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 Accurate capacitance modeling in IC design

 Device/interconnect capacitance extraction

 For verifying performance metrics: signal delay, …

 Accurate field solver is more demanded

at advanced technology nodes

 Also needed for validation of on-chip 

capacitor structures
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 3-D capacitance field solver

 Methods for 3-D field solver

 Finite difference/finite element method

 Stable, versatile; slow

 Boundary element method

 Fast, handle complex geometry;

 Not scalable, need discretization (may affect accuracy)

 Floating random walk method

 No discretization of problem domain (stable accuracy); 

 Scalable for large problem (low memory cost)

 Embarrassingly parallel

Background
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 State-of-the-art of FRW based capacitance solver
 Restrictions on geometry, slow speed (high accuracy)

 In [1] and [2], extended to handle cylindrical inter-tier-vias

in 3-D ICs and the non-Manhattan conductors 

 Combined with MCRW, efficiently extract capacitances of 

circuits with IP protected or cyclic substructures [3]

 For efficient variation-aware capacitance modeling [4]

 Parallel computing using GPUs [5, 6]

 Distributed parallel FRW is more feasible [7] 

Background

[1] C. Zhang, W. Yu, Q. Wang, et al., IEEE Trans. Comput.-Aided Design, 34, p. 1977 (2015)
[2] Z. Xu, C. Zhang and W. Yu, IEEE Trans. Comput.-Aided Design, 36, p. 120 (2017)
[3] W. Yu, B. Zhang, C. Zhang, et al., IEEE DATE, p. 1225 (2016)
[4] P. Maffezzoni, Z. Zhang, et al., IEEE Trans. Comput.-Aided Design, 37, p. 2180 (2018)
[5] N. D. Arora, S. Worley, et al., IEEE EDSSC, p. 459, 2015
[6] K. Zhai, W. Yu and H. Zhuang, IEEE DATE, p. 1661 (2013)
[7] Z. Xu, W. Yu, C. Zhang, et al., Proc. ACM GLSVLSI, p. 99 (2016)

more labor on develop-
ment & maintenance

Currently industry uses coarse-grained workload distribution
Can be improved!



 Our recent work on FRW capacitance solver
 Efficient distributed parallel FRW algorithm

 Distributed space management construction (large structure)

 Fine-grained workload distribution (extraction of single-net)

 With 60 cores, runtime reduced from 824s to 22s (37X)

 Accurate treatment of complex floating metals

 A theoretically rigorous approach (b/o electric neutrality)

 For validation of metal-insulator-metal (MIM) capacitors

 3.7X faster than existing approach while achieving same 

accuracy (i.e. 0.5% systematic error)

Background

[1] M. Song, Z. Xu, W. Xue, W. Yu, Proc. ACM GLSVLSI, p. 189 (2018)
[2] W. Yu, Z. Xu, B. Li, C. Zhuo, IEEE Trans. Comput.-Aided Design, 37, p. 1711 (2018)
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The Floating Random Walk Method
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 The basics of FRW method

 Integral formula for the electrostatic potential

Monte Carlo method:

What if m is unknown?
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The Floating Random Walk Method
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(picture from [1])

[1] Y. Le Coz and R. B. Iverson, Solid State Electron., 35, p. 1005 (1992)

 The Markov random process + MC method 

prove the correctness of the FRW method

 A 2-D example with 3 walks

 Use maximal cubic transition domain

 How to calculate capacitances?
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Integral for calculating charge (Gauss theorem)
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 The secrets of fast FRW solver for VLSI interconnects

 Cubic transition domain fits geometry

 Numerically pre-calculate transition 

probabilities and weight values

 Importance sampling; placement of 

Gaussian surface; space management

 The MC procedure produces random value!

 Capacitances obtained from many runs obey 𝑁(𝐶, 𝜎2)

 Std (1- error) of the normal distribution 

depicts the accuracy level of result

  can be estimated in FRW, 

 Total runtime: 

The Floating Random Walk Method
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 Space management in the FRW

 Required for case with many conductor blocks 

 Distance to the nearest conductor (transition cube)

 Idea of space management

 Construct a spatial structure (Octree, grid, or hybrid) 

storing the local conductor information

 Then, the size of transition cube is quickly calculated

 Space management construction costs more time!

 Distributed space management construction

 Key: workload distribution

 We adopt the uniform grid

Distributed Parallel FRW Algorithms
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Each cell contains a candidate 

list of nearest conductor blocks



 Distributed space management construction

 Major work: domination check

& generate candidate lists

 Flowchart

Distributed Parallel FRW Algorithms
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• Distribute the cell’s 

work to processes

• Use MPI_Allgather

to exchange data

so that whole

structure built for 

each process

• Compressed

data for CL



 Distributed FRW procedure

 An existing distributed approach sends intermediate data 

to process 0 after every m walks (~large communication) 

 Error  

 Idea: set termination criterion to each 

process; no more communication

 Also applies to the cluster

including different CPUs

 Ensures the reproducibility 

of capacitance result

Distributed Parallel FRW Algorithms
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Error achieved for each process: procm   

(a practical request for EDA tool)



 Experimental results

 Implemented in C++ and MPI, based on RWCap

 Tested on a computer cluster with infiniband network

 Case 1: 484,441 conductor blocks

 Case 2: 2,302,995 conductor blocks

 Extract a single net with 0.5% 1- error criterion on Cself

Distributed Parallel FRW Algorithms
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Runtime of FRW procedure for Case 2 is reduced from 

189s to 4.9s (39X speedup) 
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 Motivation

 Floating metals with 

complex geometry exist 

in MIM capacitor for high-

voltage circuit design

 Its validation needs highly

accurate simulation

 Existing treatment for floating metal lacks theory basis; 

only accurate for square-shape metal fills

 The proposed approach

 The electric neutrality of a floating metal

Treatment of Complex Floating Metal
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(Cross-section view of two MIM capacitors)
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 The proposed approach

 PF(r) is a probability density function

 This implies a random transition scheme from the 

floating metal F to rout (on a sampling surface)

 To ensure rin’s on F, a f with 26 faces is assumed 

 We rigorously 

derives a new 

approach with less 

systematic error

Treatment of Complex Floating Metal
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 Handle multi-rectangle shape

 Construct f for each block +

rejection sampling technique

 Experimental results

Treatment of Complex Floating Metal

capacitance (w/ 3 error) vs. d

d: distance from sampling surface to F

• Take Raphael’s as standard

• Our approach is accurate 

even for the largest d

• It brings up to 5X reduction 

of systematic error, or 3.7X 

speedup over the baseline

[16] S. Batterywala, R. Ananthakrishna, et al., Proc. IEEE VLSID, p. 129 (2006)

• Three MIM cases are tested
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 Techniques for distributed parallel space 

management construction and FRW procedure are 

presented. 

 They produce an efficient distributed FRW solver for 

VLSI capacitance extraction. 

 An approach for handling complex floating metals is 

also presented, which makes the FRW solver 

capable of accurate on-chip capacitor simulation.

Conclusions

[1] M. Song, Z. Xu, W. Xue, W. Yu, Proc. ACM GLSVLSI, p. 189 (2018)

[2] W. Yu, Z. Xu, B. Li, C. Zhuo, IEEE Trans. Comput.-Aided Design, 37, p. 1711 (2018)
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