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Abstract—Due to the rapid advance of the integrated circuit
technology, power grid analysis usually imposes a severe compu-
tational challenge, where linear equations with millions or even
billions of unknowns need to be solved. Recent graph spectral
sparsification techniques have shown promising performance
in accelerating power grid analysis. However, previous graph
sparsification based iterative solvers are restricted by difficulty
of parallelization. Existing graph sparsification algorithms are
implemented under the assumption of serial computing, while
factorization and backward/forward substitution of the spar-
sifier’s Laplacian matrix are also hard to parallelize. On the
other hand, partition based iterative methods which can be easily
parallelized lack a direct control of the relative condition number
of the preconditioner and consume more memory. In this work,
we propose a novel parallel iterative solver for scalable power
grid analysis by integrating graph sparsification techniques and
partition based methods. We first propose a practically-efficient
parallel graph sparsification algorithm. Then, domain decom-
position method is leveraged to solve the sparsifier’s Laplacian
matrix. An efficient graph sparsification based parallel precon-
ditioner is obtained, which not only leads to fast convergence
but also enjoys ease of parallelization. Extensive experiments
are carried out to demonstrate the superior efficiency of the
proposed solver for large-scale power grid analysis, showing
5.2X speedup averagely over the state-of-the-art parallel iterative
solver. Moreover, it solves a real-world power grid matrix with
0.36 billion nodes and 8.7 billion nonzeros within 23 minutes on
a 16-core machine, which is 9.5X faster than the best result of
sequential graph sparsification based solver.

Index Terms—Graph spectral sparsification, iterative solver,
power grid analysis, parallel computing, domain decomposition
method, preconditioned conjugate gradient algorithm.

I. INTRODUCTION

Accurate and efficient analysis of large-scale power grids is
crucial for the modern very large-scale integrated (VLSI) cir-
cuits design. Large-scale power grid analysis requires solving
linear equations with millions or even billions of unknowns,
which is computationally challenging due to excessive time
and memory consumption. Existing methods for power grid
analysis include direct solvers, iterative solvers [1], [2] and
other specialized methods such as the hierarchical matrix
based method [3] and domain decomposition method (DDM)
[4]–[8]. Direct methods, such as Cholesky or LU decompo-
sition [9], [10], exactly solve the simulation problems but
require much more memory to produce and store the matrix
factors. On the other hand, iterative methods, such as the the
Krylov subspace iterative methods [11] or algebraic multigrid

(AMG) methods [12], usually have more favorable memory
requirements thereby achieving more scalable performance for
large problems. Among the most popular iterative methods,
the preconditioned conjugate gradient (PCG) or generalized
minimal residual (GMRES) algorithms leveraging recent graph
spectral sparsification techniques have shown highly scalable
performance for large circuit analysis tasks [13]–[16].

Graph spectral sparsification aims to find an ultra-sparse
subgraph (called sparsifier) which can preserve the spectral
properties of the original graph. In the past decades, spectral
sparsification approaches have been extensively studied in
both theory [17]–[20] and practice [14]–[16], [21]. GRASS
proposed in [14], [15] is the first practically-efficient graph
spectral sparsification algorithm , which leverages approximate
dominant generalized eigenvectors for identifying and recov-
ering spectrally-critical off-tree edges. It can produce high-
quality spectral sparsifiers but strongly relies on the solution
of Laplacian matrix, which can be computationally challenging
for large problems. To overcome this difficulty, two different
approaches were proposed in [16], [21]. SF-GRASS proposed
in [21] leverages spectral graph coarsening and graph signal
processing (GSP) techniques. feGRASS proposed in [16] is
based on effective edge weight and spectral edge similarity. It
can produce high-quality spectral sparsifiers in much shorter
time than GRASS. Moreover, feGRASS based solver achieves
better performance than GRASS based solver and also other
PCG solvers such as AMG-PCG [16]. However, all these graph
sparsification algorithms are implemented under the assump-
tion of serial computing. Besides, graph sparsification based
iterative solvers require factorization and backward/forward
substitution of the sparsifier’s Laplacian matrix, which are also
hard to parallelize.

Partition based methods are another type of methods that
are designed specifically for parallel computing. Domain de-
composition method was first explored for parallel power grid
analysis [4], [5], but forming and factorizing the dense Schur
complement matrix can be even more time-consuming than
solving the original equations. To overcome this difficulty,
additive Schwarz method (ASM) was introduced in [6], [7],
which utilizes overlapping domain decomposition to build a
block-structure preconditioner. ASM can be easily parallelized
and achieve scalable performance for large-scale problems but
lacks a direct control of the relative condition number of the

978-1-6654-4507-8/21/$31.00 ©2021 IEEE



preconditioner. Recently, a new block Jacobi preconditioner
was introduced in [22], which is based on partitioning the
maximum spanning tree (MST) and then forming the block Ja-
cobi preconditioner for parallel computing. It aims to integrate
graph sparsification techniques and partition based methods to
deliver good parallelism. However, the MST-guided method
consumes more memory and requires more iteration steps to
converge than graph sparsification based methods.

In this paper, we aim to develop a parallel iterative solver for
large-scale power grid analysis based on graph sparsification.
Our main contributions are summarized as follows.

1) We propose a practically-efficient parallel graph spectral
sparsification algorithm called pGRASS, which is based on a
divide-and-conquer strategy to calculate effective resistances
and a parallel edge-recovering technique.

2) DDM is leveraged to solve the sparsifier’s Laplacian ma-
trix, thus a graph sparsification based parallel preconditioner is
obtained, which inherits the convergence property from graph
sparsification techniques and the divide-and-conquer nature
from DDM. It is also an explicit preconditioner which can
be easily reused for the linear systems with multiple right-
hand-sides.

3) Combining the two techniques, we have developed an
efficient parallel iterative solver called pGRASS-Solver. Exten-
sive experiments have been conducted to verify the efficiency
of the proposed solver. The results show that pGRASS-
Solver achieves an average 5.5X speedup over feGRASS based
solver [16] and an average 5.2X speedup over the MST-
guided method [22] for simulating 16 large-scale power grid
benchmarks [23], [24]. Besides, pGRASS-Solver succeeds in
solving a real-world power grid matrix with 0.36 billion nodes
and 8.7 billion nonzeros within 23 minutes, which is 9.5X
faster than the best result of sequential graph sparsification
based solver. As far as we know, it is the first time that a
power grid matrix containing more than 8 billion nonzeros
can be solved within half an hour on a 16-core machine.

The rest of this paper is organized as follows. In Section
II, we briefly introduce the background of graph spectral
sparsification and domain decomposition method. In Section
III, an efficient parallel iterative solver is presented in de-
tail. Extensive experimental results for large-scale power grid
analysis are demonstrated in Section IV. Finally, we draw the
conclusions in Section V.

II. BACKGROUND

A. Graph Spectral Sparsification Based Iterative Solver

Consider a weighted, undirected graph G = (V,E,w),
where V and E are the sets of vertices (nodes) and edges,
respectively. w is a positive weight function. We will use
w(e) or wi,j to denote the weight of the edge e = (i, j).
The Laplacian matrix of graph G is denoted by LG ∈ Rn×n,

where n = |V |.

LG(i, j) =


−wi,j , (i, j) ∈ E∑
(i,k)∈E

wi,k, i = j

0, otherwise .

(1)

In DC analysis the power grid is modeled as a resistive
network which can be regarded as a weighted undirected
graph. The Laplacian matrix excluding the row and column
for ground node is the coefficient matrix of the linear equation
system to be solved. It is a symmetric positive definite matrix,
so that the PCG algorithm can be employed to solve the
equation [11]:

Ax = b . (2)

Here x denotes the unknown vector of node voltages. With
B as the preconditioner, the PCG algorithm for solving (2)
will find an ε-accurate solution in at most O(κ(A,B)1/2 log 1

ε )
iterations [25], where κ(A,B) is the relative condition number
of A and B .

Graph spectral sparsification aims to find an ultra-sparse
subgraph P which is spectrally similar to the original graph
G. Graph P is σ-spectrally similar to G if for any u ∈ Rn
[26],

1

σ
uTLPu ≤ uTLGu ≤ σuTLPu , (3)

where LP is the Laplacian matrix of P . This infers that
κ(LG, LP ) ≤ σ2, and taking LP as the preconditioner the
PCG algorithm will converge in at most O(σ log 1

ε ) iterations.
Among existing practically-efficient graph sparsification al-

gorithms [14]–[16], [21], feGRASS [16] achieves a better
tradeoff between runtime and quality of sparsifier. In this
work, a parallel version of feGRASS will be presented in
section III-B, so we briefly review the sequential feGRASS
algorithm below.

feGRASS leverages the concept of effective edge weight
to extract the maximum-effective-weight spanning tree
(MEWST) as the backbone of sparsifier. Effective edge weight
is defined as [16]:

Weff(e) = wi,j ×
log(max{deg(i), deg(j)})
dist(r, i) + dist(r, j)

, (4)

where deg(i) denotes the degree of vertex i, r is a root node
of the tree, and dist(r, i) denotes the unweighted distance
between r and i which can be computed with breadth-first
search (BFS). The average stretch of MEWST is usually lower
than that of maximum-weight spanning tree (MWST), which
infers that MEWST is spectrally more critical than MWST
[16].

After obtaining a spectrally critical spanning tree, feGRASS
calculates the spectral criticalities of all off-tree edges with
wi,jRP (i, j), where RP (i, j) denotes the effective resistance
across i and j in P . Then off-tree edges are sorted by spectral
criticalities. To further improve the quality of sparsifier, the
drop of effective resistance during the edge-recovery procedure
is inspected in feGRASS. For two off-tree edges e1 = (p, q)



and e2 = (s, t), spectral edge similarity between them is
defined as:

Similarity(e1, e2) = fTp,qL
+
P fs,t = fTs,tL

+
P fp,q , (5)

where fp,q = fp − fq , and fp and fq is the p-th and the
q-th column of identity matrix, respectively. Spectral edge
similarity reflects the drop of effective resistance across e1
after recovering e2. After adding an edge e = (i, j) into P ,
the off-tree edges that have large similarity to e should be
excluded during the subsequent edge-recovery steps. The off-
tree edges that are similar to e can be obatined by running
β-layer breadth-first search (BFS) from i and j respectively.

The algorithm flow of feGRASS is described in Algo-
rithm 1.

Algorithm 1 feGRASS: fast and effective GRAph Spectral
Sparsification [16]
Input: Graph G = (V,E,w), the number of edges added to

the spanning tree of G for producing the sparse graph: α.
Output: Sparse graph P , which is spectrally similar to G.

1: Run BFS to compute unweighted distances. Calculate
effective edge weights via (4). Run the Kruskal algorithm
to obtain MEWST T . Set P = T .

2: Compute effective resistances Re of off-tree edges in T .
3: Sort off-tree edges by w(e)Re in descending order to get

an edge list OffTreeEgdes.
4: for k = 1 to |E| − |V |+ 1 do
5: if α edges have been added into P then
6: Break.
7: end if
8: Get edge e =OffTreeEgdes[k].
9: if e = (i, j) is not marked then

10: Add e into P .
11: Run β-layer BFS from i and j respectively. Mark the

off-tree edges connecting the reached vertices in BFS
and other vertices.

12: end if
13: end for

B. Domain Decomposition Method

Domain decomposition method (DDM) refers to the tech-
niques of divide and conquer that have been primarily de-
veloped for solving partial differential equations. They are
then generalized with concepts of graph partitioning. There
are two standard ways of partitioning a graph [27]: vertex-
based partitioning and edge-based partitioning. In this work,
we focus on the vertex-based partitioning. Suppose the graph is
partitioned into m subdomains. The nodes in each subdomain
are classified into interior nodes and interface nodes, as shown
in Fig. 1. After reordering the nodes, the equation (2) has
blocked sparse structure:



A1 E1 O O · · · O O
ET1 C1 O F12 · · · O F1,m

O O A2 E2 · · · O O
O FT12 ET2 C2 · · · O F2,m

...
...

...
...

. . .
...

...
O O O O · · · Am Em
O FT1,m O FT2,m · · · ETm Cm





x1
y1
x2
y2
...
xm
ym


=



f1
g1
f2
g2
...
fm
gm


. (6)

Here, we use O to denote zero matrix. xi and yi denote the
unknowns on interior and interface nodes in the i-th subdo-
main, respectively. Matrices A1, ..., Am correspond to the
interior nodes of m subdomains, and C1, ..., Cm correspond
to the interface nodes. Matrices Ei reflect the connections
between the interior nodes and the interface nodes in the
i-th subdomain, and matrices Fi,j reflect the connections
between the interface nodes in the i-th subdomain and the
j-th subdomain.

Through eliminating all interior nodes, (6) is transformed
to:

Sy ≡


S1 F12 · · · F1,m

FT12 S2 · · · F2,m

...
...

. . .
...

FT1,m FT2,m · · · Sm



y1
y2
...
ym

 =


g1 − ET1 A−11 f1
g2 − ET2 A−12 f2

...
gm − ETmA−1m fm

 ,

(7)
where S is called overall Schur complement matrix and Si
satisfies:

Si = Ci − ETi A−1i Ei . (8)

After S is formed, we can solve (7) to obtain the interface
variables yi. Finally, solving the following equations to obtain
the interior variables xi:

Aixi = fi − Eiyi, i = 1, 2, ...,m. (9)

Most steps in DDM can be easily parallelized. However,
the efficiency of DDM is reduced as the number of interface
nodes increases. When the number of interface nodes is large,
forming and solving Schur complement matrix S can be
even more time-consuming than solving the original matrix.
On the other hand, reducing the number of interface nodes
is also difficult as this requires advanced graph partitioning

Fig. 1. A graph partitioned into 2 subdomains.



techniques. In this work, we address the problem by combining
DDM with graph spectral sparsification. Instead of using DDM
to solve Laplacian matrix of the orignal graph, we propose
to use DDM to solve Laplacian matrix of the sparsifier. The
subgraph is ultra-sparse, so the number of interface nodes can
be very small. Thus, we obtain an efficient graph sparsification
based parallel preconditioner.

III. A PARALLEL ITERATIVE SOLVER BASED ON GRAPH
SPECTRAL SPARSIFICATION AND DOMAIN

DECOMPOSITION METHOD

In this section, we propose a parallel iterative solver for
scalable power grid analysis, based on parallel graph spectral
sparsification and domain decomposition method.

A. The Idea

Graph sparsification based PCG solver mainly includes
three steps: (i) run graph spectral sparsification algorithm to
obtain the spectrally similar ultra-sparse sparsifier, (ii) factor-
ize the Laplacian matrix of sparsifier, (iii) run PCG algorithm
with Cholesky factor of the sparsifier as the preconditioner.
For a typical power grid analysis problem, the CPU time for
the three steps is in the same order of magnitude, as reported
in [16]. Take the case named “thupg10” in [24] as an example,
feGRASS based PCG solver consumes 79.6s, 87.1s and 29.3s
for the three steps respectively.

Existing graph sparsification based PCG solvers are fully
serial. Consider the aforementioned three steps. For step (i),
all the existing graph sparsification algorithms are imple-
mented in serial. For step (ii) and step (iii), factorization
and backward/forward substitution of the irregular ultra-sparse
sparsifier are hard to parallelize. To address the first problem,
we propose a parallel version of feGRASS algorithm, which
is shown to be practically-efficient for large-scale power grid
problems. To address the second issue, we observe that domain
decomposition method can be efficient for solving ultra-sparse
matrix because there are only a small amount of interface
nodes. Thus, DDM can be leveraged to solve Laplacian matrix
of the sparsifier. These two ideas will be presented in detail
in the next two subsections, respectively.

B. Parallel Graph Spectral Sparsification

The sequential feGRASS algorithm (Algorithm 1) mainly
includes four steps: (i) extract the maximum-effective-weight
spanning tree (step 1 in Algorithm 1), (ii) calculate effective
resistances of all off-tree edges (step 2 in Algorithm 1), (iii)
sort off-tree edges (step 3 in Algorithm 1), (iv) recover off-
tree edges (step 4-13 in Algorithm 1). Below we show how to
parallelize each step to obtain a parallel graph sparsification
algorithm.

Extracting the MEWST requires two basic graph algo-
rithms: BFS and the Kruskal algorithm. Parallelization of these
two algorithm has been extensively studied in parallel comput-
ing community. In this work, we just use the implementation
in the Problem Based Benchmark Suite (PBBS) [28]. Parallel

sorting is also well studied and we use the multiway mergesort
implemented in C++ standard library.

To calculate effective resistances of all off-tree edges in
parallel, we propose a simple but effective divide-and-conquer
strategy. First partition the MEWST into a global subtree and
m local subtrees, as shown in Fig. 2. Calculating effective
resistance of one off-tree edge corresponds to one query for
the distance between two endpoints of the edge. There are four
types of queries, depending on locations of two endpoints,
as shown in Fig. 2 with dotted lines. Consider calculating
effective resistance of off-tree edge e = (i, j). Let Reff (i, j)
denote effective resistance of e, T (i) denote the subtree which
vertex i belongs to (T (i) = 0 means vertex i belongs to the
global subtree), Rt(i) denote the root vertex of subtree which
vertex i belongs to, and Dl(i, j) denote the distance between
vertex i and j in the subtree with index l. If both i and j
belong to the global subtree, then

Reff (i, j) = D0(i, j) . (10)

If both i and j belong to the same local subtree, then

Reff (i, j) = DT (i)(i, j) . (11)

If i belongs to the global subtree and j belongs to some local
subtree, then

Reff (i, j) = D0(i, Rt(j)) +DT (j)(Rt(j), j) . (12)

If i and j belong to different local subtrees, then

Reff (i, j) = D0(Rt(i),Rt(j )) +DT(i)(Rt(i), i)

+DT(j )(Rt(j ), j) .
(13)

With (10) to (13), any query in original MEWST can be
reduced to the queries in subtrees. The queries in one subtree
can be computed efficiently using Tarjan’s off-line least com-
mon ancestor (LCA) algorithm [29]. Then queries in different
subtrees can be handled in parallel.

Recovering off-tree edges seems inherently serial, because
whether to recover an off-tree edge depends on the decisions
made earlier. To parallelize the edge-recovering phase, we first
observe that for two off-tree edges e1 = (p, q) and e2 = (s, t),

Similarity(e1, e2) = fTp,qL
+
P fs,t ≈ f

T
p,qL

+
T fs,t , (14)

Fig. 2. A spanning tree, which is partitioned into a global subtree and m
local subtrees.



where T denotes the spanning tree and P denotes the current
subgraph. Eq. (14) infers that spectrally similar off-tree edges
can be found by running β-layer BFS on the original spanning
tree which is static during the edge-recovering procedure.
Thus, a naive approach is computing spectrally similar edges
for each off-tree edge in parallel first, storing them, then
executing the sequential edge-recovering phase in Algorithm 1
except that spectrally similar edges are obtained by reading
the data stored in advance. Because the main work in edge-
recovering phase is computing spectrally similar edges, this
strategy can achieve fairly good speedups.

However, storing spectrally similar edges of all off-tree
edges may cause large amount of memory usage, making the
aforementioned approach impractical. To address this issue,
we first divide the off-tree edges into many blocks, as shown
in Fig. 3. Each block contains k×m edges, where m denotes
the number of threads and k denotes a constant integer (we
set k to 100 in our experiment). Within each block, we
compute spectrally similar edges of each edge in parallel, store
them, execute the sequential edge-recovering procedure and
then move to next block. The memory used for storing the
spectrally similar edges can therefore be reused.

Fig. 3. Off-tree edges, divided into many blocks.

We combine the techniques proposed in this subsection to
obtain a parallel graph spectral sparsification algorithm called
pGRASS. It is described in Algorithm 2.

C. Solving the Sparsifier’s Laplacian Matrix with DDM

Since the sparsifier constructed by graph sparsification is
ultra-sparse, there are only a small amount of interface nodes
when it is partitioned. The efficiency of domain decomposition
method does not deteriorate for large-scale problems. So in this
subsection, we propose to use domain decomposition method
to solve the sparsifier’s Laplacian matrix. Thus we obtain an
efficient graph sparsification based parallel preconditioner.

The sparsifier is constructed by recovering α off-tree edges
to the spanning tree. Consider partitioning the sparsifier into
m subdomains, where we adopt the vertex-based partitioning.
First partition the spanning tree into m subdomains, which
can be done by simply removing m − 1 edges. This results
in 2(m− 1) interface nodes. Then recover α off-tree edges to
the spanning tree. One recovered edge results in at most two
more interface nodes. So the number of interface nodes is at
most 2(m−1)+2α. For example, if α is set to 0.02|V |, which
is a typical value in our experiment, the number of interface
nodes does not exceed 2(m− 1) + 0.04|V | ≈ 0.04|V |.

Forming the Schur complement matrix in (7) can be par-
allelized, because Si can be calculated using (8) in parallel.
However, calculating Si using (8) directly is time-consuming

Algorithm 2 pGRASS: parallel GRAph Spectral
Sparsification
Input: Graph G = (V,E,w), the number of edges added to

the spanning tree of G for producing the sparse graph: α,
the number of threads m.

Output: Sparse graph P , which is spectrally similar to G.
1: Run parallel BFS to compute unweighted distances. Cal-

culate effective edge weights via (4) in parallel. Run
the parallel Kruskal algorithm to obtain MEWST T . Set
P = T .

2: Partition T into a global subtree and m local subtrees. Use
(10) to (13) to convert distance queries in T to distance
queries in those subtrees. Run Tarjan’s LCA algorithm for
each subtree in parallel.

3: Sort off-tree edges by w(e)Re in descending order in
parallel.

4: Divide off-tree edges into many blocks such that each
block except the last one contains km edges.

5: for each block do
6: for each edge e = (i, j) in the current block in parallel

do
7: if e is not marked then
8: Run β-layer BFS from i and j respectively. Store

the off-tree edges connecting the reached vertices
in BFS and other vertices as spectrally similar
edges of e.

9: end if
10: end for
11: for each edge e in the current block do
12: if α edges have been added into P then
13: Return.
14: end if
15: if e is not marked then
16: Add e into P .
17: Mark the spectrally similar edges of e.
18: end if
19: end for
20: end for

because the operation A−1i Ei requires solving Ai many times.
We show below how Si can be calculated more efficiently.

Suppose the subdomain matrix, including both interior
nodes and interface nodes, is factorized in the following way:

[
PiAiP

T
i PiEi

ETi P
T
i Ci

]
=

[
L11 O
L21 L22

] [
LT11 LT21
O LT22

]
, (15)

where Pi denotes permutation matrix which can be computed
using any fill-in reducing matrix reordering technique. Note
that matrix reordering is only performed on the interior nodes.

From (15) we can get:

PiAiP
T
i = L11L

T
11 , (16)

PiEi = L11L
T
21 , (17)



and
Ci = L21L

T
21 + L22L

T
22 . (18)

Substituting (16) to (18) into (8), we have:

Si = Ci − ETi A−1i Ei

= L21L
T
21 + L22L

T
22

− (PTi L11L
T
21)

T (PTi L11L
T
11Pi)

−1PTi L11L
T
21

= L22L
T
22 .

(19)

Eq. (19) infers that Si can be calculated by multiplying the
submatrices in the Cholesky factor in (15). Besides, there is
no need to factorize Ai again because the Cholesky factor of
Ai is already obtained in (16).

After Schur complement matrix S is formed and factor-
ized, we obtain an efficient parallel preconditioner where the
preconditioner equation is solved with DDM as described in
Algorithm 3. It is actually an explicit preconditioner, because
the Cholesky factors of S and Ai are constructed explicitly
and can be easily reused.

The method described here inherits the convergence prop-
erty from graph sparsification techniques and the divide-and-
conquer nature from DDM. The MST-guided method proposed
in [22] is another method aiming at integrating graph sparsifi-
cation techniques and partition based methods. It partitions the
maximum spanning tree and then recovers all inner-partition
off-tree edges to form a block Jacobi preconditioner. There are
two major differences between the both methods. Firstly, the
MST-guided method discards some spectrally critical inter-
partition edges, while our method fully inherits the conver-
gence property from graph sparsification techniques and thus
leads to faster convergence of iterative solution. Secondly, the
MST-guided method recovers all inner-partition edges forming
a denser preconditioner, while our method retains the sparsity
of the sparsifier, which results in shorter factorization time and
iteration time along with less memory cost.

Algorithm 3 Parallel Solution of the Laplacian-Matrix Equa-
tion (6) Obtained with DDM
Input: Laplacian-matrix equation provided in the form of (6).

Cholesky factors of Ai, and S defined by (7) and (8).
Output: Solution xi and yi of (6).

1: for each subdomain i in parallel do
2: Use the Cholesky factor of Ai to calculate bi = gi −

ETi A
−1
i fi, where gi, Ei and fi are defined in (6).

3: end for
4: Use the Cholesky factor of S to solve (7).
5: for each subdomain i in parallel do
6: Use the Cholesky factor of Ai to solve (9) for xi.
7: end for

D. The Overall Algorithm

The overall flow of the proposed parallel iterative solver
(pGRASS-Solver) is described below.

1. Run the pGRASS algorithm (Algorithm 2) parallelly to
obtain the sparsifier.

2. With DDM, partition the sparsifier into m subdomains.
3. Form the sparsifier’s Laplacian matrix in form of (6),

parallelly.
4. Factorize each subdomain matrix in the form of (15),

parallelly. Then, compute Si for each subdomain in
parallel using (19), i = 1, · · · ,m.

5. Factorize the overall Schur complement matrix S in (7).
6. Run the PCG algorithm with the sparsifier’s Laplacian

matrix as the preconditioner, where in each iteration step
the preconditioner equation is solved with Algorithm 3.

In this algorithm flow, there are three major stages: graph spar-
sification (Step 1), factorization of the preconditioner (Step 2-
5), and the PCG iteration (Step 6). Most computations are well
parallelized. Only Step 2 and 5 (during the factorization of the
preconditioner) are executed serially. Because the sparifier is
an ultra-sparse graph, the both steps consume a small fraction
of the overall runtime.

IV. EXPERIMENTAL RESULTS

We first validate the ideas proposed in section III-B and
section III-C respectively. Then, the overall pGRASS-Solver
is compared with the feGRASS based PCG solver [16] and the
MST-guided method [22]. We have implemented pGRASS-
Solver, feGRASS based PCG solver [16] and the MST-guided
method [22] in C++. For Cholesky factorization, we use the
state-of-the-art direct sparse solver CHOLMOD [9], [10]. For
graph partitioning, we use the widely adopted graph partitioner
METIS [30]. All experiments are carried out on a machine
with two 8-core Intel Xeon E5-2630 Processors and 512 GB
RAM. Thread-level parallelism is realized by OpenMP with 16
threads. In all experiments, the wall-clock runtime is reported.

A. Validation of the Parallel Graph Sparsification

To validate the ideas proposed in section III-B, we compare
the pGRASS algorithm (Algorithm 2) with the feGRASS
algorithm (Algorithm 1). For both algorithms, 2%|V | off-tree
edges are recovered. The quality of sparsifier is reflected by
the relative condition number and the number of iteration
steps that PCG converges to a relative tolerance of 10−3

with the sparsifier as preconditioner. pGRASS is executed in
parallel using 16 threads while feGRASS is executed serially.
The runtime (denoted by Ts), the relative condition number
(denoted by κ) and the number of iteration steps (denoted by
Ni) are listed in Table I.

From the results we see that, pGRASS algorithm (Algo-
rithm 2) achieves 6.1X speedups over sequential feGRASS
(Algorithm 1) algorithm on average. For large-scale cases,
the speedup is up to 8.2X. This validates the effectiveness
of the ideas proposed in section III-B. Note that there is a
little difference in relative condition number and the number
of iteration steps between two graph sparsification algorithms,
which is caused by the approximation in (14).

B. Validation of DDM Based Sparsifier Factorization

To validate the idea that DDM can be efficient for the ultra-
sparse sparsifier, we compare two scenarios where DDM is



TABLE I
COMPARISON BETWEEN PARALLEL AND SEQUENTIAL GRAPH

SPARSIFICATION ALGORITHMS FOR THE TEST CASES IN [23] AND [24].
(TIME IN UNIT OF SECOND)

Case |V | NNZ
feGRASS pGRASS Speedup
Ts κ Ni Ts κ Ni

ibmpg3 0.9E6 3.7E6 0.35 99.4 17 0.10 49.7 13 3.5
ibmpg4 1.0E6 4.1E6 0.39 59.2 2 0.11 64.2 3 3.5
ibmpg5 1.1E6 4.3E6 0.45 136 20 0.12 131 20 3.8
ibmpg6 1.7E6 6.6E6 0.75 226 32 0.18 197 31 4.2
ibmpg7 1.5E6 6.2E6 0.63 134 17 0.14 66.8 13 4.5
ibmpg8 1.5E6 6.2E6 0.64 132 17 0.15 72.3 14 4.3
thupg1 5.0E6 2.1E7 4.13 183 13 0.68 198 13 6.1
thupg2 8.9E6 3.9E7 8.13 277 14 1.25 209 13 6.5
thupg3 1.2E7 5.1E7 13.1 233 13 1.69 203 13 7.8
thupg4 1.5E7 6.6E7 17.0 211 12 2.19 214 12 7.8
thupg5 1.9E7 8.5E7 24.3 225 12 3.06 213 12 7.9
thupg6 2.4E7 1.1E8 25.3 216 13 3.73 208 12 6.8
thupg7 2.8E7 1.2E8 34.0 231 12 4.42 234 13 7.7
thupg8 4.0E7 1.8E8 50.8 223 12 6.85 297 13 7.4
thupg9 5.2E7 2.2E8 65.3 234 12 7.94 232 12 8.2

thupg10 6.0E7 2.6E8 79.6 242 12 9.72 267 12 8.2
Average - - - - - - - - 6.1

used for solving the original Laplacian matrix and for solving
the sparsifier’s Laplacian matrix. The dimension of Schur
complement matrix (denoted by NSch ) and the number of
nonzeros (denoted by NNZ Sch ) are recorded. Table II also
lists the time for forming Schur complement matrix (denoted
by TSch ) and the time for factorizing it (denoted by TSchfac).
“-” means that it takes more than 3600 seconds.

TABLE II
COMPARISON BETWEEN DDM FOR THE ORIGINAL MATRIX AND FOR THE

PRECONDITIONER MATRIX. (TIME IN UNIT OF SECOND)

Case DDM for original DDM for sparsifier
NSch NNZ Sch TSch TSchfac NSch NNZ Sch TSch TSchfac

ibmpg3 1.1E4 7.4E6 3.52 2.61 1.0E3 5.9E4 0.05 0.01
ibmpg4 1.3E4 1.1E7 6.46 7.66 1.1E3 6.7E4 0.06 0.01
ibmpg5 0.9E4 4.5E6 1.51 1.50 548 2.0E4 0.06 0.002
ibmpg6 0.8E4 4.0E6 1.82 1.38 555 2.0E4 0.10 0.02
ibmpg7 1.4E4 1.3E7 7.24 20.6 1.1E3 7.3E4 0.10 0.01
ibmpg8 1.4E4 1.3E7 7.17 10.9 1.1E3 7.3E4 0.10 0.01
thupg1 2.8E4 4.6E7 25.5 1326 3.4E3 7.4E5 0.39 0.12
thupg2 3.8E4 9.0E7 72.4 - 4.5E3 1.3E6 0.71 0.31
thupg3 4.4E4 1.2E8 111 - 5.2E3 1.8E6 1.02 0.49
thupg4 4.9E4 1.5E8 157 - 6.0E3 2.4E6 1.37 0.71
thupg5 5.7E4 2.0E8 240 - 6.7E3 3.0E6 1.97 0.95
thupg6 6.5E4 2.6E8 391 - 7.2E3 3.4E6 2.29 1.00
thupg7 6.8E4 3.0E8 417 - 8.1E3 4.2E6 2.96 1.51
thupg8 8.7E4 4.7E8 712 - 9.7E3 6.2E6 4.98 3.49
thupg9 8.8E4 4.8E8 1043 - 1.1E4 8.0E6 6.63 2.40
thupg10 9.9E4 6.2E8 1506 - 1.2E4 9.0E6 7.99 5.59

From the results we see that, utilizing DDM for solving the
original linear equations is impractical for large-scale problems
because forming and factorizing Schur complement matrix can
be extremely time-consuming. When DDM is leveraged to
solve the sparsifier’s Laplacian matrix, the dimension of Schur
complement matrix is reduced by about an order of magnitude,

and the number of nonzeros is reduced by about two orders
of magnitude. Thus Schur complement matrix can be formed
and factorized much more efficiently. Take the case named
“thupg10” as an example, it only takes 7.99 seconds to form
Schur complement matrix in pGRASS-Solver, which is 188X
faster than that in traditional parallel DDM.

C. Comparison with Two Recent PCG Solvers

We compare pGRASS-Solver with two recent work: fe-
GRASS based solver [16] and the MST-guided method [22].
feGRASS based solver is sequential while the other two are
parallel. The relative tolerance of PCG algorithm is set to
10−3. For both graph sparsification algorithms, 2%|V | off-
tree edges are recovered. The performance of three solvers
for the test cases in [23] and [24] is listed in Table III. Ts,
Ti and Ni denote the time for graph sparsification, the time
for PCG iteration and the number of PCG iteration steps,
respectively. Ttot denotes the total runtime. For feGRASS
based solver, Tf denotes the time for factorizing Laplacian
matrix of sparsifier. For the MST-guided block Jacobi method,
Tf denotes the time for factorizing subdomain matrices. For
pGRASS-Solver, Tf denotes the time for factorizing subdo-
main matrices, computing and factorizing Schur complement
matrix (step 4 and step 5 in the algorithm flow described
in section III-D). For the MST-guided method and pGRASS-
Solver, the time for graph partitioning is not included in the
factorization time as in [22]. Sp1 and Sp2 denote the speedup
ratios of pGRASS-Solver over feGRASS based solver and the
MST-guided method respectively.

Compared with feGRASS based solver, pGRASS-Solver
shows more than 6X improvement in factorization time for
all test cases. This shows that, forming and factorizing Schur
complement matrix for the sparsifier are highly efficient using
the techniques described in section III-C. For the iteration
phase, only about 3X speedups are obtained, which is due to
the high memory access to computation ratio of sparse matrix
computation routines. Overall, pGRASS-Solver can achieve
5.5X speedups on average with respect to sequential feGRASS
based solver for the total time.

Compared with the parallel MST-guided method [22],
pGRASS-Solver achieves an average 5.2X speedup for the
total time. For the factorization phase, although both methods
partition the matrix into 16 subdomain matrices and factorize
each subdomain matrix in a single thread, pGRASS-Solver
shows great improvement in factorization time. This is be-
cause the subdomain matrices in pGRASS-Solver are ultra-
sparse after graph sparsification and can be factorized more
efficiently. pGRASS-Solver also shows great improvement in
iteration time, which is due to the following two reasons.
Firstly, the relative condition number of graph sparsification
based preconditioners is lower than that of the MST-guided
block Jacobi preconditioners, which results in fewer iteration
steps. Secondly, the preconditioner in pGRASS-Solver can
be solved less costly because of fewer nonzeros in Cholesky
factors, which leads to faster single-step iteration. We also note
that pGRASS-Solver is more memory-efficient than the MST-



TABLE III
PERFORMANCE OF THREE PCG SOLVERS FOR THE TEST CASES IN [23] AND [24]. (TIME IN UNIT OF SECOND)

Case feGRASS-PCG [16] MST-Guided [22] pGRASS-Solver Speedup
Ts Tf Ti Ni Ttot Tf Ti Ni Ttot Ts Tf Ti Ni Ttot Sp1 Sp2

ibmpg3 0.35 0.62 0.43 17 1.40 0.56 0.82 40 1.38 0.10 0.06 0.14 13 0.30 4.7 4.6
ibmpg4 0.39 0.69 0.07 2 1.15 1.44 0.73 28 2.17 0.11 0.07 0.06 3 0.24 4.8 9.0
ibmpg5 0.45 0.72 0.69 20 1.86 0.31 0.89 48 1.20 0.12 0.06 0.25 20 0.43 4.3 2.8
ibmpg6 0.75 1.21 1.65 32 3.61 0.51 1.42 42 1.93 0.18 0.12 0.70 31 1.00 3.6 1.9
ibmpg7 0.63 1.11 0.90 17 2.64 1.44 1.13 28 2.57 0.14 0.11 0.29 13 0.54 4.9 4.8
ibmpg8 0.64 1.10 0.84 17 2.58 1.64 1.17 30 2.81 0.15 0.11 0.24 14 0.50 5.2 5.6
thupg1 4.13 6.06 2.51 13 12.7 4.72 2.97 21 7.69 0.68 0.51 1.14 13 2.33 5.5 3.3
thupg2 8.13 11.4 4.90 14 24.4 9.61 5.58 21 15.2 1.25 1.02 1.79 13 4.06 6.0 3.7
thupg3 13.1 15.3 6.00 13 34.4 15.2 7.36 21 22.6 1.69 1.51 2.33 13 5.53 6.2 4.1
thupg4 17.0 19.9 7.25 12 44.2 20.7 10.2 23 30.9 2.19 2.08 2.80 12 7.07 6.3 4.4
thupg5 24.3 25.6 9.79 12 59.7 32.0 13.9 20 45.9 3.06 2.92 3.40 12 9.38 6.4 4.9
thupg6 25.3 31.4 12.0 13 68.7 47.6 14.0 18 61.6 3.73 3.29 4.49 12 11.5 6.0 5.4
thupg7 34.0 38.7 13.5 12 86.2 76.7 17.3 15 94.0 4.42 4.47 4.69 13 13.6 6.3 6.9
thupg8 50.8 55.6 20.6 12 127 102 22.0 14 124 6.85 8.47 6.51 13 21.8 5.8 5.7
thupg9 65.3 72.7 25.0 12 163 202 33.1 15 235 7.94 9.03 8.88 12 25.9 6.3 9.1
thupg10 79.6 87.1 29.3 12 196 227 33.0 13 260 9.72 13.6 10.4 12 33.7 5.8 7.7
Average - - - - - - - - - - - - - - 5.5 5.2

Sp1 and Sp2 denote the speedup ratios of pGRASS-Solver over feGRASS-PCG and the MST-Guided method, respectively.

guided method. Take the case “thupg10” as an example. MST-
guided method consumes 62 GB memory, while pGRASS-
Solver only uses 18 GB.

D. Results on a Real-World Power Grid with 360 million
Nodes and 4.2 Billion Edges

A power grid circuit for the design of a flat panel display
(with 2160×3840 pixels) from [16] is tested. It includes 3.6×
108 nodes and the resulting Laplacian matrix has 8.7 billion
nonzeros. The MST-guided block Jacobi fails to handle this
case due to excessive memory requirement. For the other two
methods, 2%|V | off-tree edges are recovered to construct the
ultra-sparse sparsifier. pGRASS-Solver is executed with 8 and
16 threads respectively. The results are listed in Table IV. We
note that the feGRASS based solver with 2%|V | off-tree edges
recovered runs faster than the results reported in [16]. Using
16 threads, pGRASS produces the sparsifier in 755 seconds,
which is 11X faster than feGRASS algorithm. As for the total
time, pGRASS-Solver achieves 9.5X speedups over feGRASS
based PCG solver. As far as we know, it is the first time that
a power grid matrix containing more than 8 billion nonzeros
is solved within half an hour on a 16-core machine.

V. CONCLUSIONS

This paper presents a practically-efficient parallel iterative
solver (pGRASS-Solver) for large-scale power grid analysis
problems. We first propose a parallel graph sparsification
algorithm, based on a divide-and-conquer strategy to compute
effective resistances and a parallel edge-recovering technique.
Then, domain decomposition method is utilized to solve the
sparsifier’s Laplacian matrix. Therefore, we obtain a graph

TABLE IV
RESULTS ON A LARGER REAL-WORLD POWER GRID

(TIME IN UNIT OF SECOND)

Method Ts Tf Ti Ni Ttot
feGRASS-PCG 8347 605 4036 66 12988 (3.6 hrs)

pGRASS-Solver(m=8) 1098 227 728 69 2053 (34 mins)
pGRASS-Solver(m=16) 755 138 477 69 1370 (23 mins)

Speedup 11.1 4.4 8.5 - 9.5

sparsification based parallel preconditioner, which combines
the advantages of both graph sparsification technique and
domain decomposition method. Experimental results on 16
large-scale power grid benchmarks show that an average 5.5X
speedup is gained over the sequential feGRASS based solver
[16] and an average 5.2X speedup is gained over the parallel
MST-guided method [22], on a 16-core machine. For a real-
world power grid matrix with 360 million nodes and 8.7 billion
nonzeros, pGRASS-Solver succeeds in solving it within 23
minutes, which is 9.5X faster than the best sequential method.
It is the first time that a power grid matrix with more than
8 billion nonzeros can be solved within half an hour on a
16-core machine.
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