

Recent Advance on Floating Random Walk Based Capacitance Solver for VLSI Circuit Design

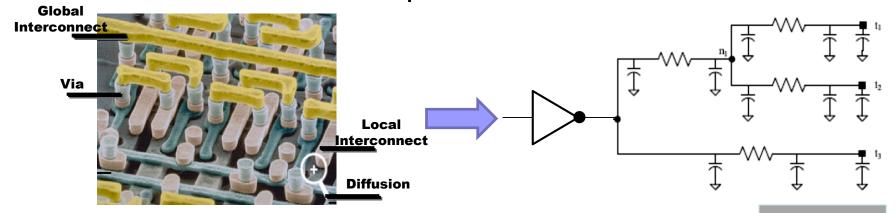
Wenjian Yu, Mingye Song, and Zhezhao Xu

Department of Computer Science & Technology
Tsinghua University
Beijing, China

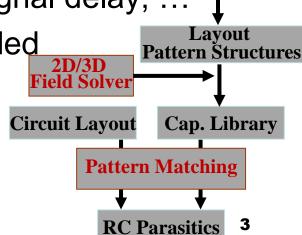
Nov. 3, 2018

- Background
- The Floating Random Walk Method
- Distributed Parallel FRW Algorithms
- Accurate Treatment of Complex Floating Metals
- Conclusions

- Accurate capacitance modeling in IC design
 - Device/interconnect capacitance extraction



- □ For verifying performance metrics: signal delay,
- Accurate field solver is more demanded at advanced technology nodes
- Also needed for validation of on-chip capacitor structures



Process Tech.

- 3-D capacitance field solver
- $\begin{cases}
 \nabla^2 \phi = 0 \\
 C_{ij} = \int_{\Gamma_j} \varepsilon \frac{\partial \phi}{\partial \vec{n}} ds
 \end{cases}$
- Methods for 3-D field solver
 - □ Finite difference/finite element method
 - Stable, versatile; slow

- Ax = b
- Boundary element method
 - Fast, handle complex geometry;
 - Not scalable, need discretization (may affect accuracy)
- □ Floating random walk method

QuickCap/Rapid3D, RWCap

Raphael, Q3D

FastCap, Act3D

QBEM/HBBEM

- No discretization of problem domain (stable accuracy);
- Scalable for large problem (low memory cost)
- Embarrassingly parallel

FRW method in a recent *SemiWiki* article

Field-Solver Parasitic Extraction Goes Mainstream

by Tom Dillinger Published on 11-28-2017 10:00 AM

3 Comments 9

- State-of-the-art of FRW based capacitance solver
 - □ Restrictions on geometry, slow speed (high accuracy)
 - □ In [1] and [2], extended to handle cylindrical inter-tier-vias in 3-D ICs and the non-Manhattan conductors
 - □ Combined with MCRW, efficiently extract capacitances of circuits with IP protected or cyclic substructures [3]
 - □ For efficient variation-aware capacitance modeling [4]
 - □ Parallel computing using GPUs [5, 6]
 more labor on development & maintenance
 - □ Distributed parallel FRW is more feasible [7] Can be improved! Currently industry uses coarse-grained workload distribution
 - [1] C. Zhang, W. Yu, Q. Wang, et al., *IEEE Trans. Comput.-Aided Design*, 34, p. 1977 (2015)
 - [2] Z. Xu, C. Zhang and W. Yu, *IEEE Trans. Comput.-Aided Design*, 36, p. 120 (2017)
 - [3] W. Yu, B. Zhang, C. Zhang, et al., *IEEE DATE*, p. 1225 (2016)
 - [4] P. Maffezzoni, Z. Zhang, et al., *IEEE Trans. Comput.-Aided Design*, 37, p. 2180 (2018)
 - [5] N. D. Arora, S. Worley, et al., *IEEE EDSSC*, p. 459, 2015
 - [6] K. Zhai, W. Yu and H. Zhuang, *IEEE DATE*, p. 1661 (2013)
 - [7] Z. Xu, W. Yu, C. Zhang, et al., *Proc. ACM GLSVLSI*, p. 99 (2016)

- Our recent work on FRW capacitance solver
 - □ Efficient distributed parallel FRW algorithm
 - Distributed space management construction (large structure)
 - Fine-grained workload distribution (extraction of single-net)
 - With 60 cores, runtime reduced from 824s to 22s (37X)
 - □ Accurate treatment of complex floating metals
 - A theoretically rigorous approach (b/o electric neutrality)
 - For validation of metal-insulator-metal (MIM) capacitors
 - 3.7X faster than existing approach while achieving same accuracy (i.e. 0.5% systematic error)

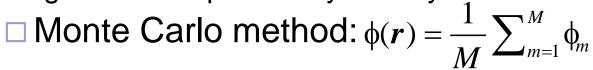
- Background
- The Floating Random Walk Method
- Distributed Parallel FRW Algorithms
- Accurate Treatment of Complex Floating Metals
- Conclusions

The Floating Random Walk Method

- The basics of FRW method
 - \square Integral formula for the electrostatic potential s_1

$$\phi(\mathbf{r}) = \iint_{S_1} P_1(\mathbf{r}, \mathbf{r}^{(1)}) \phi(\mathbf{r}^{(1)}) ds^{(1)}$$

P₁ is called surface Green's function, and can be regarded as a probability density function



 ϕ_m is the potential of a point on S_1 , randomly sampled with P_1

 \square What if ϕ_m is unknown? expand the integral recursively

$$\phi(\mathbf{r}) = \iint_{S_1} P_1(\mathbf{r}, \mathbf{r}^{(1)}) \iint_{S_2} P_1(\mathbf{r}^{(1)}, \mathbf{r}^{(2)}) \cdots$$

$$\iint_{S_k} P_1(\mathbf{r}^{(k-1)}, \mathbf{r}^{(k)}) \phi(\mathbf{r}^{(k)}) ds^{(k)} \cdots ds^{(2)} ds^{(1)}$$

This spatial sampling procedure is called **floating random walk**

Transition

domain

The Floating Random Walk Method

- The Markov random process + MC method prove the correctness of the FRW method
- A 2-D example with 3 walks
 - ☐ Use maximal cubic transition domain
- How to calculate capacitances?

Definition:
$$\begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{12} & C_{22} & C_{23} \\ C_{13} & C_{23} & C_{33} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \\ V_3 \end{bmatrix} = \begin{bmatrix} Q_1 \\ Q_2 \\ Q_3 \end{bmatrix} \longrightarrow Q_1 = C_{11}V_1 + C_{12}V_2 + C_{13}V_3$$

Integral for calculating charge (Gauss theorem)

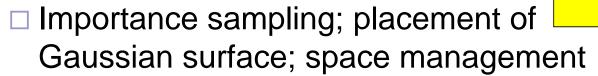
$$Q_{1} = \iint_{G_{1}} F(\boldsymbol{r}) \cdot \hat{n} \cdot \nabla \phi(\boldsymbol{r}) d\boldsymbol{r} = \iint_{G_{1}} F(\boldsymbol{r}) \cdot \hat{n} \cdot \nabla \iint_{S_{1}} P_{1}(\boldsymbol{r}, \boldsymbol{r}^{(1)}) \phi(\boldsymbol{r}^{(1)}) ds^{(1)} ds$$

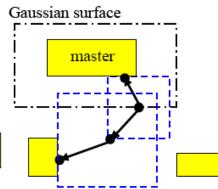
$$= \iint_{G_{1}} F(\boldsymbol{r}) g \iint_{S_{1}} P_{1}(\boldsymbol{r}, \boldsymbol{r}^{(1)}) \phi(\boldsymbol{r}^{(1)}) \omega(\boldsymbol{r}, \boldsymbol{r}^{(1)}) ds^{(1)} ds \quad \text{weight value, estimate of } C_{11}, C_{12}, C_{13} \text{ coefficients}$$

(picture from [1])

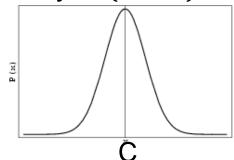
The Floating Random Walk Method

- Cubic transition domain fits geometry
- Numerically pre-calculate transition probabilities and weight values





- The MC procedure produces random value!
 - \square Capacitances obtained from many runs obey $N(C, \sigma^2)$
 - □ Std (1-σ error) of the normal distribution depicts the accuracy level of result
 - \square σ can be estimated in FRW, $\propto \frac{1}{\sqrt{N_{walk}}}$
- Total runtime: $T_{total} = N_{walk} N_{hop} T_{hop}$

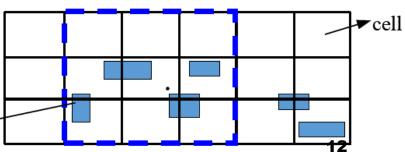


- Background
- The Floating Random Walk Method
- Distributed Parallel FRW Algorithms
- Accurate Treatment of Complex Floating Metals
- Conclusions

Distributed Parallel FRW Algorithms

- Space management in the FRW
 - Required for case with many conductor blocks!
 - □ Distance to the nearest conductor (transition cube)
 - □ Idea of space management
 - Construct a spatial structure (Octree, grid, or hybrid) storing the local conductor information
 - Then, the size of transition cube is quickly calculated
 - Space management construction costs more time!
- Distributed space management construction
 - □ Key: workload distribution
 - □ We adopt the uniform grid

Each cell contains a candidate list of nearest conductor blocks conductor

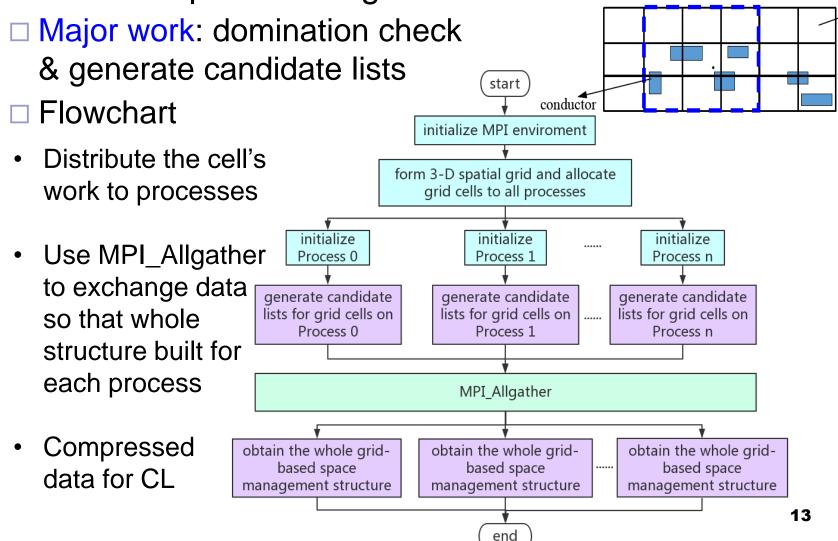


Gaussian surface

master

Distributed Parallel FRW Algorithms

Distributed space management construction



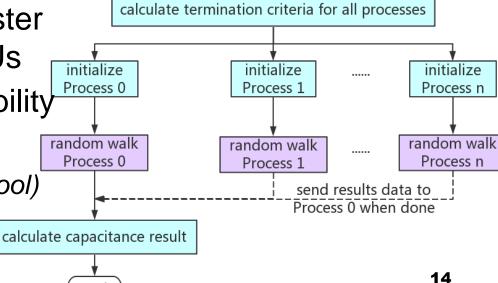
Distributed Parallel FRW Algorithms

- Distributed FRW procedure
 - □ An existing distributed approach sends intermediate data to process 0 after every m walks (~large communication)
 - □ Error $\sigma \propto \frac{1}{\sqrt{N_{walk}}}$ ⇒ Error achieved for each process: $\sigma' = \sqrt{m_{proc}} \cdot \sigma$

end

- □ Idea: set termination criterion to each process; no more communication initialize MPI environment
- Also applies to the cluster including different CPUs
- Ensures the reproducibility
 of capacitance result

(a practical request for EDA tool)



10

Distributed Parallel FRW Algorithms

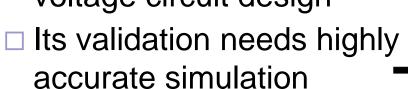
- Experimental results
 - □ Implemented in C++ and MPI, based on RWCap
 - □ Tested on a computer cluster with infiniband network
 - ☐ Case 1: 484,441 conductor blocks
 - ☐ Case 2: 2,302,995 conductor blocks
 - \square Extract a single net with 0.5% 1- σ error criterion on C_{self}

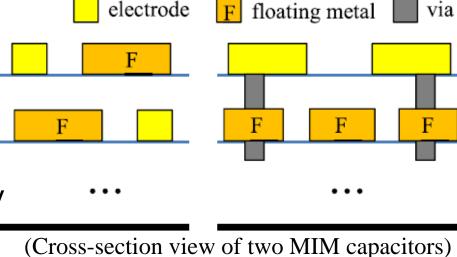
m_{proc}	Case 1		Case 2	
	time (s)	speedup	time (s)	speedup
1	52.1	1	824.1	1
12	6.55	8.0	76.7	10.7
36	3.15	16.6	29.9	27.6
60	2.27	23.0	22.1	37.4

Runtime of FRW procedure for Case 2 is reduced from 189s to 4.9s (39X speedup)

- Background
- The Floating Random Walk Method
- Distributed Parallel FRW Algorithms
- Accurate Treatment of Complex Floating Metals
- Conclusions

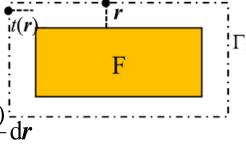
- Motivation
 - Floating metals with complex geometry exist in MIM capacitor for highvoltage circuit design





- Existing treatment for floating metal lacks theory basis; only accurate for square-shape metal fills
- The proposed approach
 - □ The electric neutrality of a floating metal

$$Q(F) = \iint_{\Gamma_f} \varepsilon(\mathbf{r}) \frac{\partial \phi(\mathbf{r})}{\partial n(\mathbf{r})} d\mathbf{r} = 0 \longrightarrow 0 \approx \iint_{\Gamma_f} \varepsilon(\mathbf{r}) \frac{\phi(\mathbf{r}_{\text{out}}) - \phi(\mathbf{r}_{\text{in}})}{2s(\mathbf{r})} d\mathbf{r}$$

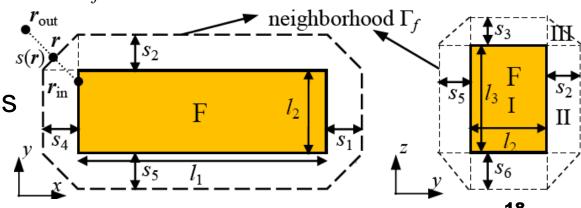


Treatment of Complex Floating Metal

The proposed approach

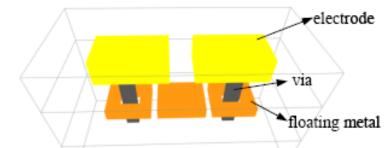
$$0 \approx \iint_{\Gamma_f} \mathcal{E}(\mathbf{r}) \frac{\phi(\mathbf{r}_{out}) - \phi(\mathbf{r}_{in})}{2s(\mathbf{r})} d\mathbf{r} \implies (\iint_{\Gamma_f} \frac{\mathcal{E}(\mathbf{r})}{s(\mathbf{r})} d\mathbf{r}) \phi(F) \approx \iint_{\Gamma_f} \frac{\mathcal{E}(\mathbf{r})}{s(\mathbf{r})} \phi(\mathbf{r}_{out}) d\mathbf{r}$$

- $\square P_F(r)$ is a probability density function
- \Box This implies a random transition scheme from the floating metal F to r_{out} (on a sampling surface)
- \square To ensure r_{in} 's on F, a Γ_f with 26 faces is assumed
- □ We rigorously derives a new approach with less systematic error

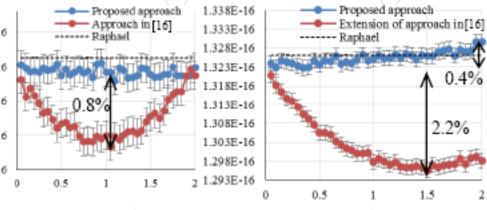


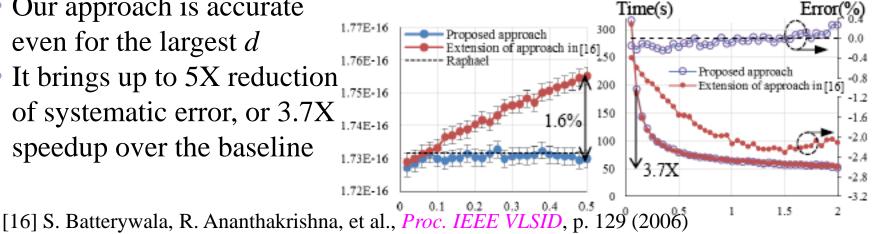
Treatment of Complex Floating Metal

- Handle multi-rectangle shape
 - \square Construct Γ_f for each block + rejection sampling technique



- Experimental results
 - Three MIM cases are tested 1.372E-16 capacitance (w/ $\pm 3\sigma$ error) vs. $d^{1.367E-16}$
- *d*: distance from sampling surface to F^{1.362E-16}
 - Take Raphael's as standard
 - Our approach is accurate even for the largest d
 - It brings up to 5X reduction of systematic error, or 3.7X speedup over the baseline





- Background
- The Floating Random Walk Method
- Distributed Parallel FRW Algorithms
- Accurate Treatment of Complex Floating Metals
- Conclusions

м

Conclusions

- Techniques for distributed parallel space management construction and FRW procedure are presented.
- They produce an efficient distributed FRW solver for VLSI capacitance extraction.
- An approach for handling complex floating metals is also presented, which makes the FRW solver capable of accurate on-chip capacitor simulation.

- [1] M. Song, Z. Xu, W. Xue, W. Yu, *Proc. ACM GLSVLSI*, p. 189 (2018)
- [2] W. Yu, Z. Xu, B. Li, C. Zhuo, *IEEE Trans. Comput.-Aided Design*, 37, p. 1711 (2018)

Thank You!

Wenjian Yu / Tsinghua University yu-wj@tsinghua.edu.cn http://numbda.cs.tsinghua.edu.cn