

Single-Pass PCA of Large High-Dimensional Data

Wenjian Yu¹, Yu Gu¹, Jian Li¹, Shenghua Liu², Yaohang Li³

¹Department of Computer Science and Technology, *Tsinghua University*, Beijing 100084, China

²Institute of Computing Technology, *Chinese Academy of Science*

³Department of Computer Science, *Old Dominion University*, USA yu-wj@tsinghua.edu.cn

Outline

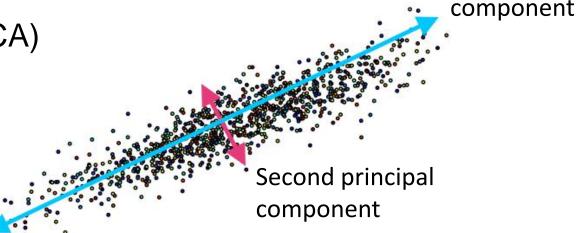
- Introduction
- Technical Background
- The Single-Pass Algorithm for PCA
- Experimental Results
- Conclusion

Introduction

Background

Principal component analysis (PCA)

 An open problem: calculate
 PCA of large-size and highdimensional dense data in a limited-memory computer



- A single-pass algorithm: particularly useful / efficient, for data stored in slow memory or streaming data
- There are single-pass PCA algorithms for SPSD matrix or low-dimensional data, but the study for the algorithm for more general matrices is not sufficient.

First principal

Introduction

- Randomized matrix algorithm
 - Has advantages over traditional algorithms (like SVD)
 (faster runtime, better parallelism, pass-efficient; suitable for large data)
 - randQB based on random projection [1]

$$A \approx QB$$

Q captures the dominant actions of **A** Small sketch **B** facilitates computation

- Useful for distributed PCA; excellent performance on parallel computers
- □ A blocked version for rank-revealing matrix factorization [3]

^[1] **N Halko**, **P-G Martinsson**, **J A Tropp**, "Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix Decompositions," *SIAM review*, 2011

^[2] N Halko, et al., "An algorithm for the principal component analysis of large data sets," SISC, 2011

^[3] **P-G Martinsson** and **S. Voronin**, "A randomized blocked algorithm for efficiently computing rank-revealing factorizations of matrices," **SISC**, 2016

Introduction

- Our contribution
 - □ We reconstruct the blocked randQB algorithm [3] to obtain a single-pass PCA algorithm
 - □ Single-pass
 - involves only one pass over specified large high-dimensional data
 - Efficiency
 - O(mnk) time complexity and O(k(m+n)) space complexity for computing k-PCA, and well adapts to parallel computing
 - Accuracy
 - same theoretic error bounds as the randomized blocked algorithm; much less error than its counterpart

[3] **P-G Martinsson** and **S. Voronin**, "A randomized blocked algorithm for efficiently computing rank-revealing factorizations of matrices," **SISC**, 2016

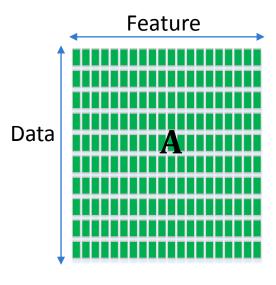
Technical Background – SVD and PCA

Truncated singular value decomposition (SVD)

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathrm{T}}$$

$$\mathbf{A} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\mathrm{T}} \qquad \Longrightarrow \qquad \mathbf{A} \approx \mathbf{A}_{k} = \mathbf{U}_{k}\mathbf{\Sigma}_{k}\mathbf{V}_{k}^{\mathrm{T}}$$

- \square \mathbf{A}_k : rank-k approximation of \mathbf{A} (optimal in l_2 -norm and \mathbf{F} -norm)
- SVD and PCA are closely related
 - Suppose each row of matrix A is an observed data
 - PCA is realized through truncated SVD
 - \square The leading right singular vectors (\mathbf{v}_i) of A are the principal components. Particularly, \mathbf{v}_1 is the first principal component



Technical Background – Randomized SVD

- Basic randQB scheme
 - □ Produce near-optimal low-rank appr. 2: $\Omega = \operatorname{randn}(n, l)$;
 - Accuracy can be improved with power iteration scheme
 - Well suit to parallel computing
 - Result has small random variance
 - Better than the column-pivoted QR
- A single-pass variant
 - □ Reduce to 1 visit of A

$$\mathbf{A} \approx \mathbf{Q}\mathbf{Q}^{\mathrm{T}}\mathbf{A}\widetilde{\mathbf{Q}}\widetilde{\mathbf{Q}}^{\mathrm{T}} = \mathbf{Q}\mathbf{B}\widetilde{\mathbf{Q}}^{\mathrm{T}}$$

More approximation is included

Algorithm 1 Basic randomized scheme for truncated SVD

Require: $\mathbf{A} \in \mathbb{R}^{m \times n}$, rank k, over-sampling parameter s.

- 1: l = k + s;
- 3: $\mathbf{Q} = \operatorname{orth}(\mathbf{A}\Omega)$; A is visited twice 4: $\mathbf{B} = \mathbf{Q}^{\mathsf{T}} \mathbf{A}$;
- 5: $[\tilde{\mathbf{U}}, \mathbf{S}, \mathbf{V}] = \text{svd}(\mathbf{B});$
- 6: $\mathbf{U} = \mathbf{Q}\mathbf{U}$;
- 7: $\mathbf{U} = \mathbf{U}(:, 1:k); \mathbf{V} = \mathbf{V}(:, 1:k); \mathbf{S} = \mathbf{S}(1:k, 1:k);$
- 8: **return U**, **S**, **V**.

Algorithm 2 An existing single-pass algorithm

Require: $\mathbf{A} \in \mathbb{R}^{m \times n}$, rank parameter k.

- 1: Generate random $n \times k$ matrix Ω and $m \times k$ matrix Ω ;
- 2: Compute $\mathbf{Y} = \mathbf{A}\mathbf{\Omega}$ and $\tilde{\mathbf{Y}} = \mathbf{A}^{\top}\tilde{\mathbf{\Omega}}$ in a single pass over \mathbf{A} :
- 3: $\mathbf{Q} = \operatorname{orth}(\mathbf{Y}); \tilde{\mathbf{Q}} = \operatorname{orth}(\tilde{\mathbf{Y}});$
- 4: Solve linear equation $\tilde{\mathbf{\Omega}}^{\top}\mathbf{Q}\mathbf{B} = \tilde{\mathbf{Y}}^{\top}\tilde{\mathbf{Q}}$ for \mathbf{B} ;
- 5: $[\tilde{\mathbf{U}}, \mathbf{S}, \tilde{\mathbf{V}}] = \text{svd}(\mathbf{B});$
- 6: $\mathbf{U} = \mathbf{Q}\mathbf{U}; \mathbf{V} = \mathbf{Q}\mathbf{V};$
- 7: **return U**, **S**, **V**.

The Single-Pass PCA Algorithm

The blocked randQB algorithm [3]

function $[\mathbf{Q}, \mathbf{B}] = \text{randQBLb}(\mathbf{A}, \varepsilon, b)$ (1) for $i = 1, 2, 3, \cdots$ (2) $\Omega_i = \text{randn}(n, b);$ (3) $\mathbf{Q}_i = \text{orth}(\mathbf{A}\Omega_i);$ (4) $\mathbf{Q}_i = \text{orth}(\mathbf{Q}_i - \sum_{j=1}^{i-1} \mathbf{Q}_j \mathbf{Q}_j^{\mathsf{T}} \mathbf{Q}_i);$ (5) $\mathbf{B}_i = \mathbf{Q}_i^{\mathsf{T}} \mathbf{A};$ (6) $\mathbf{A} = \mathbf{A} - \mathbf{Q}_i \mathbf{B}_i;$ (7) if $\|\mathbf{A}\| < \varepsilon$ then stop (8) end for (9) $\mathbf{Q} = [\mathbf{Q}_1 \cdots \mathbf{Q}_i]; \ \mathbf{B} = [\mathbf{B}_1^{\mathsf{T}} \cdots \mathbf{B}_i^{\mathsf{T}}]^{\mathsf{T}}.$

- Mathematically equivalent to the basic randQB algorithm (Gram-Schmidt procedure)
- Iterative blocked procedure for monitoring approximation error while keeping high efficiency
- Mainly aimed at the problem of adaptive rank determination

Convert it to a pass-efficient procedure (multiplications with A moved out of loop)

Theorem 1: The **Q** and **B** obtained with Alg. 3 satisfy: **Q** is orthonormal and $\mathbf{B} = \mathbf{Q}^{T}\mathbf{A}$

Algorithm 3 A pass-efficient blocked algorithm

```
Require: \mathbf{A} \in \mathbb{R}^{m \times n}, rank parameter k, block size b.

1: \mathbf{Q} = [\ ]; \mathbf{B} = [\ ];

2: \Omega = \operatorname{randn}(n, k);

3: \mathbf{G} = \mathbf{A}\mathbf{\Omega};

5: \mathbf{for}\ i = 1, 2, \cdots, k/b\ \mathbf{do}

6: \Omega_i = \mathbf{\Omega}(:, (i-1)b+1:ib);

7: \mathbf{Y}_i = \mathbf{G}(:, (i-1)b+1:ib) - \mathbf{Q}(\mathbf{B}\mathbf{\Omega}_i);

8: [\mathbf{Q}_i, \mathbf{R}_i] = \operatorname{qr}(\mathbf{Y}_i);

9: \mathbf{B}_i = \mathbf{R}_i^{-\top}(\mathbf{H}(:, (i-1)b+1:ib)^{\top} - \mathbf{\Omega}_i^{\top}\mathbf{B}^{\top}\mathbf{B});

10: \mathbf{Q} = [\mathbf{Q}, \mathbf{Q}_i]; \mathbf{B} = [\mathbf{B}^{\top}, \mathbf{B}_i^{\top}]^{\top};

11: \mathbf{end}\ \mathbf{for}
```

The Single-Pass PCA Algorithm

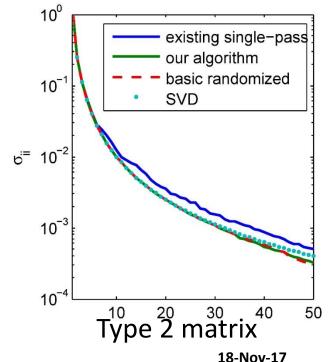
- Algorithm 3
 - Equivalent to the randQB alg.
 - □ Steps 3 and 4 can be executed with only one pass over **A**
- Add re-orthogonalization steps to alleviate round-off error
- Memory cost is about (m+2n)l floating numbers
- Time complexity (flop count) close to the basic randQB (Alg.1)
- With the power scheme, accuracy can be largely improved at the cost of one more visit of A

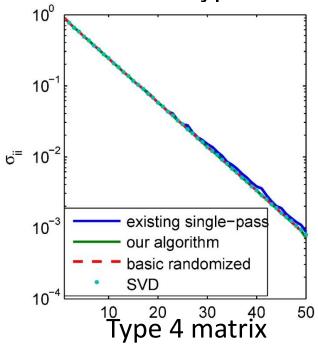
```
Algorithm 4 A single-pass algorithm for computing PCA
Require: \mathbf{A} \in \mathbb{R}^{m \times n}, rank parameter k, block size b.
  1: \mathbf{Q} = [\ ]; \ \mathbf{B} = [\ ];
 2: Choose l = tb, which is slightly larger than k;
  3: \Omega = \text{randn}(n, l); G = []; Set H to an n \times l zero matrix:
 4: while A is not completely read through do
           Read next few rows of A into RAM, denoted by a;
          \mathbf{g} = \mathbf{a}\Omega; \ \mathbf{G} = [\mathbf{G}; \ \mathbf{g}];
          \mathbf{H} = \mathbf{H} + \mathbf{a}^{\mathsf{T}} \mathbf{g};
 8: end while
 9: for i = 1, 2, \dots, t do
          \Omega_i = \Omega(:, (i-1)b+1:ib);
         \mathbf{Y}_i = \mathbf{G}(:, (i-1)b + 1:ib) - \mathbf{Q}(\mathbf{B}\Omega_i);
           [\mathbf{Q}_i, \ \mathbf{R}_i] = qr(\mathbf{Y}_i);
        [\mathbf{Q}_i, \ \tilde{\mathbf{R}}_i] = \operatorname{qr}(\mathbf{Q}_i - \mathbf{Q}(\mathbf{Q}^{\top}\mathbf{Q}_i));
14: \mathbf{R}_i = \mathbf{R}_i \mathbf{R}_i;
     \mathbf{B}_i = \mathbf{R}_i^{-\top} (\mathbf{H}(:, (i-1)b+1:ib)^{\top} - \mathbf{Y}_i^{\top} \mathbf{Q} \mathbf{B} - \mathbf{\Omega}_i^{\top} \mathbf{B}^{\top} \mathbf{B});
           \mathbf{Q} = [\mathbf{Q}, \ \mathbf{Q}_i]; \ \mathbf{B} = [\mathbf{B}^\top, \ \mathbf{B}_i^\top]^\top;
17: end for
18: [\mathbf{U}, \mathbf{S}, \mathbf{V}] = \text{svd}(\mathbf{B});
19: U = QU;
20: \mathbf{U} = \mathbf{U}(:, 1:k); \mathbf{V} = \mathbf{V}(:, 1:k); \mathbf{S} = \mathbf{S}(1:k, 1:k);
21: return U, S, V.
```

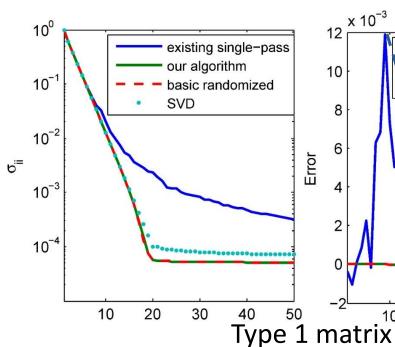
Experimental Results

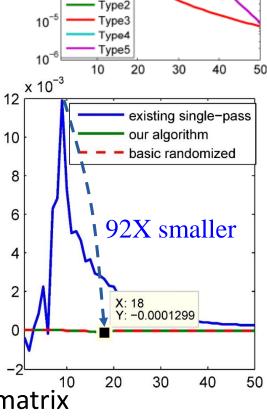
- Five types of test matrices
 - Specified singular value spectrum with various decaying trend
 - For type 1 and 2 matrices, the singular value decays asymptotically slow
- Accuracy of computed singular value

□ A 3000x3000 matrix for each type









Type'

Wenjian Yu / Tsinghua University, China

10

10⁻²

ย่≡ 10⁻³

Experimental Results

- Accuracy of the principal components
 - \square Test on type 1 matrix (with *slowly-decayed* σ_{ii} 's); smaller error for other matrices
 - \square For \mathbf{v}_1 , only 2.8x10⁻⁵ difference in l_{∞} -norm
 - □ For the first 10 principal components, the correlation coefficients are calculated:
 0.9993 ~1 even for the 10th component
- Runtime comparison (200,000x200,000 matrices)
 - Each matrix stored as a 149 GB hard-disk file
 - □ Alg. 4 is 2X faster than Alg. 1; more accurate than Alg. 2

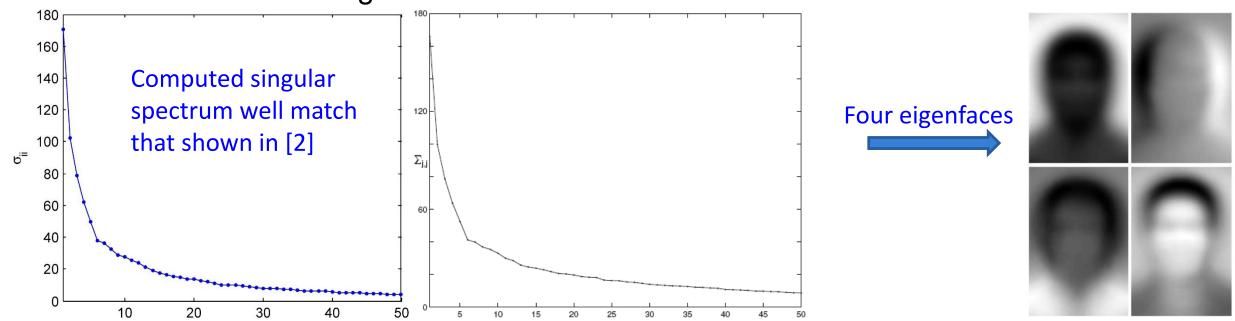
Experiment on a computer
with two 12-core Xeon
CPUs and 32GB memory

Matrix k	Algorithm 1		Algorithm 2		Algorithm 4	
	$t_{read}t_{PCA}$	max_err	$t_{read}t_{PCA}$	max_err	$t_{read}t_{PCA}$ r	nax_err
Type1 16	2390 2607	1.7e-3	1186 1404	2.2e-2	1206 1426	1.8e-3
Type1 20	2420 2616	9e-4	1198 1380	1.6e-1	1217 1413	1.2e-3
					1216 1414	
Type2 12	2553 2764	5e-4	1267 1477	3e-2	1276 1490	5e-4
Type3 24	2587 2777	1e-5	1312 1500	1.7e-3	1310 1502	2e-5

Test on a 10⁴ x10⁴ matrix: Our Alg. 4 is over 300X faster than svd/svds

Experimental Results

- A test of real data
 - □ Face images from the FERET [4]
 - □ As in [2], constuct a 102,042x392,216 matrix (150GB file on hard disk)
 - Compute 50 eigenfaces on the machine with 24 CPU cores
 - □ Runtime of our algorithm: ~ 24 minutes



[2] N Halko, et al., "An algorithm for the principal component analysis of large data sets," SISC, 2011

[4] P J Phillips, et al., "The FERET evaluation methodology for face-recognition algorithms," *T-PAMI*, 2000

Conclusion

- A single-pass PCA algorithm for large and high-dimensional data
- Only one pass over data matrix, providing that the matrix is stored in a row-major format
- Comparable accuracy to existing randomized algorithm; much less error than an existing single-pass algorithm
- Experiments demonstrate the algorithm's effectiveness for large-size high-dimensional data (~150 GB disk file), in terms of runtime and memory usage

The codes of the proposed algorithm and experimental data are shared on: https://github.com/WenjianYu/rSVD-single-pass

Thank You!

