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Introduction

 Definition

 Monte Carlo methods (or Monte Carlo experiments) are a 
broad class of computational algorithms that rely on 
repeated random sampling to obtain numerical results

 We refer to it as a computing method for deterministic or 
stochastic quantities, instead of the random process for 
imitating a complex system’s behavior

 A historical example: Buffon’s Needle Problem (1777)

 Drop a needle on a lined surface

   2n/m, where n is the count 
of experiments, m is count of 
intersection of needle and grid 
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Introduction

 MC method for solving partial differential equation

 Called random walk method, or Green’s function MC

 Advantages as compared with deterministic methods

 Locality:                          Obtain the solution at a local position

 Accuracy stability:                                  Mainly stochastic error

 Geometric adaptability:                No geometry discretization

 Scalability for large problem:  Low memory w/o building equ.

 Natural parallelism:                              Independent samplings

 Drawbacks

 The generality:                        rely on a stochastic explanation

 Computational speed:           slow convergence rate

 It’s most efficient when point values or linear functionals of 
the solution are needed
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Introduction

 Challenges of 3-D and large-scale simulation

 Large computational time, and even error

 MC method regains the attraction

 Due to the popularity of parallel computing infrastructures

 Beats deterministic methods in some applications

 Also find applications in large-scale linear 
algebra computations, useful for Big-Data analytics 
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(orders of magnitude faster than fast BEM for 
capacitance extraction of large IC structures)



Introduction

 In this talk

 Survey on theory and recent development of the MC based 
techniques for large-scale simulation and computation

 The probabilistic potential theory for the random walk 
method for electrostatic PDE

 MC based techniques for 3-D capacitance calculation 

 The floating random walk method for the capacitance 
extraction in VLSI design 

 Recent enhancement for tackling the challenges in 
simulating the touchscreen structures, and related topics

 MC based technique for large matrix approximation
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Basics of Monte Carlo method

 Example 1 -- Integration

 𝑃(𝑥) is a probability density function on [0, 1]

 A stochastic explanation: 

 Random variable 𝜉 ~ P 𝜉

 Sample value:  𝑓 𝑥𝑖 𝑃 𝑥𝑖

 With the central limit theorem


 𝐼 ~ N 𝐼, 𝜎2 . So, 𝜎 measures error of  𝐼
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Basics of Monte Carlo method

 Example 2 -- Linear algebra

 𝑆= 𝑖=1
𝑚 𝑎𝑖

 𝑆= 𝑝𝑖(𝑎𝑖/𝑝𝑖),  i.e., S is the statistical mean of  
𝑎𝑖

𝑝𝑖
, if index 𝑖

is chosen with probability 𝑝𝑖. 

 Similar method applies to 𝑆 =  𝑖=1
𝑚 𝑎𝑖𝑥𝑖

 It’s the basis of the MC method for  linear algebra 
problems (linear equation system [1], random walk based circuit 
simulation [2], et al.)
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[1] H. Ji, M. Mascagni, and Y. Li, “Convergence analysis of Markov Chain …,” SIAM J. Numer. Anal., 2013

[2] H. Qian, S. Nassif, and S. Sapatnekar, “Power grid analysis using random walks,” IEEE Trans. CAD, 2005

Define probabilities {𝑝𝑖} for index 𝑖,  𝑝𝑖 = 1



Basics of Monte Carlo method
 The key point of modern MC: using the random sampling 

process with the aid of computer generated randomness

 Concerns for developing an efficient MC method

 Efficient pseudo-random number generator

 How to make random sample following arbitrary distribution?

 Rejection sampling

 Markov chain Monte Carlo

 How to reduce the number of samples for a preset accuracy?

 Variance reduction (importance sampling, stratified sampling, …)

 Construct special 𝑃(𝑥) or {𝑝𝑖}𝑖=1
𝑚 to accelerate convergence
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MC Based Capacitance Calculation

 The random walk method

 Electric potential 

 𝑃𝑅𝑊(∙) is a PDF, i.e. surface Green’s function

 It derives a RW method for calculating 𝜙 𝒓 : sampling

on 𝑆 1 , 𝑆 2 …, 𝑆 𝑘 until 𝜙 𝒓 𝑘 is known

 Explain its convergence with a dual problem:

 Particles released at r, following same spatial 
transitions as the RW. What is  the probability that a particle 
reaches 1?

 It applies to general boundary settings
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A Markov process defined by 𝑃𝑀𝑇 𝒓 𝑖−1 → 𝒓 𝑖

𝑃𝑀𝑇(𝒓 𝑖−1 →𝒓 𝑖 )= 𝑃𝑅𝑊(𝒓 𝑖−1 , 𝒓 𝑖 ) Pr(𝒓(𝑖−1))= 
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𝜙(𝒓)=Pr(𝒓), which by definition is got with a converged MC process



MC Based Capacitance Calculation

 The floating random walk method (1992)

 Definition of 
Capacitance

 Gauss theorem for electrostatic field

 𝐹 𝒓 𝑔and 𝑞 𝒓,𝒓(1) are PDF; 𝜔 𝒓,𝒓(1) is called weight value

 Sampling on Gj, 𝑆
(1), 𝑆(2),…, until reaching conductor k

 The weight value is an estimate for Cjk

 Averaging the weight values after N walks produces 𝐶𝑗𝑖 𝑖=1

𝑛
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MC Based Capacitance Calculation

 FRW based capacitance extraction for VLSI design

 Calculating wire capacitances is the base of modeling & simulation

 The secrets of the fast FRW solver

 Cubic transition domain fits geometry

 Numerically pre-calculate transition 
probabilities and weight values

 Importance sampling; placement of 
Gaussian surface; space management
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MC Based Capacitance Calculation

 FRW based capacitance simulation for touchscreen

 Validation of functionality (multi-touch, force-touch)

 Geometry engine for non-Manhattan metal shape

 Allow planar rotation of transition cube

 A unified dielectric pre-characterization scheme

 MPI based parallel computing on a cluster (93X~114X w/ 120 cores)
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C. Extraction for VLSI  vs. C. Simulation for touchscreen 



MC Based Capacitance Calculation

 Other progress of the FRW method

 GPU based parallel algorithm (operation divergence/memory bottleneck)

 Macromodel based random walk algorithm [3]:
Circuits with IP protected or repeated substructures

 Related topics
 MC method is the golden, and the sole choice for 

variation-aware simulation with a lot of independent variables

 Open problem: MC (random walk) based impedance extraction

 MC for 1-D telegraph equation

 Applying MC to a general wave 
equation is still difficult 
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MC Based Large Matrix Approx. 

 Motivation

 Large-scale EM simulation 

 “Big-Data” analytics

 Reduced-rank LS, principal component regression

 Artificial intelligence

 Feature extraction, recommendation system 

 Low-rank matrix approximation/factorization
plays a crucial role

 EM solver: low-rank matrix compression; MOR: utilizes SVD

 Principal component analysis (i.e. truncated SVD)

 Traditional matrix decompositions have O(n3) complexity, not 
parallelized efficiently, need substantial visits of matrix
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MC Based Large Matrix Approx. 

 Observations

 Very high accuracy is not required (speed is major concern)

 Accessing matrix entries becomes a new bottleneck

 MC based algorithms

 Use randomization to overcome the bottleneck

 Random column/row selection of A (week performance guarantee)

 Random projection:  randQB

 𝑸 = orth(𝑨𝛀)

 𝑩 = 𝑸T𝑨

 Decompose short-fat 
𝑩, get a low-rank factorization of 𝑨
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MC Based Large Matrix Approx. 

 The randQB algorithm

 Expectation of error:

 Tightly concentrated:

 Faster than QRCP; fewer passes over 𝑨

 Our improvements

 Auto-determine the rank such that

 Reduce the passes over 𝑨

 Both are adaptive to large, sparse 𝑨

 Extend the algorithm for approximate matrix multiplication

 Useful for model compression, information retrieval, etc. 
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MC Based Large Matrix Approx. 
 Automatic rank determination

 A scenic picture (3168x4752 pix)

 10% relative error

 ~7X data size reduction

 ~12X faster than SVD

 A keyword-expert matrix(8.3Kx100K)

from AMiner.org (TF-IDF model)

 Also obtain near-optimal rank

 With 10X reduction of runtime
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Conclusion

 MC for deterministic quantities

 Adapts to parallel computing, can be easily implemented

 Much faster speed for large-scale computation, without or 
with less accuracy sacrifice

 Simulation with solving PDE

 The random walk method beats deterministic methods for 
large-scale capacitance simulation

 General EM simulation (wave equ.), still an open problem

 Linear algebra computation

 Randomized technique shows power for low-rank matrix 
approximation

 Lots of applications and bright perspective
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