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 Background

 Principal component analysis (PCA)

 An open problem: calculate 

PCA of large-size and high-

dimensional dense data in 

a limited-memory computer

 A single-pass algorithm: particularly useful / efficient, for data stored in slow 

memory or streaming data 

 There are single-pass PCA algorithms for SPSD matrix or low-dimensional

data, but the study for the algorithm for more general matrices is not 

sufficient.
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 Randomized matrix algorithm

 Has advantages over traditional algorithms (like SVD) 

(faster runtime, better parallelism, pass-efficient; suitable for large data)

 randQB based on random projection [1]

 Applied to computing PCA [2]

 Useful for distributed PCA; excellent performance on parallel computers

 A blocked version for rank-revealing matrix factorization [3]
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𝐀 ≈ 𝐐𝐁

𝐐 captures the dominant actions of 𝐀
Small sketch 𝐁 facilitates computation

[1] N Halko, P-G Martinsson, J A Tropp, “Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix 

Decompositions,” SIAM review, 2011

[2] N Halko, et al., “An algorithm for the principal component analysis of large data sets,” SISC, 2011

[3] P-G Martinsson and S. Voronin, “A randomized blocked algorithm for efficiently computing rank-revealing factorizations of matrices,” 

SISC, 2016
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 Our contribution

 We reconstruct the blocked randQB algorithm [3] to obtain a single-pass 

PCA algorithm

 Single-pass
 involves only one pass over specified large high-dimensional data

 Efficiency
 O(mnk) time complexity and O(k(m+n)) space complexity for computing k-PCA, 

and well adapts to parallel computing

 Accuracy
 same theoretic error bounds as the randomized blocked algorithm; much less 

error than its counterpart

[3] P-G Martinsson and S. Voronin, “A randomized blocked algorithm for efficiently computing rank-revealing factorizations of matrices,” 

SISC, 2016
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 Truncated singular value decomposition (SVD)

 𝐀𝑘: rank-k approximation of 𝐀 (optimal in 𝑙2-norm and F-norm)

 SVD and PCA are closely related

 Suppose each row of matrix 𝐀 is an observed data

 PCA is realized through truncated SVD

 The leading right singular vectors (𝐯𝑖) 
of 𝐀 are the principal components. 

Particularly, 𝐯1 is the first principal component

𝐀 = 𝐔𝚺𝐕T 𝐀 ≈ 𝐀𝑘 = 𝐔𝑘𝚺𝑘𝐕𝑘
T
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 Basic randQB scheme

 Produce near-optimal low-rank appr.

 Accuracy can be improved with 

power iteration scheme

 Well suit to parallel computing

 Result has small random variance

 Better than the column-pivoted QR

 A single-pass variant 

 Reduce to 1 visit of 𝐀

 More approximation is included

𝐀 is visited twice

𝐀 ≈ 𝐐𝐐T𝐀 𝐐 𝐐T=𝐐𝐁 𝐐T
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 Mathematically equivalent to the basic 

randQB algorithm

(Gram-Schmidt procedure)

 Iterative blocked procedure for 

monitoring approximation error while 

keeping high efficiency

 Mainly aimed at the problem of 

adaptive rank determination

The blocked randQB algorithm [3]

Convert it to a pass-efficient procedure
(multiplications with 𝐀moved out of loop)

Theorem 1: The 𝐐 and 𝐁 obtained with Alg. 3 

satisfy: 𝐐 is orthonormal and 𝐁 = 𝐐T𝐀



The Single-Pass PCA Algorithm

Wenjian Yu / Tsinghua University, China 818-Nov-17

Algorithm 3
Equivalent to the randQB alg.

Steps 3 and 4 can be executed 

with only one pass over 𝐀

 Add re-orthogonalization steps to 

alleviate round-off error

 Memory cost is about 

(𝑚+ 2𝑛)𝑙 floating numbers

 Time complexity (flop count) close 

to the basic randQB (Alg.1)

 With the power scheme, accuracy 

can be largely improved at the cost 

of one more visit of 𝐀
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 Five types of test matrices 
 Specified singular value spectrum with various decaying trend

 For type 1 and 2 matrices, the singular value decays 

asymptotically slow

 Accuracy of computed singular value
 A 3000x3000 matrix for each type

Type 2 matrix Type 4 matrix Type 1 matrix

92X smaller
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 Accuracy of the principal components

 Test on type 1 matrix (with slowly-decayed 𝜎𝑖𝑖 ’s); smaller error for other matrices

 For 𝐯1, only 2.8x10-5 difference in 𝑙∞-norm

 For the first 10 principal components, the correlation coefficients are calculated: 

0.9993 ~1 even for the 10th component

 Runtime comparison (200,000x200,000 matrices)

 Each matrix stored as a 149 GB hard-disk file

 Alg. 4 is 2X faster than Alg. 1; more accurate than Alg. 2
Experiment on a computer 
with two 12-core Xeon 
CPUs and 32GB memory

Test on a 104 x104 matrix:
Our Alg. 4 is over 300X 
faster than svd/svds
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 A test of real data

 Face images from the FERET [4]

 As in [2], constuct a 102,042x392,216 matrix (150GB file on hard disk)

 Compute 50 eigenfaces on the machine with 24 CPU cores

 Runtime of our algorithm: ~ 24 minutes

Four eigenfaces

[2] N Halko, et al., “An algorithm for the principal component analysis of large data sets,” SISC, 2011

[4] P J Phillips, et al., “The FERET evaluation methodology for face-recognition algorithms,” T-PAMI, 2000

Computed singular 
spectrum well match 
that shown in [2]



• A single-pass PCA algorithm for large and high-dimensional data

• Only one pass over data matrix, providing that the matrix is stored in a 
row-major format

• Comparable accuracy to existing randomized algorithm; much less 
error than an existing single-pass algorithm

• Experiments demonstrate the algorithm’s effectiveness for large-size 
high-dimensional data (~150 GB disk file), in terms of runtime and 
memory usage

Conclusion
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The codes of the proposed algorithm and experimental data are shared on:  
https://github.com/WenjianYu/rSVD-single-pass

https://github.com/WenjianYu/rSVD-single-pass
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