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Introduction

First principal
= Background i cg:npp;necrﬁa

o Principal component analysis (PCA)

o An open problem: calculate
PCA of large-size and high- RN~ -
dimensional dense data in A

limited ¢ * Second principal
a limited-memory computer component

o A single-pass algorithm: particularly useful / efficient, for data stored in slow
memory or streaming data

o There are single-pass PCA algorithms for SPSD matrix or low-dimensional
data, but the study for the algorithm for more general matrices is not
sufficient.
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Introduction

= Randomized matrix algorithm

o Has advantages over traditional algorithms (like SVD)
(faster runtime, better parallelism, pass-efficient; suitable for large data)

o randQB based on random projection [l
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Q captures the dominant actions of A H::H::iﬁi::::“:: X -
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Small sketch B facilitates computation T T
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o Applied to computing PCA 2] T 11

o Useful for distributed PCA; excellent performance on parallel computers
o A blocked version for rank-revealing matrix factorization [3]

[1] N Halko, P-G Martinsson, J A Tropp, “Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix
Decompositions,” SIAM review, 2011
[2] N Halko, et al., “An algorithm for the principal component analysis of large data sets,” SISC, 2011

[3] P-G Martinsson and S. Voronin, “A randomized blocked algorithm for efficiently computing rank-revealing factorizations of matrices,”

SISC, 2016
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Introduction

s Our contribution

o We reconstruct the blocked randQB algorithm ¥l to obtain a single-pass
PCA algorithm
o Single-pass
= Involves only one pass over specified large high-dimensional data
o Efficiency
= O(mnk) time complexity and O(k(m+n)) space complexity for computing k-PCA,
and well adapts to parallel computing

o Accuracy
= Same theoretic error bounds as the randomized blocked algorithm; much less
error than its counterpart

[3] P-G Martinsson and S. Voronin, “A randomized blocked algorithm for efficiently computing rank-revealing factorizations of matrices,”
SISC, 2016
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Technical Background — SVD and PCA

= Truncated singular value decomposition (SVD)
A=UzVT mm)p A=xA,=UZ V!
o Ay rank-k approximation of A (optimal in [,-norm and F-norm)

s SVD and PCA are closely related

) Feature .

0 Suppose each row of matrix A is an observed data + NN RN RRNARNARENY
o PCA is realized through truncated SVD H:H:::::::“H:“:
L . ERNRNRNRNRRRNANRNANE

o The leading right singular vectors (v;) ST T
of A are the principal components. HHHH:HHHH“:
Particularly, v, is the first principal component I R

I T
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Technical Background — Randomized SVD

Algorithm 1 Basic randomized scheme for truncated SVD

u BaSiC I‘andQB SCheme Require: A € R™*", rank k, over-sampling parameter s.

. 1: [ =k + s;
o Produce near-optimal low-rank appr. >: o = randn(n. 0):
o Accuracy can be improved with Voo oA b Al visited twice
power iteration scheme 5: [0.8.V] = svd(B): ¢
! : 6: U= QU:;
o Well suit to parallel computing U =UC k) V=V(1:h):S=S1:hl:k):
8: return U, S, V. | |

o Result has small random variance
o Better than the column-pivoted QR

Algorithm 2 An existing single-pass algorithm

s A Single—paSS variant Require: A € R™*" rank parameter k.
.. 1: Generate random n x Ak matrix €2 and /m x A matrix Q
0 Reduce to 1 visit of A 2: Compute Y = A and Y = AT in a single pass over
[ T ~~T— ~T Ae -
A=QQ AQQ ' =QBQ 3 Q = orth(Y): Q = orth(Y);

4: Solve linear equation QTQB YTQ for B;
5: [U S, V] = svd(B)

6: U= QU Vv QV

7: return U, S, V.
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The Single-Pass PCA Algorithm

The blocked randQB algorithm (3!

function [Q,B| = rand0B. b (A, ¢,b)
fordi =1,2.3, i+ . . .
2 = randinim, By Convert it to a pass-efficient procedure

@) Qu=oriASky multiplications with A moved out of loo
4) Q; =orth(Q; — ij;ﬁ Q,Q, Q) ( P p)

& AR B, Theorem 1: The Q and B obtained with Alg. 3
(8 el & Hien P satisfy: Q is orthonormal and B = QTA

- s o Q] — B ... BNT
®Q = [Q Qi B =[B, Byl Algorithm 3 A pass-efficient blocked algorithm
= Mathematically equivalent to the basic Require: A € R ™", rank parameter k, block size b.

: Q=[] B=[]
randQB algorlthm 2: () = Qndn(n, i[b}),
(Gram-Schmidt procedure) (3. G =AQ;
iterative blocked procedure f v Fl= 4761
= |terative blocked procedure for S fori—1.9- k/bdo
monitoring approximation error while 6:  Q;=Q(, (i —1)b+1:ib);
: : " 7. Y, =G(:, (i—1)b+1:ib) — Q(BQ,):
kegplng .hlgh efficiency & [Q R = qu(Y,):
= Mainly aimed at the problem of o0 B, =R;"(H(:, i—1b+1:ib)T —QBTB);
adaptive rank determination 0: Q=1Q Ql:B=[BT. BT
ena ior
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The Single-Pass PCA Algorithm

Algorithm 4 A single-pass algorithm for computing PCA

= Algorithm 3
o Equivalent to the randQB alg. I

o Steps 3 and 4 can be executed :
with only one pass over A

’%

Require: A E R™*" rank parameter k. block size b.

Q=[] B=[];
Choose [ = tb, which is slightly larger than A;

Q = randn(n,!); G = []: Set H to an n x [ zero matrix:
1“while A is not completely read through do
Read next few rows of A into RAM denoted by a;

= Add re-orthogonalization steps to '3. g =af G=I[G: gl
. 7" H=H+a'g;
alleviate round-off error 8L.end while
- 9: for:=1.2,---.td
= Memory cost is about =00 ()bt i),
(m+ 2n)l floating numbers [‘8 :R ](:: (i (—Yl))b+1 Hib) — Q(BE2,):
. . [ r [
= Time complexity (flop count) close . Qi Ry :3 (Qi — Q(QTQ))):
' . ‘: R; = ﬁéRu
to _the basic randQB (Alg.1) 5. LB CROTH(, (m1)br i)Y T QBQTETE)
= With the power scheme, accuracy l6: Q=[Q.QJ: B=[BT, B
can be largely improved at the cost e 108 Ve svd(B)
of one more visit of A 19: U =QU:
200 U=U(,1: k) V=V, 1:k):;S=S(1:k1:k);
21: return U, S. V.,
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Experimental Results

= Five types of test matrices
o Specified singular value spectrum with various decaying trend -
o For type 1 and 2 matrices, the singular value decays & 10°
asymptotically slow 0 \
. — lype
= Accuracy of computed singular value 10° ——Toees
o A 3000x3000 matrix for each type =
10° : : : . 10° - - 10° _ ' _ _ X107
existing single—pass existing single-pass existing single-pass
our algorithm our algorithm 10 \ our algorithm
107"k = = = basic randomized |} 1071 107" = = = basic randomized \- = = basic randomized
SVD SVD 8 )
107 5 ‘\ .
10} S 1 92X smaller
107 Y4 : ‘
107 existing single-pasg 2 Viem
our algorithm 107 } Y:-0.0001299
= = = basic randomized O\I ' u
" | " __SVD . ' , , _ , ” . _ . .
8 10 20 30 , 40 50 = 10 20 30 40 50 10 20 =0 <40 20 1020 30 40 50
Type 2 matrix Type 4 matrix Type 1 matrix
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Experimental Results

= Accuracy of the principal components
o Test on type 1 matrix (with slowly-decayed og;;'s); smaller error for other matrices
o For vy, only 2.8x10-° difference in [,-norm
o For the first 10 principal components, the correlation coefficients are calculated:
0.9993 ~1 even for the 10t component
= Runtime comparison (200,000x200,000 matrices)

o Each matrix stored as a 149 GB hard-disk file Experiment on a computer
o Alg. 4 is 2X faster than Alg. 1; more accurate than Alg. 2 \,ith two 12-core Xeon

Algorithm 1 Algorithm 2 Algorithm 4 CPUs and 32GB memory
treadtPoamax_err t, . dt pcamax_err t,...dt pcaAmax_err

Typel 16 23902607 1.7¢-3 1186 1404 2.2e-2 1206 1426 1.8¢-3  Test on a 10% x10% matrix:
Typel 20 24202616 9e-4 1198 1380 1.6e-1 1217 1413 1.2¢-3 - 200X
Topel 24 24012593 1e3 1216 1400 1.5e-1 1216 1414 1203 OUrAlg. 4isover

Type2 12 25532764 Se-4 1267 1477 3e-2 12761490 Se-4  fasterthan svd/svds
Type3 24 25872777 1e-5 13121500 1.7e-3 13101502 2e-5
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Experimental Results

s A test of real data

o Face images from the FERET [4]

o As In [2], constuct a 102,042x392,216 matrix (150GB file on hard disk)
o Compute 50 eigenfaces on the machine with 24 CPU cores

180

160

140

Computed singular
spectrum well match
that shown in [2]

120}
1007
80}
60
40

20t

0

10 20 30 40
[2] N Halko, et al., “
[4] P J Phillips, et al., “
18-Nov-17

50

180

O Runtlme of our algorlthm ~ 24 mlnutes

1 1z20H

0

1
5

—
—
—
————

1 1 1 1 1 1
10 15 20 25 30 35 40

Wenjian Yu / Tsinghua University, China

Four elgenfaces

An algorithm for the principal component analysis of large data sets,” SISC, 2011
The FERET evaluation methodology for face-recognition algorithms,” T-PAMI, 2000
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Conclusion

e A single-pass PCA algorithm for large and high-dimensional data

e Only one pass over data matrix, providing that the matrix is stored in a
row-major format

e Comparable accuracy to existing randomized algorithm; much less
error than an existing single-pass algorithm

e Experiments demonstrate the algorithm’s effectiveness for large-size
high-dimensional data (~¥150 GB disk file), in terms of runtime and
memory usage

The codes of the proposed algorithm and experimental data are shared on:
https://github.com/WenjianYu/rSVD-single-pass
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Thank You !
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