

Applications of Monte Carlo Method to 3-D Capacitance Calculation and Large Matrix Decomposition

Wenjian Yu

Department of Computer Science & Tech.

Tsinghua University

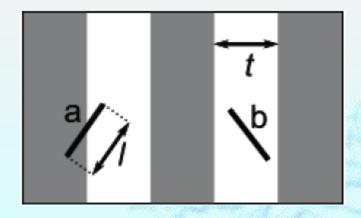
Beijing, China

Oct. 26, 2016

- Introduction
- Basics of Monte Carlo method
- MC based capacitance calculation
- MC based large matrix approximation
- Conclusion

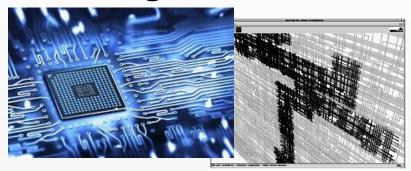
Definition

- Monte Carlo methods (or Monte Carlo experiments) are a broad class of computational algorithms that rely on repeated random sampling to obtain numerical results
- We refer to it as a computing method for deterministic or stochastic quantities, instead of the random process for imitating a complex system's behavior
- A historical example: Buffon's Needle Problem (1777)
 - Drop a needle on a lined surface
 - $\pi \approx 2n/m$, where n is the count of experiments, m is count of intersection of needle and grid



- MC method for solving partial differential equation
 - Called random walk method, or Green's function MC
 - Advantages as compared with deterministic methods
 - Locality: Obtain the solution at a local position
 - Accuracy stability: Mainly stochastic error
 - Geometric adaptability: No geometry discretization
 - Scalability for large problem: Low memory w/o building equ.
 - Natural parallelism: Independent samplings
 - Drawbacks
 - The generality: rely on a stochastic explanation
 - Computational speed: slow convergence rate $(T \propto \frac{1}{\text{error}^2})$
 - It's most efficient when point values or linear functionals of the solution are needed

Challenges of 3-D and large-scale simulation



- Large computational time, and even error
- MC method regains the attraction
 - Due to the popularity of parallel computing infrastructures
 - Beats deterministic methods in some applications

(orders of magnitude faster than fast BEM for capacitance extraction of large IC structures)

Also find applications in large-scale linear algebra computations, useful for Big-Data analy

[1] **W. Yu**, et al., "... in designing flat panel displays," *Journal of the Society for Information Display*, 2016 [2] **P. Drineas** and **M. W. Mahoney**, "RandNLA: randomized numerical linear algebra," *Communications of the ACM*, 2016

In this talk

- Survey on theory and recent development of the MC based techniques for large-scale simulation and computation
- The probabilistic potential theory for the random walk method for electrostatic PDE
- MC based techniques for 3-D capacitance calculation
 - The floating random walk method for the capacitance extraction in VLSI design
 - Recent enhancement for tackling the challenges in simulating the touchscreen structures, and related topics
- MC based technique for large matrix approximation

- Introduction
- Basics of Monte Carlo method
- MC based capacitance calculation
- MC based large matrix approximation
- Conclusion

Basics of Monte Carlo method

Example 1 -- Integration

$$I = \int_0^1 f(x) dx = \int_0^1 P(x) \frac{f(x)}{P(x)} dx$$

- P(x) is a probability density function on [0, 1]
- A stochastic explanation:

$$I = \mathbb{E}(\frac{f(\xi)}{P(\xi)}) \approx \tilde{I} = \frac{1}{N} \sum_{i=1}^{N} \frac{f(x_i)}{P(x_i)}$$

- Random variable $\xi \sim P(\xi)$
- Sample value: $f(x_i)/P(x_i)$

 \tilde{I} attains enough accuracy with large N

- With the central limit theorem
 - $\tilde{I} \sim N(I, \sigma^2)$. So, σ measures error of \tilde{I} (often called 1- σ error)

$$\sigma \equiv \sqrt{\operatorname{var}(\tilde{I})} = \sqrt{\operatorname{var}(f(\xi)/P(\xi))/N}, \quad \operatorname{var}\left(\frac{f(\xi)}{P(\xi)}\right) \approx \frac{1}{N-1} \sum_{i=1}^{N} \left[\frac{f(x_i)}{P(x_i)} - \tilde{I}\right]^2$$

$$\operatorname{var}\left(\frac{f(\xi)}{P(\xi)}\right) \approx \frac{1}{N-1} \sum_{i=1}^{N} \left[\frac{f(x_i)}{P(x_i)} - \tilde{I}\right]^2$$

Error
$$\propto 1/\sqrt{N} \approx \frac{1}{\sqrt{\text{Time}}}$$

Error can be estimated during the MC process

Basics of Monte Carlo method

$$\int_0^1 f(x)dx \approx \tilde{I} = \frac{1}{N} \sum_{i=1}^N \frac{f(x_i)}{P(x_i)} \qquad \text{Error} \propto 1/\sqrt{N}$$

 \tilde{I} 's distribution 4σ 6σ

It is superior to conventional numerical quadratures for high-dimensional integral

- Example 2 -- Linear algebra
 - $S = \sum_{i=1}^{m} a_i$ Define probabilities $\{p_i\}$ for index $i, \sum p_i = 1$
 - $\gg S = \sum p_i(a_i/p_i)$, i.e., S is the statistical mean of $\frac{a_i}{p_i}$, if index i is chosen with probability p_i . $\approx \tilde{S} = \frac{1}{N} \cdot \sum_{j=1}^{N} \frac{a_{i_j}}{p_{i_j}}$
 - $_{\circ}$ Similar method applies to $S = \sum_{i=1}^{m} a_i x_i$
 - It's the basis of the MC method for linear algebra problems (linear equation system [1], random walk based circuit simulation [2], et al.)

[1] H. Ji, M. Mascagni, and Y. Li, "Convergence analysis of Markov Chain ...," *SIAM J. Numer. Anal.*, 2013 [2] H. Qian, S. Nassif, and S. Sapatnekar, "Power grid analysis using random walks," *IEEE Trans. CAD*, 2005

Basics of Monte Carlo method

- The key point of modern MC: using the random sampling process with the aid of computer generated randomness
- Concerns for developing an efficient MC method
 - Efficient pseudo-random number generator
 - When to make random sample following arbitrary distribution?
 - Rejection sampling
 - Markov chain Monte Carlo
 - Now to reduce the number of samples for a preset accuracy?
 - Variance reduction (importance sampling, stratified sampling, ...)
 - Construct special P(x) or $\{p_i\}_{i=1}^m$ to accelerate convergence

[3] C. Zhang and W. Yu, "Efficient techniques ... using floating random walk algorithm," Proc. ASP-DAC, 2014

^[2] W. Yu and X. Wang, Advanced Field-Solver Techniques for RC Extraction of Integrated Circuits, 2014.

- Introduction
- Basics of Monte Carlo method
- MC based capacitance calculation
- MC based large matrix approximation
- Conclusion

- The random walk method
 - Electric potential $\phi(\mathbf{r}) = \oint_{S^{(1)}} P_{RW}(\mathbf{r}, \mathbf{r}^{(1)}) \phi(\mathbf{r}^{(1)}) ds^{(1)}$
 - $P_{RW}(\cdot)$ is a PDF, i.e. surface Green's function
 - ullet It derives a RW method for calculating $\phi(r)$: sampling on $S^{(1)}$, $S^{(2)}$..., $S^{(k)}$ until $\phi(r^{(k)})$ is known
 - Explain its convergence with a dual problem:
 - Particles released at r, following same spatial transitions as the RW. What is the probability that a particle reaches Γ_1 ? A Markov process defined by $P_{MT}(\mathbf{r}^{(i-1)} \to \mathbf{r}^{(i)})$

$$P_{MT}(\mathbf{r}^{(i-1)} \to \mathbf{r}^{(i)}) = P_{RW}(\mathbf{r}^{(i-1)}, \mathbf{r}^{(i)}) \quad \Pr(\mathbf{r}^{(i-1)}) = \oint_{S^{(i)}} P_{MT}(\mathbf{r}^{(i-1)} \to \mathbf{r}^{(i)}) \Pr(\mathbf{r}^{(i)}) ds^{(1)}$$

- $\phi(r) = Pr(r)$, which by definition is got with a converged MC process
- It applies to general boundary settings

- The floating random walk method (1992)
 - Definition of $\begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{12} & C_{22} & C_{23} \\ C_{13} & C_{23} & C_{33} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \\ V_3 \end{bmatrix} = \begin{bmatrix} Q_1 \\ Q_2 \\ Q_3 \end{bmatrix}$

$$Q_1 = C_{11}V_1 + C_{12}V_2 + C_{13}V_3$$

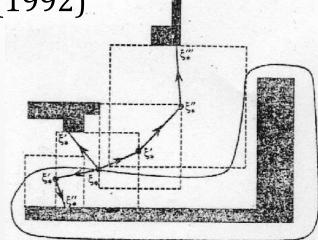
Gauss theorem for electrostatic field

$$Q_{j} = \oint_{G_{j}} F(\boldsymbol{r}) g \oint_{S^{(1)}} \omega(\boldsymbol{r}, \boldsymbol{r}^{(1)}) q(\boldsymbol{r}, \boldsymbol{r}^{(1)}) \phi(\boldsymbol{r}^{(1)}) ds^{(1)} ds$$

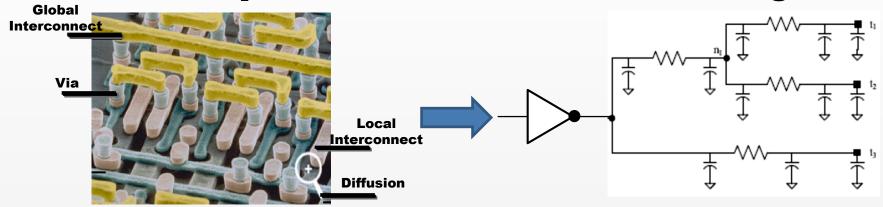
- F(r)g and $q(r,r^{(1)})$ are PDF; $\omega(r,r^{(1)})$ is called weight value
- ⋄ Sampling on G_i , $S^{(1)}$, $S^{(2)}$,..., until reaching conductor k
- \bullet The weight value is an estimate for C_{jk}
- \diamond Averaging the weight values after N walks produces $\{C_{ji}\}_{i=1}^n$

[1] **Y. Le Coz** and **R. Iverson**, "A stochastic algorithm for high speed capacitance extraction in integrated circuits," **Solid State Electron.**, 1992

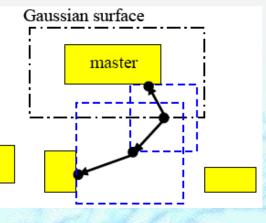
[2] W. Yu, et al., "RWCap: a floating random walk solver for 3-D capacitance ...," IEEE Trans. CAD, 2013



FRW based capacitance extraction for VLSI design



- Calculating wire capacitances is the base of modeling & simulation
- The secrets of the fast FRW solver
 - Cubic transition domain fits geometry
 - Numerically pre-calculate transition probabilities and weight values
 - Importance sampling; placement of Gaussian surface; space management



[1] **C. Zhang** and **W. Yu**, "Efficient space management techniques for large-scale ...," *IEEE Trans. CAD*, 2013 [2] **C. Zhang**, **W. Yu**, et al., "...for the 3-D IC structures with cylindrical inter-tier-vias," *IEEE Trans. CAD*, 2015

- FRW based capacitance simulation for touchscreen
 - Validation of functionality (multi-touch, force-touch)

C. Extraction for VLSI vs. C. Simulation for touchscreen

Conductor geometry	Mostly Manhattan	Generally non-	
	shape, with moderate	Manhattan shape, with	
	aspect ratio	very large aspect ratio	
Dielectric environment	On-chip dielectric	In-device dielectrics and	
	insulators; relatively	out-device air; arbitrary	
	fixed dielectric profile	dielectric configuration	
Accuracy	Mainly self-capacitance	Need accurate coupling	
demand	for delay calculation	capacitances	

Geometry engine for non-Manhattan metal shape

- Allow planar rotation of transition cube
- A unified dielectric pre-characterization scheme
- MPI based parallel computing on a cluster (93X~114X w/ 120 cores)

[1] **Z. Xu**, **C. Zhang**, **W. Yu**, "Floating random ... non-Manhattan conductor structures," *IEEE Trans. CAD*, 2016 [2] **Z. Xu**, **W. Yu**, et al., "A parallel random walk solver for the capacitance calculation problem in touchscreen design," *Proc. GLSVLSI*, 2016

- Other progress of the FRW method
 - GPU based parallel algorithm (operation divergence/memory bottleneck)
 - Macromodel based random walk algorithm [3]: Circuits with IP protected or repeated substructures
- Related topics
 - MC method is the golden, and the sole choice for variation-aware simulation with a lot of independent variables
 - Open problem: MC (random walk) based impedance extraction

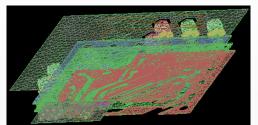
 - equation is still difficult

• MC for 1-D telegraph equation
• Applying MC to a general wave
$$\frac{\partial^2 u}{\partial t^2} + \frac{R}{L} \frac{\partial u}{\partial t} = \frac{1}{LC} \frac{\partial^2 u}{\partial x^2}$$

- [1] N. Arora, S. Worley, and D. Ganpule, "FieldRC, a GPU accelerated interconnect ...," Proc. EDSSC, 2015
- [2] K. Zhai, W. Yu and H. Zhuang, "GPU-Friendly floating random walk algorithm ...," Proc. DATE, 2013
- [3] W. Yu, et al. "Utilizing macromodels in floating random walk based capacitance ...," Proc. DATE, 2016
- [4] W. Yu, et al. "Efficient statistical capacitance extraction of nanometer ...," *Microelectronics Reliability*, 2012
- [5] J. Acebron, M. Ribeiro, "A Monte Carlo method for solving the one-dimensional ...," J. Comp. Phys., 2016

- Introduction
- Basics of Monte Carlo method
- MC based capacitance calculation
- MC based large matrix approximation
- Conclusion

- Motivation
 - Large-scale EM simulation
 - "Big-Data" analytics
 - Reduced-rank LS, principal component regression
 - Artificial intelligence
 - Feature extraction, recommendation system
 - Low-rank matrix approximation/factorization plays a crucial role
 - EM solver: low-rank matrix compression; MOR: utilizes SVD
 - Principal component analysis (i.e. truncated SVD)
 - Traditional matrix decompositions have O(n³) complexity, not parallelized efficiently, need substantial visits of matrix
- [1] J. Phillips and L. Silveira, "Poor man's TBR: a simple model reduction scheme," *IEEE Trans. CAD*, 2005
- [2] W. Yu and X. Wang, Advanced Field-Solver Techniques for RC Extraction of Integrated Circuits, 2014
 [3] P. Drineas and M. W. Mahoney, "RandNLA: randomized numerical linear algebra," Communications of the ACM, 2016

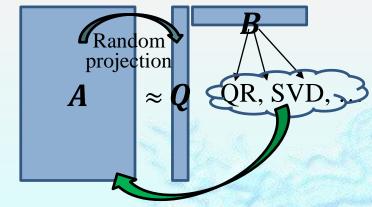


- Observations
 - Very high accuracy is not required (speed is major concern)
 - Accessing matrix entries becomes a new bottleneck
- MC based algorithms
 - Use randomization to overcome the bottleneck
 - \bullet Random column/row selection of A (week performance guarantee)
 - Random projection: randQB

•
$$Q = \operatorname{orth}(A\Omega)$$

•
$$B = Q^{T}A$$

Decompose short-fat
 B, get a low-rank factorization of A



[1] P. Drineas, R. Kannan, M. Mahoney, "Fast Monte Carlo algorithms for matrices ...," SIAM J. Comput., 2006

[2] N. Halko, P.-G. Martinsson, J. Tropp, "Finding structure with randomness: ...," SIAM Review, 2011

[3] **P. Drineas** and **M. W. Mahoney**, "RandNLA: randomized numerical linear algebra," *Communications of the ACM*, 2016

The randQB algorithm

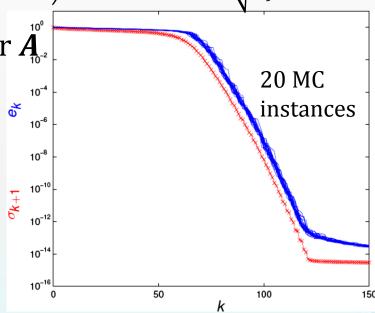
* Expectation of error: $\mathbb{E}||A-QB||_2 \le \left(1+\sqrt{\frac{k}{s-1}}\right)\sigma_{k+1} + \frac{e\sqrt{k+s}}{s}\sqrt{\sum_{j=k+1}^{\min(m,n)}\sigma_j^2}$ * Tightly concentrated:

 \bullet Faster than QRCP; fewer passes over \vec{A}_{0}

- Our improvements
 - Auto-determine the rank such that

$$||A - QB|| < \varepsilon$$

- Reduce the passes over A
- ightharpoonup Both are adaptive to large, sparse $m{A}$
- Extend the algorithm for approximate matrix multiplication
- Useful for model compression, information retrieval, etc.



- Automatic rank determination
 - A scenic picture (3168x4752 pix)
 - 10% relative error
 - ~7X data size reduction
 - ~12X faster than SVD
 The rank determined

		Ours	SVD	Finder[1]
image	P=1	468	426	2913
	P=2	441		

- A keyword-expert matrix(8.3кх100к) from <u>AMiner.org</u> (TF-IDF model)
- Also obtain near-optimal rank
- With 10X reduction of runtime

- Introduction
- Basics of Monte Carlo method
- MC based capacitance calculation
- MC based large matrix approximation
- Conclusion

Conclusion

- MC for deterministic quantities
 - Adapts to parallel computing, can be easily implemented
 - Much faster speed for large-scale computation, without or with less accuracy sacrifice
- Simulation with solving PDE
 - The random walk method beats deterministic methods for large-scale capacitance simulation
 - General EM simulation (wave equ.), still an open problem
- Linear algebra computation
 - Randomized technique shows power for low-rank matrix approximation
 - Lots of applications and bright perspective

Thank You!

Wenjian Yu / Tsinghua University, China

http://numbda.cs.tsinghua.edu.cn