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Abstract—Accurate and efficient transient analysis of power
grids (PGs) poses a large challenge of computation for nowadays
integrated circuit design. In this work, we propose to leverage
the public cloud computing to do PG transient analysis while
preserving security. A multi-level distributed parallel LU fac-
torization and forward/backward substitution approach based
on nested dissection is then proposed to guarantee accuracy
and robustness. Experimental results show that the proposed
algorithm can achieve an average 2.06X speedup over NICSLU
and 2.85X over conventional domain decomposition method
based parallel approach. And, it exhibits good scalability with
up to 6.0X parallel speedup on large-scale PGs with 4 cloud
computer nodes.

I. INTRODUCTION

Power grid (PG) analysis is increasingly important for

designing and verifying the on-chip power delivery system for

nowadays low-power integrated circuits (ICs). It includes two

kinds of analysis: direct current (DC) analysis and transient

analysis. The former regards the PG as a resistive network

and ignores capacitors and inductors, while the latter takes

them all into account. The major purpose of PG analysis is to

compute the voltage drop (i.e. IR drop) at PG nodes under var-

ious current load assumptions which reflect different working

modes of the circuit. Compared to DC analysis, the transient

analysis is more useful to validating the PG design. Due to the

increased number of circuit components, the decreased margin

for IR drop and the demand of accurate analysis, the transient

analysis usually consumes a large portion of time and poses

a large challenge of computation for nowadays IC design.

For the transient analysis, a system of first-order ordinary

differential equations (ODEs) derived from modified nodal

analysis (MNA) need to be solved. With the implicit time

integration method, e.g., backward Euler or trapezoidal rule,

the problem is converted to the solution of linear equation sys-

tems at successive time points. Therefore, the direct solver or

iterative solver for sparse linear equation system are employed

for efficient PG analysis. The direct solver based method is

suitable for transient analysis when the time step is fixed,

which only performs the expensive LU or Cholesky factor-

ization of the matrix once at the beginning. The direct sparse

solvers which have been used for circuit simulation include

SuperLU series [1], CHOLMOD [2], KLU [3], NICSLU [4]

and CKTSO [5], etc.

The iterative solver based method is better suited for the

cases with variable time steps because its efficiency is hardly

affected by the change of coefficient matrices for different time

points. It also consumes less memory so that it better scales

to larger problems than the direct solver. Popular iterative

solver employs the Krylov subspace iterative methods [6] with

various preconditioning techniques like algebraic multigrid

method [7], [8], incomplete LU factorization [9] and graph

spectral sparsification [10], [11]. Recently, iterative solvers

incorporating graph spectral sparsification techniques have

demonstrated highly scalable performance for PG analysis.

However, their efficiency relies on the quality of precondi-

tioner, which cannot be robust enough on various problems.

For achieving high accuracy during a long-time transient

analysis, a tight convergence criterion of iterative solver is also

required, which degrades the advantage of iterative method

over the direct solver based method. Therefore, an efficient

and robust method for transient analysis of large PGs is still

desired.

Distributed parallel computing and cloud computing are the

technology which can break the computation challenges faced

by the time-consuming tasks in electronic design automation

(EDA). Domain decomposition method (DDM) is a special-

ized method developed to explore the parallelism in circuit

simulation and PG analysis [12], [13], [11]. Existing work

mostly consider the DDM based iterative solver for achieving

high parallelism for PG analysis. In [13], the parallel DDM is

developed for the DC analysis of very large PGs on distributed

computing platform. However, it is on a customized cluster

with high-speed Infiniband networks.

Nowadays, public cloud computing platforms have become

economic and available computing infrastructure facilitating

various computation tasks. However, deploying EDA tools to

them is not widely accepted due to the concern of security and

actual benefit. In this work, we consider leveraging the public

cloud computing to expedite the time-consuming transient PG

analysis while preserving security and robustness. An efficient

distributed parallel algorithm based on nested dissection, a

variant of DDM based direct solver, is proposed to accelerate

the transient analysis of large-scale PGs, at the small cost of

cloud virtual machine rent. The major contributions of this

work are as follows.

1) An idea of expediting transient PG analysis with public

cloud computing is proposed. With the circuit netlist parsed

locally and the matrices and the source waveforms uploaded

to cloud computing platform, it guarantees the security.

2) A multi-level distributed parallel LU factorization algo-

rithm and forward/backward substitution algorithm based on

nested dissection is proposed. The relatively small size of the

interfaces at each level allows for better parallelism. And, its

nature of the direct solver guarantees accuracy and robustness.

3) Only a few vectors are transferred between the processes

at each time point of forward/backward substitution, which

yields a low communication volume. Therefore, the proposed

979-8-3503-9354-5/24/$31.00 ©2024 IEEE

6D-2

631



algorithm can be deployed on a cloud virtual machine cluster

without high-speed networks such as InfiniBand.

4) An efficient scheme is designed for updating the right-

hand side (RHS) of the linear system in parallel at each time

point. It takes advantage of the fact that processes on the same

computer node can share memory. This scheme further reduces

computation and communication overhead.

Experiments on transient analysis of 9 practical PGs are

conducted on a public cloud computing platform with Eth-

ernet. The results show that the proposed algorithm achieves

an average 2.06X speedup compared to NICSLU on a single

computer node and an average 2.84X speedup compared

to DDM on multiple computer nodes. And, the proposed

algorithm exhibits good scalability, with up to 6.0X speedup

over the serial simulation on the large-scale PGs.

II. PRELIMINARIES

A. Transient Analysis of Power Grid

In the transient analysis, the PG is modeled as a resistor-

inductor-capacitor (RLC) network. Fig. 1 presents a schematic

illustration of the detailed RLC model of IBM PG [14].

Power IO

Cell parasitic capacitance 
and well capacitance 

Load current source that 
models switching gates 

Fig. 1. The RLC model of IBM PG [15].

The ODE system derived from MNA can be formulated as

Cẋ(t) +Gx(t) = Bu(t), (1)

where C ∈ R
n×n,G ∈ R

n×n,B ∈ R
n×p denote the

capacitance and inductance matrix, conductance matrix, and

input selector matrix, respectively. u(t) ∈ R
p represents the

vector of p input sources and x(t) ∈ R
n represents the

solution vector of node voltages and branch currents.

By applying the trapezoidal rule, one can convert (1) into

the task of solving the following linear equation system at

each time point.

(
C

h
+
G

2
)x(t+h) = (

C

h
−G

2
)x(t)+B

u(t+ h) + u(t)

2
, (2)

where h is the time step in transient analysis. We can further
use A to denote C

h + G
2 and b to denote the RHS in (2). So,

(2) is rewritten as Ax = b. When h is fixed, matrix A is a

constant at different time points, so that applying the direct

solver is preferred as only one expensive matrix factorization

is required.

B. Domain Decomposition Method

Domain decomposition method (DDM) refers to a series of

divide-and-conquer techniques based on graph partitioning for

solving linear equations [12]. In this work, we focus on the

DDM aided direct solver for symmetric linear equationsAx =
b, instead of the DDM based iterative solver. The symmetric

matrix A naturally corresponds to an undirected graph. As

shown in Fig. 2, the DDM can be realized with two kinds

of separators: edge separator and vertex separator. The edge

separator is an edge subset satisfying that the removal of it

makes the graph divided into m unconnected components of

similar size called subdomains. The vertex separator is defined

similarly. The separator nodes are also known as the interface.

Subdomain 1 Subdomain 2

(a) Edge separator

Subdomain 1

Subdomain 2

(b) Vertex separator

Fig. 2. An example of partitioning a graph into two subdomains with (a) an
edge separator or (b) a vertex separator.

The DDM with edge or vertex separator is widely recog-

nized as the graph partition problem. Suppose the graph is

partitioned into m subdomains. For any value of m, it can
be efficiently solved with algorithms like METIS [16]. When

m = 2, the DDM with vertex separator forms a dissection of

vertices. When it is recursively executed for each subdomain,

the nested dissection enables an effective reordering approach

for sparse direct solver [17].

With DDM, the Ax = b problem can be rewritten as the

equation with blocked sparse coefficient matrix:⎛
⎜⎜⎜⎝

D1 F 1

D2 F 2

. . .
.
.
.

Dm Fm

E1 E2 · · · Em S

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

x1

x2

.

.

.
xm

y

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

f1
f2
.
.
.

fm
g

⎞
⎟⎟⎟⎠ , (3)

where the internal nodes in each subdomain correspond to the

diagonal blocks D1,D2, · · · ,Dm, and S corresponds to the

separator nodes. Connection matrices Ei = F T
i , i = 1, · · · ,m

reflect the connections between the internal nodes and the

separator nodes.

To simplify notation, we rewrite (3) as(
D F
E S

)(
x
y

)
=

(
f
g

)
, (4)

whereD is a block diagonal matrix. By eliminating all internal

nodes, (4) becomes

(S −ED−1F )y = g −ED−1f . (5)

The dense matrix S−ED−1F is called the Schur complement

matrix. Finally, the internal unknowns can be solved with

Dixi = f − F iy. (6)

The opportunities for parallelism are solvingD−1F ,D−1f
and (6). As the number of subdomains m increases, the

size of the interface also increase and solving (5) becomes

a computational bottleneck. The above analysis also works

for the DDM with edge separator, where the size of Schur

complement is even larger. In [11], the DDM with edge

separator is employed to parallelly solve the preconditioner

matrix in the iterative solver based method. However, the

DDM based parallel direct solver for PG analysis is less

explored.
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III. METHODOLOGY

In order not to expose the internal structure of circuit, its

netlist should be parsed locally. Then, according to (2), the

data uploaded to the public cloud computing platform are the

matrices C,G,B, the source waveforms u(t) and the initial
state of x. The coefficient matrix C

h + G
2 is symmetric but not

necessarily positive definite. Therefore, an LU factorization

based on nested dissection is performed on it, followed by a

forward/backward substitution and an RHS updating at each

time step.

A. The Idea of Using Nested Dissection

Since DDM forms a large dense Schur complement with

many subdomains, we consider recursive partitioning of the

matrix inspired by nested dissection. In this way, the size of

the interface can be effectively reduced, which can improve the

parallel efficiency. Specifically, consider a matrix partitioned

into two subdomains and an interface. After reordering, its LU

factorization should satisfy(
D1 F 1

D2 F 2

E1 E2 S

)
=

(
L11

L22

L31 L32 L33

)(
U11 U13

U22 U23

U33

)
. (7)

Suppose the LU factorization ofD1,D2 is known, then the

unknowns in L and U factors can be solved by

L31 = E1U
−1
11 ,L32 = E2U

−1
22 , (8)

U13 = L−1
11 F 1,U23 = L−1

22 F 2, (9)

and a LU factorization of the Schur complement

L33U33 = S −L31U13 −L32U23. (10)

The factorization of D1,D2 can be done recursively in the

same manner, so that the coefficient matrix is reordered into

the form of nest dissection. The opportunities for distributed

parallelism are the factorization of D1,D2, the solution of

(8) and the solution of (9). The factorization of the Schur

complement is executed on a single process, but the cost is

acceptable because of its relatively small size.

For forward substitution, the equations to be solved is(
L11

L22

L31 L32 L33

)(
x1

x2

y

)
=

(
f1
f2
g

)
. (11)

The solution can be obtained by solving

L11x1 = f1,L22x2 = f2,L33y = g −L31x1 −L32x2.
(12)

Because L11,L22 conform the nested dissection form, the

solution of x1,x2 can be performed recursively in parallel.

The solution of x3 is performed on a single process. For

backward substitution, the solution can be obtained similarly.

B. Parallel Reordering and Factorization

To reorder the matrix into the nested dissection form, a

multi-level parallel algorithm is adopted. Suppose the maxi-

mum nested level is lm, then the total number of processes
is 2lm . For the top level lm, only process 0 partitions and
reorders the entire matrix. For the next level lm − 1, process
0 and process 2lm−1 partition each of the two subdomains

derived from the level lm in parallel. The matrix reordering

proceeds similarly for the remaining levels except level 0. For

level l, processes whose numbers divide 2l can perform matrix
partitioning in parallel. For level 0, a permutation vector is

computed for reducing fill-ins. Fig. 3 illustrates an example

of task assignment for 3-level matrix reordering, where the

number in each node indicates the number of the process

executing the task.

Level 20

Level 12 0

Level 0

3 2 1 0

Su
bdo
ma
in
1 Subdomain 2

Su
bd
om
ai
n
1 Subdom

ain
2 Su

bd
om
ai
n
1 Subdom

ain
2

Fig. 3. An example of task assignment for 3-level matrix reordering.

The above matrix reordering algorithm is summarized as

Algorithm 1. Given the maximum nested level lm, the algo-
rithm uses four vectors f, g, h, e of length lm + 1 to record
partition information of each level for subsequent factorization

and solving, where f, g, h denote the offsets of subdomain 1,
subdomain 2 and the interface in the entire matrix, respec-

tively, and e denotes the end of the submatrix. The superscript
(r) means the data resides in process r and the subscript l
means the data describes information of level l.

Algorithm 1 Parallelly reorder A with the nested dissection

approach

Input: Matrix A, nested level lm.

Output: Partition vectors f (r), g(r), h(r), e(r), reordered ma-
trix A.

1: A(0) ← A.
2: for each process r do
3: Initialize 4 integer vectors f (r), g(r), h(r), e(r), each of

length lm + 1 and filled with 0.
4: Initialize an empty local permutation vector p(r).

5: for l = lm to 1 do
6: if r divides 2l then
7: Compute the vertex separator of A(r) to obtain

vectors P1, P2, S, which stand for the indices
of the separated parts and the vertex separator,

respectively.

8: Prepend S to p(r).

9: g
(r)
l ← f

(r)
l + |P1|, h(r)

l ← g
(r)
l + |P2|.

10: e
(r)
l ← f

(r)
l + NROW(A(r)).

11: Send matrix A(r)(P1, P1) and integer f
(r)
l to

process r + 2l−1. � send subdomain 1 to left
child

12: A(r) ← A(r)(P2, P2), f
(r)
l−1 ← g

(r)
l .

13: Broadcast f
(r)
l , g

(r)
l , h

(r)
l , e

(r)
l to process r +

1, r + 2, · · · , r + 2l − 1.
14: else if r divides 2l−1 then
15: A(r), f

(r)
l−1 ← matrix and integer received from

process r − 2l−1. � receive subdomain 1 from
parent

16: Compute fill-in reducing permutation vector pf for

A(r).

17: Prepend pf to p(r).

18: e
(r)
0 ← f

(r)
0 + NROW(A(r)).

19: Gather p(r) to all processes and obtain p.
20: Reorder A with p.
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The reordered matrix corresponding to Fig. 3 is

A =

D(3) F
(3)
1 F

(3)
2

D(2) F
(2)
1 F

(2)
2

E
(3)
1 E

(2)
1 S

(2)
1

F
(2)
2,1

D(1) F
(1)
1 F

(1)
2

D(0) F
(0)
1 F

(0)
2

E
(1)
1 E

(0)
1 S

(0)
1

F
(0)
2,1

E
(3)
2 E

(2)
2

E
(2)
2,1 E

(1)
2 E

(0)
2

E
(0)
2,1 S

(0)
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

offset of P1 (f
(0)
1 )

offset of P2 (g
(0)
1 )

offset of S (h
(0)
1 )

end of submatrix (e
(0)
1 )

, (13)

where the meanings of f
(0)
1 , g

(0)
1 , h

(0)
1 , e

(0)
1 are also illustrated

in it. D(r) corresponds to the internal nodes in level 0.

E
(r)
1 and F

(r)
1 denote the connection matrices in level 1.

S
(r)
1 corresponds to the separator nodes in level 1, which is

owned by only half of the processes. For level 2 or higher,

the connection matrices are reinterpreted as block matrices

for subsequent factorizing. For example, E
(0)
2 , · · · ,E(3)

2 and

F
(0)
2 , · · · ,F (3)

2 in (13) denote the blocks corresponding to the

internal nodes, i.e., they have the same row or column ranges

as D(1), · · · ,D(4), respectively. E
(0)
2,1,E

(2)
2,1 and F

(0)
2,1,F

(2)
2,1 in

(13) denote the blocks corresponding to the separator nodes

in level 1, i.e., they have the same row or column ranges as

S
(0)
1 ,S

(2)
1 , respectively.

After reordered, the matrix is factorized level by level from

the bottom up. The L and U factors of (13) satisfy the form

of (14) and (15), respectively.

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎝
L

(3)
0

L
(2)
0

L
(3)
1 L

(2)
1 L̃

(2)
1

⎞
⎟⎠

⎛
⎜⎝
L

(1)
0

L
(0)
0

L
(1)
1 L

(0)
1 L̃

(0)
1

⎞
⎟⎠

L
(2)
2 L

(0)
2 L̃

(0)
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (14)

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎝
U

(3)
0 U

(3)
1

U
(2)
0 U

(2)
1

Ũ
(2)
1

⎞
⎟⎠ U

(2)
2

⎛
⎜⎝
U

(1)
0 U

(1)
1

U
(0)
0 U

(0)
1

Ũ
(0)
1

⎞
⎟⎠ L

(0)
2

Ũ
(0)
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (15)

The task assignment remains as shown in Fig. 3. For D(r),

process r in level 0 performs LU factorization on it and obtains

L
(r)
0 ,U

(r)
0 , so it can be done completely in parallel. Then, each

process solves for the connection matrices L
(r)
1 ,U

(r)
1 with (8)

and (9) in parallel. For level 1, each odd-numbered process r

sends L
(r)
1 U

(r)
1 to process r − 1. Then, each even-numbered

process r in level 1 solves for the separator nodes L̃
(r)

1 , Ũ
(r)

1

with (10) in parallel. For level 2 or higher, the connection

matrices are in the form of nested dissection, thus they are

likewise solved in the multi-level way. That is, the blocks

corresponding to the internal nodes are solved first, and then

the blocks corresponding to the separators are solved level by

level. At each level, several blocks are transferred between the

processes similarly and concatenated to form the connection

matrices residing in a single process. Solving for the separator

nodes in level 2 or higher is the same as level 1.

The above LU factorization algorithm is summarized as

Algorithm 2. Lines 2 and 3 describe the factorization of D(r)

in level 0. Lines 5 to 9 describe solving for the blocks of

L
(r)
l ,U

(r)
l corresponding to the internal nodes. Lines 10 to 20

describe solving for the blocks of L
(r)
l ,U

(r)
l corresponding to

the separator nodes. Lines 22 to 28 describe the factorization

of the separator nodes in level l. Note that lines 7 and 9 solve
lower triangular linear systems with multiple sparse RHS,

which can be done efficiently with Gilbert/Peierls’ algorithm

[18]. The parallelism comes from irrelevance of solving each

column of the RHS. For task scheduling, an atomic integer is

used to balance the workload of each thread.

Algorithm 2 Distributed parallel LU factorization A = LU

Input: Partition vectors f (r), g(r), h(r), e(r), matrix A, level
lm, .

Output: Factors L,U distributed on each process.

1: for each process r do
2: D(r) ← A(f

(r)
0 : e

(r)
0 , f

(r)
0 : e

(r)
0 ).

3: Perform LU factorization D(r) = L
(r)
0 U

(r)
0 .

4: for l = 1 to lm do
5: � solve for the internal nodes in L

(r)
l ,U

(r)
l �

6: E
(r)
l ← A(h

(r)
l : e

(r)
l , f

(r)
0 : e

(r)
0 ).

7: Solve L
(r)
l U

(r)
0 = E

(r)
l for L

(r)
l .

8: F
(r)
l ← A(f

(r)
0 : e

(r)
0 , h

(r)
l : e

(r)
l ).

9: Solve L
(r)
0 U

(r)
l = F

(r)
l for U

(r)
l .

10: � solve for the separator nodes in L
(r)
l ,U

(r)
l �

11: for k = 1 to l − 1 do
12: if r divides 2k then
13: M1,L

′,M2,U
′ ← matrices received

from process r + 2k−1.

14: E
(r)
l,k ← A(h

(r)
l : e

(r)
l , h

(r)
k : e

(r)
k ).

15: Solve S1Ũ
(r)

k = E
(r)
l,k −L

(r)
l U

(r)
k −M1

for S1.

16: F
(r)
l,k ← A(h

(r)
k : e

(r)
k , h

(r)
l : e

(r)
l ).

17: Solve L̃
(r)

k S2 = F
(r)
l,k −L

(r)
k U

(r)
l −M2

for S2.

18: L
(r)
l ← [L′ L(r)

l S1],U
(r)
l ←

⎡
⎣ U ′

U
(r)
l

S2

⎤
⎦.

19: else if r divides 2k−1 then
20: Send matrices L

(r)
l U

(r)
k ,L

(r)
l ,L

(r)
k U

(r)
l ,

U
(r)
l to process r − 2k−1.

21: � solve for L̃
(r)

l , Ũ
(r)

l �
22: if r divides 2l then
23: M ← matrix received from process r + 2l−1.

24: S
(r)
l ← A(h

(r)
l : e

(r)
l , h

(r)
l : e

(r)
l ).

25: S ← S
(r)
l −L

(r)
l U

(r)
l −M .

26: Perform LU factorization S = L̃
(r)

l Ũ
(r)

l .

27: else if r divides 2l−1 then
28: Send matrix L

(r)
l U

(r)
l to process r − 2l−1.

C. Parallel Forward/Backward Substitution

With the distributed factors L and U obtained by Algorithm

(2), a lower triangular system Ly = b and an upper triangular
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system Ux = y are solved per time point. The lower

triangular system corresponding to (14) is⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎝

L
(3)
0

L
(2)
0

L
(3)
1 L

(2)
1 L̃

(2)
1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

L
(1)
0

L
(0)
0

L
(1)
1 L

(0)
1 L̃

(0)
1

⎞
⎟⎟⎟⎠

L
(2)
2 L

(0)
2 L̃

(0)
2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

y
(3)
0

y
(2)
0

y
(2)
1

y
(1)
0

y
(0)
0

y
(0)
1

y
(0)
2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

b
(3)
0

b
(2)
0

b
(2)
1

b
(1)
0

b
(0)
0

b
(0)
1

b
(0)
2

⎞
⎟⎟⎟⎟⎠ .

(16)

A multi-level parallel algorithm based on the task assign-

ment illustrated in Fig. 3 is proposed for forward/backward

substitution of the triangular equations. The forward substi-

tution is bottom-up. Each process r in level 0 solves for

the segment y
(r)
0 with a single-process forward substitution

L
(r)
0 y

(r)
0 = b

(r)
0 in parallel. For the remaining levels, processes

whose numbers divide 2l in level l solve for the segment y
(r)
l

with

L̃
(r)

l y
(r)
l = b

(r)
l −L

(r)
l y

(r)
l −L

(r+2l−1)
l y

(r+2l−1)
l . (17)

The above algorithm is summarized as Algorithm 3. Line 8

is the implementation of (17). The algorithm for backward

substitution is very similar to the algorithm for forward

substitution. The only difference is that the backward sub-

stitution is top-down, so we omit it here for brevity. It can

be deduced that each process r depends on the RHS segment

b(f
(r−1)
0 : f

(r)
0 ) for forward/backward substitution and owns

the solution vector segment x(f
(r−1)
0 : f

(r)
0 ) afterwards.

Algorithm 3 Distributed parallel forward substitution Ly = b

Input: Partition vectors f (r), g(r), h(r), e(r), factors L dis-

tributed on each process, RHS vector b, nested level lm.

Output: Solution y distributed on each process.

1: for each process r do
2: � solve for the internal nodes in y �

3: Solve L
(r)
0 y(r)(f

(r)
0 : e

(r)
0 ) = b(r)(f

(r)
0 : e

(r)
0 ).

4: � solve for the separator nodes in y �
5: for l = 1 to lm do
6: if r divides 2l then
7: m,y′ ← vectors received from process r +

2l−1.

8: Solve L̃
(r)

l y(r)(h
(r)
l : e

(r)
l ) =

b(r)(h
(r)
l : e

(r)
l )−L

(r)
l y(r)(g

(r)
l : h

(r)
l )−m.

9: y(r)(f
(r)
l : g

(r)
l )← y′.

10: else if r divides 2l−1 then
11: y′ ← y(r)(f

(r)
l : g

(r)
l ).

12: Send vectors L
(r)
l y′,y′ to process r − 2l−1.

Finally, the RHS b is updated for the next time point, which
mainly consists of two time-consuming sparse matrix-vector

multiplications (SpMV) (Ch − G
2 )x(t) and B

u(t+h)+u(t)
2 . An

efficient scheme illustrated in Fig. 4 is designed for computing

a general SpMV v = Mu in parallel. Note that each process
r depends on the RHS segment b(r) and owns the solution
vector segment x(r). Therefore, M is split by rows and

each process r own the block M (r). The segments u(r) are

gathered to all processes, which derives the entire vector u
identical on all processes. The segment v(r) can be obtained

by M (r)u where the coefficient matrix M (r) contains much

fewer rows. This scheme uses an Allgatherv operation,
which brings a huge overhead when the number of processes

is large. To tackle this issue, shared memory is allocated for

the solution vector segments on the same computer node.

This avoids needless communication between processes on the

same computer node.

Process 1

Process 2

Process 3

⋮

Process � − 2

Process � − 1

Process �

Process 1

Process 2

Process 3

⋮

Process � − 2

Process � − 1

Process �

Identical on 

all processes

Allgatherv

�(�) � � �

× =

Process 1

Process 2

Process 3

⋮

Process � − 2

Process � − 1

Process �

� �

time � time � + 1

Fig. 4. An efficient scheme for parallel sparse matrix-vector multiplication.

To demonstrate the low communication volume of the

proposed forward/backward substitution algorithm and RHS

updating scheme, a theoretical analysis is given here. Suppose

the size of the coefficient matrix is N , the nested level is
lm, the number of computer nodes is n, and the bitwidth
of nonzeros is 8. For forward/backward substitution, several

segments of the solution are transferred between the processes

in level 1 to lm, which add up to the entire vector and yields
a communication volume of 8Nlm. For RHS updating, each
computer node owns 1/n of the solution vector and gather
them to all nodes, which yields a communication volume of

8N(n − 1). Therefore, the total communication volume at
each time point is 8N(lm + n − 1). For a typical running
configuration of 128 processes on 4 computer nodes, the

communication volume is only 10 times of the solution vector

data.

IV. EXPERIMENTAL RESULTS

To validate the performance of the proposed algorithm,

experiments are conducted on transient analysis of 4 middle-

scale PGs (ibmpg3t-ibmpg6t) from the IBMPG benchmarks

[14] and 5 large-scale PGs (thupg1t, thupg3t, thupg5t, thupg8t,

thupg10t) derived from the THUPG benchmarks [19]. For

all of the test cases from THUPG benchmarks, capacitors

and inductors with random value are added and periodic

trapezoidal pulse currents are used as the input sources. The

time step is 10ps and the total number of time points is 500.

We have implemented the proposed algorithm in C++ and

compared it with edge separator based DDM and NICSLU

[4], a high-performance parallel direct solver based on shared

memory architecture. The three implementations take matrix

files (C,G,B and the source waveforms u(t)) as input and
output the solutions at each time point. The initial state of x is
set to all 0. Process-level parallelism is realized by OpenMPI

[20] and thread-level parallel matrix operations are realized

by Eigen library [21] and Intel Math Kernel Library (MKL)

[22]. For graph partitioning and fill-in reducing, we adopt the

widely used METIS library [16]. For NICSLU, we replace

its built-in forward/backward substitution implementation with

Intel MKL routines because the former is much slower. All

experiments are conducted on a public cloud computing plat-

form, where the computer nodes are connected by Ethernet.

Each computer node has a 32-core Intel Xeon Platinum 8378A

CPU and 256GB RAM. In all the experiments, the wall-clock

runtime excluding loading matrices from hard disk is reported.
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For the DDM and the proposed algorithm, each process is

allocated two threads (i.e., two CPU cores).
The results on a single computer node are listed in Table

I. Because the scale of thupg8t and thupg10t is too large, all

three implementations fail to complete the simulation due to

out of memory. From the results we see that the proposed

algorithm achieves an average 2.06X speedup over NICSLU

and an average 1.43X speedup over the DDM.
TABLE I

RESULTS OF TRANSIENT POWER GRID ANALYSIS ON A SINGLE
COMPUTER NODE (TIME IN UNIT OF SECOND)

Case Nth
NICSLU DDM Proposed

Ts T Tf T NS Tf T NS Sp1 Sp2

ibmpg3t
N = 1.0E6
nnz=4.5E6

4

74.4

47.8 9.07 24.8 0 8.88 25.9 0 1.84 0.96
8 40.7 5.60 18.5 2325 6.08 16.3 561 2.49 1.13
16 32.2 5.43 23.1 6288 4.25 13.1 377 2.45 1.76
32 34.8 5.47 27.3 10860 3.83 10.6 261 3.30 2.58

ibmpg4t
N = 1.2E6
nnz=5.8E6

4

94.5

56.2 12.6 34.4 0 12.3 34.5 0 1.63 1.00
8 43.1 7.82 24.9 3334 9.13 25.0 723 1.72 0.99
16 37.3 6.51 27.2 6410 5.55 16.4 335 2.28 1.66
32 41.9 8.43 39.1 13112 4.79 14.6 353 2.86 2.67

ibmpg5t
N = 1.6E6
nnz=6.4E6

4

75.5

50.1 11.1 32.5 540 11.43 39.2 0 1.28 0.83
8 40.1 6.87 23.4 2469 6.87 23.6 330 1.70 0.99
16 36.0 5.78 23.7 4670 5.78 16.7 204 2.15 1.41
32 43.8 5.25 26.9 9388 5.25 13.9 294 3.15 1.93

ibmpg6t
N = 2.4E6
nnz=9.7E6

4

103

68.9 12.8 40.0 0 12.8 39.2 0 1.76 1.02
8 53.2 7.64 27.8 1864 7.64 30.4 266 1.75 0.91
16 48.3 5.23 23.7 4178 5.23 22.9 296 2.11 1.04
32 61.6 4.51 22.6 7309 4.51 20.6 167 2.99 1.10

thupg1t
N = 5.3E6
nnz=2.3E7

4

458

276 66 176 2953 92.5 193 1401 1.43 0.92
8 221 87.1 185 8792 66.0 142 1404 1.55 1.30
16 187 69.4 166 15064 44.6 95.4 661 1.96 1.74
32 200 51.6 170 25981 36.5 80.5 697 2.49 2.12

thupg3t
N = 1.2E7
nnz=5.4E7

4

1243

761 213 487 4646 323 610 2270 1.25 0.80
8 587 374 611 14110 316 493 2268 1.19 1.24
16 539 218 453 23615 168 300 994 1.80 1.51
32 599 188 496 41340 138 252 1034 2.38 1.97

thupg5t
N = 2.0E7
nnz=8.8E7

4

2193

1932 533 1013 6777 626 1061 3234 1.82 0.95
8 1203 511 915 17513 425 695 2445 1.73 1.32
16 1058 482 891 30558 327 539 1576 1.96 1.65
32 1211 522 1068 51244 263 445 1210 2.72 2.40

Average - - - - - - - - - 2.06 1.43

Nth denotes the total number of threads used. Ts, T, Tf denote the time
of 1-thread serial simulation, parallel simulation and matrix factorization,
respectively. NS denotes the size of interface in DDM. NS denotes the
average size of interfaces at level 1 in the proposed algorithm. Sp1, Sp2
denote the speedup ratios of the proposed algorithm over NICSLU and
DDM, respectively.

The results on multiple computer nodes (virtual machines)

are listed in Table II. Because NICSLU is based on shared

memory architecture, it is removed for this comparison. The

experiments with 64 and 128 threads are carried out on 2 and 4

computer nodes, respectively. Each computer node is allocated

16 processes. The DDM and the proposed algorithm both fail

to complete the simulation of thupg10t on 2 computer nodes

with 64 threads due to out of memory. From the results we

see that the proposed algorithm achieves a 2.84X speedup

averagely over the DDM, which is larger than the 1.43X

speedup on a single computer node and proves its better

parallel scalability.
From Table I and II we see that the size of Schur com-

plement is reduced with the nested dissection. The commu-

nication volume of forward/backward substitution and RHS

updating per time point is consistent with the theoretical anal-

ysis in Section III-C, which indicates the low communication

overhead of the proposed algorithm. And, the communication

volume of matrix reordering and factorization is only a small

fraction of the total communication volume.
In all the experiments, the results of the proposed algorithm

have no error (in double-precision floating-point arithmetic)

with respect to the standard solutions obtained by NICSLU,

which proves its accuracy. To further demonstrate the parallel

TABLE II
RESULTS OF TRANSIENT POWER GRID ANALYSIS ON MULTIPLE
COMPUTER NODES (TIME IN UNIT OF SECOND, COMMUNICATION

VOLUME IN UNIT OF GIGABYTE)

Case Nth
DDM Proposed

Tf T NS Tf T NS Vf Vtr Sp

ibmpg3t
64 6.67 36.0 17508 3.96 10.9 162 0.50 0.06 3.29
128 10.2 56.1 26646 4.16 11.5 126 0.93 0.07 4.88

ibmpg4t
64 8.15 45.5 19966 4.47 13.6 196 0.65 0.07 3.35
128 13.1 64.8 32215 5.01 14.0 172 1.19 0.09 4.63

ibmpg5t
64 5.57 30.8 14865 5.57 13.9 159 0.76 0.09 2.22
128 10.5 51.3 24295 5.84 14.4 138 1.11 0.12 3.57

ibmpg6t
64 5.73 30.4 14441 5.73 18.2 163 0.77 0.13 1.67
128 9.98 48.4 22794 6.15 18.9 111 1.50 0.18 2.56

thupg1t
64 40.2 175 38348 31.8 75.0 324 3.14 0.31 2.33
128 47.8 212 58838 33.2 78.3 315 5.55 0.38 2.71

thupg3t
64 142 472 60959 116 224 516 7.78 0.68 2.10
128 197 541 91613 108 208 489 13.5 0.88 2.60

thupg5t
64 291 863 77062 224 391 763 12.9 1.13 2.21
128 371 987 117742 209 368 594 22.3 1.47 2.68

thupg8t
N = 4.1E7
nnz=1.8E8

64
128

859
801

2714
2875

106472
142819

806
750

1175
1089

1049
874

27.4
47.1

2.33
2.97

2.31
2.64

thupg10t
N = 6.3E7
nnz=2.7E8

128 1239 4375 181934 1058 1695 1034 73.0 4.57 2.58

Average - - - - - - - - - 2.84

The notations of Nth, Tf , T,NS , NS and Sp are the same as Table I. Vf

denotes the communication volume of matrix reordering and factorization
and Vtr denotes the average communication volume of forward/backward
substitution and RHS updating per time point.

scalability of the proposed algorithm, we plot the speedup

ratios of the three implementations with different number

of threads over 1-thread serial simulation on thupg3t and

thupg5t in Fig. 5. From it we see that the speedup ratios

of NICSLU and DDM are basically unchanged with the

increase of the number of threads, and that of DDM even

decreases with 128 threads. In contrast, the speedup ratio of

the proposed algorithm increases with the number of threads

and achieves up to about 6.0X with 128 threads. The reason

is that the proposed algorithm effectively reduces the size of

Schur complement and has a low communication volume.
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Fig. 5. The speedup ratios of three implementations with different number of
threads over 1-thread serial simulation on thupg3t and thupg5t.

Finally, we do a rough cost analysis. In the cloud computing

platform, the rental price of the virtual machine we use is

1.62$/h. For the transient simulation of thupg8t, using 4 com-

puter nodes costs extra (1089×4-1175×2)×1.62/3600=0.90$
for virtual machine rent than using 2 computer nodes. On

the other hand, this reduces 1175-1089=86s of the simulation

time which means saving 86s time of the IC designer. This

is beneficial as it corresponds to saving 0.96$ providing that

the human cost of IC designer is about 40$/h. For larger

cases, using the multiple nodes in cloud computing would

be the required choice for accurate transient analysis due to

its excessive memory cost.
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V. CONCLUSIONS

In this work, we propose to leverage the public cloud

computing for transient PG analysis while ensuring security.

A multi-level distributed parallel LU factorization and for-

ward/backward substitution approach based on nested dissec-

tion with low communication overhead is then proposed to

guarantee accuracy and robustness. And, an efficient scheme

is designed for RHS updating of the linear system to fur-

ther exploit parallelism. These make the proposed algorithm

suitable to be deployed on public cloud computing platforms

without InfiniBand. Experiments on transient analysis of 9

practical PGs show that the proposed algorithm achieves an

average 2.06X speedup over NICSLU on a single computer

node and an average 2.84X speedup over DDM on multiple

computer nodes. Moreover, the proposed algorithm exhibits

good scalability, with up to 6.0X speedup over the serial

simulation on the large-scale power grids.
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