in Line 1, and three sketch matrices

X,Y and Z are drawn in Line 2 by random projection. Then

a reduced matrix W is derived in Line 4 based on the three

sketch matrices. The time cost of Line 2 is O(mn(c + s)).
Lines 3˜6 cost O((m+ n)(sc+ c2) +mcr). Considering that
m,n are much larger than c, s, r, the total time cost of Alg. 1
is O(mn(c+ s)), and the memory cost is O(mn).

Algorithm 1: The Streaming Randomized SVD [21]
Input: A ∈ R

m×n, sketch size parameter c, s, rank
parameter r

Output: SVD factors U ∈Rm×r,Σ∈Rr×r and V ∈Rn×r

such that A ≈ Â = UΣV �

1: C = randn(n, c),H = randn(m, c),O =
randn(m, s),S = randn(n, s)

2: X = A�H,Y = AC,Z = O�AS
3: Q = orth(Y),P = orth(X)
4: W = (O�Q)†Z(P�S)†

5: [Û , Σ̂, V̂] = svd(W)
6: U=QÛ(:, 1 : r),Σ=Σ̂(1 : r, 1 : r),V =P V̂ (:, 1 : r)

The Nyström Method: The Nyström method [1], [16] is

designed for SPSD kernel matrix A = f◦(M). The idea
is to uniformly select c (c � n) columns of A to form

a sketch matrix Y , i.e., Y = AC, where each column
of C has an element equal to 1, and A is not explicitly

constructed. The reduced matrix W is constructed by per-

forming the Moore−Penrose inverse on the corresponding c
rows and columns of A, i.e., C�AC. Finally, the Nyström
approximation is defined as:

A ≈ Â = Y WY � = (AC)(C�AC)†(AC)�. (2)

The total time/memory cost of the Nyström method is O(nc).

The FastSPSD Method: The FastSPSD [2] provides an

improved matrix approximation formulation for the Nyström

method, described as

A ≈ Â = Y WY � = Y (S�Y)†(S�AS)(Y �S)†Y �

= (AC)(S�AC)†(S�AS)((AC)�S)†(AC)�.
(3)

123

Algorithm 2: FastSPSD Method [2]
Input: A = f◦(M) ∈ R

n×n, sketch size parameter c, s
Output: Y ∈Rn×c,W ∈Rc×c such that A≈Â=Y WY �

1: generate an uniform column sampling matrix C ∈ R
n×c

2: Y = AC
3: generate a leverage score sampling matrix S ∈ R

n×s

based on Y
4: Z = S�AS, W = (S�Y)†Z(Y �S)†

The algorithm of FastSPSD can be described as Alg. 2. The

S ∈ R
n×s in Line 3 is a sampling matrix based on leverage

score [2], and s should meet that s ≥ c. If S = C, the ap-
proximation formulation of the FastSPSD method is equivalent

to the Nyström method. The computational complexity of the

FastSPSD method is O(nc2).

III. METHODOLOGY

In this section, we propose two algorithms for approximat-

ing general asymmetric matrix A = f◦(M) ∈ R
m×n and

the SPSD kernel matrix A = f◦(M) ∈ R
n×n, respectively.

The proposed algorithms’ time and memory cost is linear

to m + n or n. In Sec. III-A, we propose an algorithm
based on streaming randomized SVD and sparse-sign random

projection. A shift skill is presented in Sec. III-B, which

improves the SPSD matrix approximation, especially when the

SPSD kernel matrix is not low-rank or with slowly-decayed

singular values.

A. The ssrSVD Algorithm for Asymmetric Matrix

1) Problems of applying randomized SVD: Considering

applying the basic randomized SVD in Sec. II to matrix A,
the explicit construction of A = f◦(M) ∈ R

m×n will cost

O(mnd) time and O(mn) memory for M = LR�. The
computation of Y = AC, where C is a Gaussian random

matrix, will cost O(mnc) time. Therefore, the problem of

sketching matrix A without explicitly constructing the matrix

is the first problem to solve. Suppose that we have Q, the
computation of B = Q�A still costs O(mnc) time. The
second problem is to construct a reduced matrix B. Therefore,
directly applying the basic randomized SVD to solve the

low-rank approximation of the element-wise functions of the

asymmetric matrix is unrealistic.

2) The Solution: Borrowing the idea from Nyström and

FastSPSD, we can choose the random projection matrix C
to be a uniform column sampling matrix and avoid explicitly

constructing A, which will also reduce the time/memory costs
of Y = AC to be O(mc). Although the uniform column sam-
pling is widely used in the Nyström method for time efficiency,

it shows bad performance for approximation. Fortunately,

there is another randomized dimension reduction map with

comparable performance to the Gaussian random projection,

which we call the sparse-sign random projection matrix [18].

It balances the efficiency and the effectiveness between the

uniform column sampling matrix and the Gaussian random

matrix. The construction of a sparse-sign random projection

matrix is described in Alg. 3. First, a sparsity parameter z

Algorithm 3: Generate Sparse-Sign Random Matrix
Input: row numbern, column number c, sparsity parameter z
Output: C∈Rn×c, c∈Rzc×1

1: C = zeros(n, c)
2: c = zeros(zc, 1)
3: for j = 1, 2, ..., c do
4: c((z(j − 1) + 1) : zj) = randperm(n, z)
5: C(c((z(j − 1) + 1) : zj), j) = sign(randn(z, 1))
6: end for

in the range 2 ≤ z ≤ n is input. As shown in Lines 3˜6 of
Alg. 3, each column of the matrix is generated independently

at random. We generate z i.i.d random signs and place them

in z uniformly random coordinates.
If C is a sparse-sign random matrix, the computation cost

of Y = AC ∈ R
m×c can be largely reduced. There are

at most zc nonzeros in C ∈ R
n×c (notice zc � n), which

are described by the coordinates with value in [1, n] stored
in c. Therefore, we can compute Y by performing column

sampling of A based on c instead of explicitly constructing
A and performing matrix-matrix multiplication. This makes

Y = AC has a computational cost of O(mzc).
After the random projection step, the remaining problem is

how to construct the reduced matrix. We consider adopting

the streaming randomized SVD, which computes three sketch

matrices and obtains a reduced matrix W based on these

sketch matrices. Finally, we describe the sparse-sign streaming

randomized SVD as Alg. 4 based on Alg. 1 and Alg. 3.

Algorithm 4: The Sparse-Sign Streaming Randomized
SVD (ssrSVD)

Input: A = f◦(M) ∈ R
m×n, rank parameter r, sketch size

parameter c, s, sparsity parameter z
Output: SVD factors U ∈Rm×r,Σ∈Rr×r and V ∈Rn×r

such that A≈Â=UΣV �

1: generate sparse-sign matrices C ∈ R
n×c, H ∈ R

m×c,

O ∈ R
m×s, S ∈ R

n×s and the corresponding coordinate

vectors c, h ∈ R
zc×1, o, s ∈ R

zs×1 using Alg. 3

2: compute X = A�H,Y = AC,Z = O�AS based on

c,h,o, and s, without explicitly stored A or M
3: Q = orth(Y),P = orth(X)
4: compute W = (O�Q)†Z(P�S)† based on o, s
5: [Û , Σ̂, V̂] = svd(W)
6: U=QÛ(:, 1 : r),Σ=Σ̂(1 : r, 1 : r),V =P V̂ (:, 1 : r)

Complexity of ssrSVD. Lines 1˜2 requires O((m + n)zc)
time and O((m+n)zc) memory. As for Lines 3˜4, it requires
O(mc2+nc2) time. The Line 5 requires O(c3) time and O(c2)
memory. Line 6 demands O((m+n)cr) time. Considering that
c, s, z are much smaller than m or n, the total time cost of
S3SPSD is O((m + n)(zc + c2 + cr)) and the memory cost
is O((m+ n)zc).

B. Improved Algorithm for SPSD Matrix with a Shift Skill

When applying Alg. 4 to solve the low-rank approximation

of SPSD kernel matrix A = f◦(M) ∈ R
n×n, Alg. 4 can be

124

simplified when setting H = C and O = S. At this point it
can be observed that the reduced matrix W in Alg. 4 is the

same as that in Alg. 2, which implies that the approximation

formula of Alg. 2 is a special case of Alg. 4. Yang et al.

[22] give a theoretical and empirical evaluation that Nyström

is better than the RFF method, when applied to low-rank

matrices. Although the Nyström and FastSPSD methods are

widely used for SPSD kernel matrix approximation, their

performance may not be good when the SPSD kernel matrix

is not low-rank, or with slowly-decayed singular values.

The shift skill [23] is proposed initially to accelerate the

convergence of power method for eigenvalue computation [23]

by reducing the ratio of the second largest eigenvalue to the

largest one. For sketching SPSD kernel matrix A, we can
combine the shift skill with the random projection step to

achieve a more accurate sketch matrix Y = AC.

Lemma 1. [23] Suppose a matrix A ∈ R
n×n, and a shift

α ∈ R. For any eigenvalue λ of A, λ−α is an eigenvalue of
A − αI , where I is the identity matrix. And, the eigenspace
of A for λ is the same as the eigenspace of A−αI for λ−α.

The singular values of SPSD matrix A are the same as its

eigenvalues [23]. Based on Lemma 1, we can see that σi(A)−
α is the eigenvalue of A− αI . Therefore, |σi(A)− α| is the
singular value of A− αI . But we notice that |σi(A)− α| is
not necessarily the i-th largest singular value. If σi(A)−α >
0 for any i ≤ e, and they are e largest singular values of
A−αI , these shifted singular values obviously exhibit faster
decay. The following Theorem states when these conditions

are satisfied.

Theorem 1. Suppose A is a SPSD matrix, positive number
α ≤ σe(A)/2 and i ≤ e. Then, σi(A − αI) = σi(A) − α,
where σi(·) denotes the i-th largest singular value. And, the
left singular vector corresponding to the i-th singular value of
A−αI is the same as the left singular vector corresponding
to the i-th singular value of A.

Proof. For symmetric matrix A − αI , the eigenvalue is
σi(A) − α and the singular value is |σi(A)− α|. When
positive number α ≤ σe(A)/2, we can have

α− σi(A) ≤ α ≤ σe(A)− α. (4)

For any i > e, we have σi(A) − α ≤ σe(A) − α. After
combining it with (4), we can derive (5) as

|σi(A)− α| ≤ σe(A)− α. (5)

For any i ≤ e, we will have

σi(A)− α ≥ σe(A)− α > 0. (6)

Finally, we can derive σi(A − αI) = σi(A) − α, i ≤ e by
combining (5) and (6). According to Lemma 1, the eigenspace

of A for σi(A) is the same as the eigenspace of A− αI for
σi(A) − α. Therefore, the left singular vector corresponding
to the i-th singular value of A − αI is the same as the left
singular vector corresponding to the i-th singular value of A,

for any i ≤ e. Therefore, as long as α ≤ σe(A)/2, the left
singular vectors corresponding to the first e singular values of
A−αI are the same as those corresponding to A.

According to Theorem 1 and [17], we can have a better

sketch matrix Y through the left singular vector of (A−αI)C.
The remaining problem is how to choose shift parameter α.

Considering that the ratio of
σi(A−αI)
σ1(A−αI) , when i ≤ c.

As the value of α in Theorem 1 satisfied, we can derive

that
σi(A−αI)
σ1(A−αI) = σi(A)−α

σ1(A)−α ≤ σi(A)
σ1(A) . It is obvious that the

larger the α, the small the ratio σi(A−αI)
σ1(A−αI) , and the faster

decay the singular value. Therefore, a large number of α is
preferred to maximize the effect of shift skill on improving

the approximation error, while satisfying α ≤ σc(A)/2.
Notice that it’s impossible to compute the singular value of

A = f◦(M) ∈ R
n×n because the matrix A cannot be

explicitly constructed. The approach is to use the singular

value of (A − αI)C to approximate the singular value of

A, where C is the sparse-sign random matrix. Here we give

the Lemma 2 and Theorem 2.

Lemma 2. [24] Let X,Y be two n×n symmetric matrices.
Then for the decreasingly ordered singular values σ of X,Y
and XY , σi+j−1(XY)≤σi(X)σj(Y) and σi+j−1(X+Y)≤
σi(X)+σj(Y) holds for any 1≤ i, j≤n and i+j≤n+1.

Theorem 2. Suppose A ∈ R
n×n, C ∈ R

n×c(c � n) is an
orthonormal matrix and 0 ≤ α ≤ σc(A)/2. Then,

σi((A− αI)C) + α ≤ σi(A), i ≤ c. (7)

Proof. First, we need to prove that σi((A−αI)C) ≤ σi(A−
αI). Considering C is an orthonormal matrix, we append zero

columns to C to get an n × n matrix B = [C,0]. Then we
have σ1(B) = 1, and we can get

σi((A− αI)B) ≤ σi(A− αI)σ1(B) = σi(A− αI) (8)

according to Lemma 2. Here we know (A− αI)B = [(A−
αI)C, 0]. For any i ≤ c, σi((A−αI)C) = σi((A−αI)B).
Therefore, we can get the result that σi((A−αI)C) ≤ σi(A−
αI) for i ≤ c.

After combining the fact σi(A) = σi(A−αI)+α in Theo-
rem 1, we have σi(A) = σi(A−αI)+α ≥ σi((A−αI)C)+α
for any i ≤ c.

We use Alg. 3 to generate random projection matrix C ∈
R

n×c, which includes cz � n nonzero element. Therefore, we
can guarantee that the generated C has at most one nonzero

element per row and that each column is normalized, which

further ensures that C is an orthonormal matrix.

Theorem 3. Suppose A ∈ R
n×n, C ∈ R

n×c(c � n) is an
orthonormal matrix and set α0=0, αi=(σc((A−αi−1I)C)+
αi−1)/2. Then the αi≥αi−1 for any positive integer i.

Proof. The Theorem is proved using induction.
When i = 1, α1 = σc(AC)/2 ≥ α0.

125

When i ≥ 1, suppose αi−1 ≥ αi−2. According to Lemma 2,

we have σc(AC − αi−2C) = σc(AC − αi−1C + αi−1C −
αi−2C) ≤ σc(AC − αi−1C) + αi−1 − αi−2.

Therefore, we have αi = (σc((A−αi−1I)C)+αi−1)/2 ≥
(σc((A− αi−2I)C) + αi−2)/2 = αi−1.

Based on Theorem 2 and Theorem 3, αi can be computed

according to αi = (σc((A−αi−1I)C)+αi−1)/2 = (σc(Y −
αi−1C) + αi−1)/2 in an iterative way. Therefore, sequence
{αi} is in ascending order with upper bound σc(A)/2, which
reflects that αi converges with the increasing of i.

Based on Theorem 3, we may need to compute the singular

value of Y − αC several times and it costs O(nc2) every
time. To speed up the computation, we consider to compute

the eigenvalue of (Y − αC)�(Y − αC) and obtain the
singular value by taking the square root of the corresponding

eigenvalue. We expand (Y − αC)�(Y − αC) to get

(Y − αC)�(Y − αC) = Y �Y − 2αC�AC + α2Ic

= N − 2αT + α2Ic,
(9)

where N ∈ R
c×c,T ∈ R

c×c, and Ic ∈ R
c×c is the identity

matrix. After combining the Alg. 4 with Theorem 3 and

(9), we can describe the sparse-sign streaming SPSD matrix

approximation with shift as Alg. 5. Note that Alg. 5 has been

designed and optimized for the SPSD matrix.

Algorithm 5: Sparse-Sign Streaming SPSD Matrix

Approximation with Shift (S3SPSD)

Input: A = f◦(M) ∈ R
n×n, sketch size parameter c, s

Output: Y ∈Rn×c,W ∈Rc×c and a shift value α such that
A ≈ Â=Y WY �+αIn

1: generate a sparse-sign matrix C ∈ R
n×c and the

coordinate vectors c ∈ R
zc×1 using Alg. 3

2: compute Y = AC based on c, without explicit A
3: N = Y �Y
4: compute T = C�AC based on c, without explicit A
5: while α is not convergence do
6: [∼,Λ] = eig(N − 2αT + α2Ic)
7: if α >

√
Λ(c, c) then

8: break

9: end if
10: α = (

√
Λ(c, c) + α)/2

11: end while
12: [Y ,∼,∼] = svd(Y − αC, ′econ′)
13: generate a sparse-sign matrix S ∈ R

n×s and the

coordinate vectors s ∈ R
zs×1 using Alg. 3

14: compute Z = S�AS − αIs based on s
15: compute W = (S�Y)†Z(Y �S)† based on s

Complexity of S3SPSD. According to Sec. III-A, the Lines
1˜2 of Alg. 5 require O(ncz) time/memory. Lines 3˜4, cost
O(nc2 + c2z2) time, Lines 5˜11 cost O(c3) time, and Lines
12˜15 cost O(nc2 + s2z2 + scz + cs2 + c2s) time. Because
c, s, z are much smaller than n, the total time cost of S3SPSD
algorithm is O(ncz + nc2) while its memory cost is O(ncz).

IV. EXPERIMENTS

We conduct two experiments to verify the effectiveness of

the proposed two algorithms. In Sec. IV-A, we apply ssrSVD

to approximate asymmetric matrix A = f◦(M) ∈ R
m×n in

the Sinkhorn algorithm. In Sec. IV-B, we evaluate the perfor-

mance of S3SPSD on SPSD kernel matrix approximation. We

have implemented the proposed algorithms and the compared

baselines in Python, except PolyTensorSketch (PTS) for which

we use the official codes2 provided in the paper [15]. All

experiments are carried out on a server with two Intel® Xeon®

Silver 4214 CPUs (at 2.20GHz) and 126GB memory.

A. Application of ssrSVD algorithm in computing the optimal
transport distance

The element-wise functions of the asymmetric matrix have

many applications in machine learning. We evaluate ssrSVD

based on the Sinkhorn algorithm for computing the optimal

transport distance [7]–[9]. It requires multiplying an element-

wise exponential function of a matrix with a vector at each

iteration. And, the Sinkhorn algorithm for optimal transport

distance is used for color transfer task [10]. We uniformly

randomly sample L ∈ R
m×3 from the RGB pixels in the

source image matrix E ∈ R
M×3 and R ∈ R

n×3 from the

RGB pixels in the target image matrix F ∈ R
N×3, where

M and N represent the total RGB pixels in the source and

target images, respectively. The Sinkhorn algorithm iteratively

computes u = a	 (exp◦(M)v) and v = b	 (exp◦(M)�u),
where M(i, j) � − 1

σ‖L(i, :) − R(j, :)‖22, σ is the scal-

ing parameter, 	 represents the element-wise division, u ∈
R

m×1,v ∈ R
n×1 are initialized as vectors of all 1’s. Since

the pixels are uniformly randomly sampled from the images,

a ∈ R
m and b ∈ R

n are two vectors of all 1
m ’s and

1
n ’s, respectively. The Sinkhorn algorithm finally returns a

transfer matrix T = diag(u) exp◦(M)diag(v), which is used
for color transfer by nearest neighbor interpolation [10]. We

evaluate the approximation error of transfer matrix T based

on ‖T − T̂ ‖2, where T represents the direct computation

of the matrix function and T̂ that computed with with a

matrix approximation method. Because exp◦(M) is not a
SPSD matrix, the methods for SPSD kernel matrix approx-

imation cannot be directly applied to this problem. However,

a Nyström method for a scalable Sinkhorn algorithm was

recently proposed [8]. It is realized by concatenating the

matrix L and R into Z = [L;R] ∈ R
(m+n)×3, and letting

M(i, j) = − 1
σ‖Z(i, :)−Z(j, :)‖22. Therefore, we can compare

the proposed ssrSVD algorithm with RFF [11], Nyström [1],

FastSPSD [2], and S3SPSD algorithms3. We set σ = 0.1 and
run 10 iterations in the Sinkhorn algorithm. For all methods,

we set sketch size c = 100, s = 300. We additional set r = c
for ssrSVD and z = 4 for both of ssrSVD and S3SPSD.
We have done the color transfer experiment with some

source and target images4. One of the color transfer results

2https://github.com/insuhan/polytensorsketch
3We omit the PolyTensorSketch [15] here, because the provided code by

the paper cannot achieve the correct color transfer result.
4The images are downloaded from https://github.com/PythonOT/POT

126

source image: woods target image: autumn ground truth result RFF result

Nystrom result FastSPSD result S3SPSD result ssrSVD result

Fig. 1: The color transfer results obtained with different methods.

TABLE I: The comparison of the approximation error ‖T − T̂ ‖2 of the transfer matrix T in the Sinkhorn algorithm. Here m
and n represent the numbers of sampled RGB pixels and are the dimensions of the transfer matrix T .

Dataset m n RFF Nyström FastSPSD S3SPSD ssrSVD

source/target image: ocean day / ocean sunset 10000 8000 2.38×100 1.31×10−4 9.53×10−3 4.53×10−3 1.14×10−8

source/target image: ocean sunset / ocean day 8000 10000 9.73×10−1 3.25×10−4 1.05×10−1 1.38×10−4 7.39×10−9

source/target image: autumn / woods 10000 10000 2.08×100 3.16×10−2 1.02×10−1 2.05×10−1 6.16×10−6

source/target image: woods / autumn 10000 10000 5.48×10−1 4.19×10−3 1.78×10−1 1.09×10−1 9.30×10−6

source/target image: fallingwater / woods 8000 10000 2.11×10−1 1.90×10−5 7.55×10−2 3.75×10−2 2.00×10−6

source/target image: woods / fallingwater 10000 8000 5.17×10−1 5.38×10−4 3.89×10−1 3.06×10−2 2.65×10−6

is shown in Fig. 1. As we can see, only ssrSVD achieves an

excellent color transfer result, which is indistinguishable from

the ground truth result. RFF, FastSPSD, and S3SPSD achieve

a lousy performance. Although the Nyström method achieves

the second best result, it is still distinguishable. Furthermore,

the approximation errors of transfer matrix T are listed in

table I. The result shows that ssrSVD is the best one among

all the baselines. The approximate error by ssrSVD is orders

of magnitude smaller than other methods. To be specific, it is

up to 108× better in terms of the approximation error when

compared to FastSPSD and is up to 105× better compared to
the Nyström method.

B. Comparison of S3SPSD algorithm and other SPSD matrix
approximation methods

We compare the proposed S3SPSD algorithm with RFF,

PTS, Nyström, FastSPSD, and ssrSVD. The ssrSVD takes

the tested SPSD matrix as general asymmetric matrix. For

FastSPSD method, ssrSVD and S3SPSD, we set s = 5c, which
is shown to be effective in [2], [21]. For ssrSVD and S3SPSD,

we additionally set z = 4 and we set r = c for ssrSVD.
Table II summarizes the statistics of the eight datasets used in

our experiment. G ∈ R
n×d denotes the dataset matrix. The

datasets satimage, cpu small scale, usps, mushroom, letter,

and a9a are obtained from the LIBSVM5. The letter only

contains training data,while the testing data is stored as a

dataset named letter large. The abalone dataset is from UCI

machine learning repository6. We construct A = f◦(M)
based on the dataset matrix G. The RBF kernel function and
the compactly supported RBF (csRBF) kernel function [6],

[25] are considered, respectively. The RBF kernel matrix

ARBF is defined as

ARBF(i, j) = exp◦(− 1

σ2
‖G(i, :)−G(j, :)‖22), (10)

and the csRBF kernel matrix is

AcsRBF(i, j)=ARBF(i, j)[(1−‖G(i, :)−G(j, :)‖2
θ

)v]+,

(11)

where σ > 0 is the scaling parameter, θ > 0 is the cutting-
off point, v > (d + 1)/2 and function [a]+ � max(a, 0).
For csRBF kernel, we choose θ = 3σ and v =
(d + 1)/2�
according to [25]. We focus on the kernel matrices with slowly

decaying singular values, which the existing methods cannot

well approximate. So, relatively small values of σ are set. For
RBF kernel, we set σ2 = 0.2 for satimage, usps, letter and

5https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
6https://archive.ics.uci.edu/ml/index.php

127

TABLE II: Statistics of datasets for kernel approximation.

Dataset satimage abalone cpu small scale usps mushroom letter letter large a9a

n× d 4435×36 4177×8 8192×12 9298×256 8124×112 15000×16 20000×16 32561×123

140 160 180 200
c

10−1

100

E
rr
or

satimage

140 160 180 200
c

10−1
E
rr
or

abalone

140 160 180 200
c

10−1

100

E
rr
or

cpu_small_scale

140 160 180 200
c

10−1

E
rr
or

usps

140 160 180 200
c

100

3×10−1
4×10−1

6×10−1

E
rr
or

mushroom

140 160 180 200
c

100

3×10−1
4×10−1

6×10−1E
rr
or

letter

140 160 180 200
c

100

3×10−1
4×10−1

6×10−1E
rr
or

letter_large

140 160 180 200
c

100

E
rr
or

a9a

RFF PTS Nystrom FastSPSD ssrSVD S3SPSD

Fig. 2: The relative approximation error
‖A−Â‖2
‖A‖2 w.r.t sketch size c for approximating RBF kernel matrices.

140 160 180 200
c

10−1

6×10−2

E
rr
or

satimage

140 160 180 200
c

10−3E
rr
or

abalone

140 160 180 200
c

10−2

2×10−3

3×10−3
4×10−3

6×10−3

E
rr
or

cpu_small_scale

140 160 180 200
c

10−2

3×10−3

4×10−3

6×10−3

E
rr
or

usps

140 160 180 200
c

10−1

2×10−2

3×10−2

4×10−2

6×10−2

E
rr
or

mushroom

140 160 180 200
c

10−2

2×10−2

3×10−2

4×10−2

E
rr
or

letter

140 160 180 200
c

10−2

2×10−2

3×10−2

E
rr
or

letter_large

140 160 180 200
c

2×10−2

3×10−2

4×10−2

6×10−2

E
rr
or

a9a

Nystrom FastSPSD ssrSVD S3SPSD

Fig. 3: The relative approximation error
‖A−Â‖2
‖A‖2 w.r.t sketch size c for approximating csRBF kernel matrices. The RFF method

does not work due to the lack of a corresponding non-negative measure. The PTS method cannot handle this problem, either.

letter large, σ2 = 0.02 for abalone and cpusmall scale, and
σ2 = 2.5 for mushroom and a9a. The csRBF kernel matrix is
sparse, which always has slowly decaying singular values. For

csRBF kernel, we set σ2 = 1000 for usps, mushroom and a9a,
and σ2 = 10 for the remaining datasets. As for the evaluation

metric, we use the relative approximation error
‖A−Â‖2
‖A‖2 ,

where Â is the computed low-rank approximation of A. Since
all the methods are randomized, we run each algorithm ten

times and report the average relative approximation error.

We summarize the results of the SPSD kernel approximation

128

ofARBF andAcsRBF in Fig. 2 and Fig. 3, respectively. From

them, we see that S3SPSD always shows the best result for all

the datasets, and ssrSVD is the second best method. They both

show significantly better performance than the other methods.

As shown in Fig. 2, concerning the relative approximation er-

ror
‖A−Â‖2
‖A‖2 , S3SPSD achieves averagely 86.29% and 83.75%

relative better performance gain than RFF and PTS in a9a

dataset, respectively. Compared with Nyström, FastSPSD, and

ssrSVD, it still achieves an average relative improvement of

61.12%, 51.98%, and 13.56%. The PTS approximates the RBF

kernel based on the fact that ARBF = Dexp◦(1
σ2GG�)D,

where D is a diagonal matrix with diagonal elements com-

puted as D(i, i) = exp(− 1
2σ2 ‖G(i, :)‖22). If the scaling

parameter σ is small, the element of matrix exp◦(1
σ2GG�)

can be of huge value, which makes PTS hard to approximate

this matrix. For the abalone dataset, matrix exp◦(1
σ2GG�)

actually includes value INF when σ2 = 0.02. This makes PTS
does not work for the abalone dataset, and thus its results are

not available in Fig. 2. The RFF and PTS methods are not

able to approximate the csRBF kernel matrix. So in Fig. 3,

we do not show their results. The figure reveals that, regard-

ing the relative approximation error, the propoesd S3SPSD

algorithm outperforms Nyström, FastSPSD and ssrSVD by

71.83%, 52.68%, and 6.57% on average respectively, for the

a9a dataset. The both figures also show that the S3SPSD

method obtains more accurate results than the ssrSVD method,

which attributes to the shift skill proposed in Sect. III.B.

C. Scalability

We randomly generate some synthetic matrices R ∈ R
n×d

with different values of n, and test the proposed ssrSVD and
S3SPSD algorithms for approximating the corresponding RBF

kernel matrices. We set d = 20, c = r = 50, s = 250, z = 4.
The running time of the both algorithms are shown in Fig. 4.

From the figure we see that their runtime increases nearly

linearly as the matrix dimension n grows.

105 106 107

Matrix Dimension n

100

101

102

R
un

ni
ng

 T
im

e(
se

co
nd

s)

ssrSVD
S3SPSD

Fig. 4: The increasing trends of proposed algorithms’ runtime.

V. CONCLUSION

In this work, we propose two linear-complexity algorithms

for the low-rank approximation of matrix element-wise func-

tion A = f◦(M) ∈ R
m×n. Firstly, for the asymmetric

matrix A, a sparse-sign streaming randomized SVD (ssrSVD)

algorithm based on sparse-sign random projection and a

streaming SVD algorithm is proposed. Secondly, we propose

a shift skill to improve the approximation accuracy of SPSD

kernel matrix A, which is effective for matrix with slowly-
decayed singular values, and further obtain the sparse-sign

streaming SPSD matrix approximation with shift (S3SPSD)

algorithm. The experiment on color transfer based on the

Sinkhorn algorithm shows that the ssrSVD algorithm achieves

orders of magnitude better accuracy than the existing methods

for approximating asymmetric matrix element-wise function,

and produces high-quality color transfer result. The experiment

on SPSD kernel matrix approximation shows that the S3SPSD

algorithm is better than the ssrSVD algorithm, and both of

them are significantly better than the other baselines.

REFERENCES

[1] P. Drineas, M. W. Mahoney, and N. Cristianini, “On the nyström method
for approximating a gram matrix for improved kernel-based learning.”
The Journal of Machine Learning Research, vol. 6, no. 12, 2005.

[2] S. Wang, Z. Zhang, and T. Zhang, “Towards more efficient spsd matrix
approximation and cur matrix decomposition,” The Journal of Machine
Learning Research, vol. 17, no. 1, pp. 7329–7377, 2016.

[3] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in Proceedings of the fourteenth international conference on
artificial intelligence and statistics, 2011, pp. 315–323.

[4] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” NeurIPS,
vol. 30, 2017.

[5] T. Hofmann, B. Schölkopf, and A. J. Smola, “Kernel methods in machine
learning,” The annals of statistics, vol. 36, no. 3, pp. 1171–1220, 2008.

[6] M. G. Genton, “Classes of kernels for machine learning: A statistics
perspective,” the Journal of Machine Learning Research, vol. 2, no. 2,
pp. 299–312, 2002.

[7] M. Cuturi, “Sinkhorn distances: Lightspeed computation of optimal
transport,” NeurIPS, vol. 26, 2013.

[8] J. Altschuler, F. Bach, A. Rudi, and J. Niles-Weed, “Massively scalable
sinkhorn distances via the nyström method,” NeurIPS, vol. 32, 2019.

[9] G. Peyré, M. Cuturi et al., “Computational optimal transport: With
applications to data science,” Foundations and Trends® in Machine
Learning, vol. 11, no. 5-6, pp. 355–607, 2019.

[10] S. Ferradans, N. Papadakis, G. Peyré, and J.-F. Aujol, “Regularized
discrete optimal transport,” SIAM Journal on Imaging Sciences, vol. 7,
no. 3, pp. 1853–1882, 2014.

[11] A. Rahimi and B. Recht, “Random features for large-scale kernel
machines,” NeurIPS, vol. 20, 2007.

[12] ——, “Weighted sums of random kitchen sinks: Replacing minimization
with randomization in learning,” NeurIPS, vol. 21, 2008.

[13] Q. Le, T. Sarlós, and A. Smola, “Fastfood-computing hilbert space
expansions in loglinear time,” in ICML, 2013, pp. 244–252.

[14] N. Pham and R. Pagh, “Fast and scalable polynomial kernels via explicit
feature maps,” in SIGKDD, 2013, pp. 239–247.

[15] I. Han, H. Avron, and J. Shin, “Polynomial tensor sketch for element-
wise function of low-rank matrix,” in ICML, 2020, pp. 3984–3993.

[16] C. Williams and M. Seeger, “Using the nyström method to speed up
kernel machines,” NeurIPS, vol. 13, 2000.

[17] N. Halko, P.-G. Martinsson, and J. A. Tropp, “Finding structure with
randomness: Probabilistic algorithms for constructing approximate ma-
trix decompositions,” SIAM review, vol. 53, no. 2, pp. 217–288, 2011.

[18] P. Martinsson and J. Tropp, “Randomized numerical linear algebra:
foundations & algorithms (2020),” arXiv preprint arXiv:2002.01387.

[19] J. A. Tropp, A. Yurtsever, M. Udell, and V. Cevher, “Fixed-rank
approximation of a positive-semidefinite matrix from streaming data,”
NeurIPS, vol. 30, 2017.

[20] W. Yu, Y. Gu, and J. Li, “Single-pass PCA of large high-dimensional
data,” in IJCAI, 2017, pp. 3350–3356.

[21] J. A. Tropp, A. Yurtsever, M. Udell, and V. Cevher, “Streaming low-rank
matrix approximation with an application to scientific simulation,” SIAM
Journal on Scientific Computing, vol. 41, no. 4, pp. A2430–A2463, 2019.

129

[22] T. Yang, Y.-F. Li, M. Mahdavi, R. Jin, and Z.-H. Zhou, “Nyström method
vs random fourier features: A theoretical and empirical comparison,”
NeurIPS, vol. 25, 2012.

[23] G. H. Golub and C. F. Van Loan, Matrix computations. JHU press,
2013.

[24] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis. Cambridge
University Press, 1991, p. 134–238.

[25] A. Gittens and M. W. Mahoney, “Revisiting the nyström method
for improved large-scale machine learning,” The Journal of Machine
Learning Research, vol. 17, no. 1, pp. 3977–4041, 2016.

130

