Efficient Capacitance Modeling and Extraction for the Cylindrical Inter-Tier-Vias in 3-D ICs

Wenjian Yu
Department of Computer Science & Technology,
Tsinghua University, Beijing 100084, China
Dec. 16, 2017
Outline

- Background and motivation
- The floating random walk algorithm for capacitance extraction
- FRW based technique for the cylindrical ITVs
- Comprehensive modeling of TSVs in 3-D IC
- Conclusions
Background

- 3-D IC: a promising solution offering a path beyond the Moore’s law
- Two types of vertical integrating for 3-D IC
 - Die stacking using through-silicon-via (TSV)
 - Monolithic integration using monolithic inter-tier-via (MIV)

Background

- The problem
 - The inter-tier-vias (viz. TSV and MIV) play a critical role in 3-D ICs to deliver signal and power
 - Their related parasitics need accurate modeling (rising number of analog effects, narrowed performance margins)

- Extraction of ITV capacitances
 - Most works focused on TSV’s equivalent model and its *MOS capacitance*, instead of the *electrostatic coupling* among TSVs and horizontal wires
 - [T-CPMT 2011]¹ reveals the electrostatic cap. can be comparable to the MOS cap.; The *analytical* technique is based on square-shape TSV, and has >20% error

Actual ITV is more like a cylinder in geometry
- TSV-first, TSV-last, TSV-middle, etc.
- Large size (diameter~5μm), large aspect ratio (~10)
- In exiting work, calculation of C_{TT} and C_{TD} investigated

Monolithic 3-D IC similar to TSV-first; smaller-size MIV
- Larger density of MIV; larger aspect ratio than local via

not considering the wires surrounded laterally and vertically
Background

- Cylindrical ITV, or square-shape ITV?
 - The error of square-shape approximation
 - Typical TSV and MIV structures

<table>
<thead>
<tr>
<th></th>
<th>(C_{\text{total}}) (aF)</th>
<th>Err. (C_{\text{total}}) (%)</th>
<th>Error of (C_{\text{couple}}) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cylinder</td>
<td>3740</td>
<td>5.9</td>
<td>-20 21</td>
</tr>
<tr>
<td>TSV-first</td>
<td>3866</td>
<td>5.2</td>
<td>-38 71</td>
</tr>
<tr>
<td>MIV</td>
<td>14.7</td>
<td>7.5</td>
<td>-1.6 9.1</td>
</tr>
<tr>
<td>Square</td>
<td>3962</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSV-last</td>
<td>4065</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The error of square-shape approximation of TSV and MIV structures. Square approximation overestimates \(C_{\text{total}} \), while causes large errors on \(C_{\text{couple}} \).
Background

- High-precision capacitance extraction -- Field Solver
 - Finite difference/finite element method
 - Stable, versatile; slow
 - Boundary element method
 - Fast for small/medium size cases
 - Polyhedron approximation; discretization
 - Floating random walk method
 - Stable (discretization-free); Scalable (low memory cost),
 - Only efficient for Manhattan structures
- None of the fast solvers directly and efficiently handle the structure with cylindrical ITVs

Our work

- The *first* capacitance field solver that can directly handle cylindrical ITVs without any geometric approximation.
- It can be *tens to hundreds times faster* than fast BEM solvers for TSV or large MIV structures, with great memory saving and more stable accuracy.
- It is used in modeling complete electro/semiconductor effects of TSV structures, which results in 47X speedup over a commercial simulator while keeping accuracy.
Outline

- Background and motivation
- The floating random walk algorithm for capacitance extraction
- FRW based technique for the cylindrical ITVs
- Comprehensive modeling of TSVs in 3-D IC
- Conclusions
The floating random walk alg.

- Integral formula for the potential calculation
 \[\phi(r) = \int_{S_1} P_1(r, r^{(1)}) \phi(r^{(1)}) ds^{(1)} \]
 P_1 is called surface Green’s function, and can be regarded as a probability density function

- Monte Carlo method: \(\phi(r) = \frac{1}{M} \sum_{m=1}^{M} \phi_m \)
 \(\phi_m \) is the potential of a point on \(S_1 \), randomly sampled with \(P_1 \)

- What if \(\phi_m \) is unknown? expand the integral recursively
 \[\phi(r) = \int_{S_1} P_1(r, r^{(1)}) \int_{S_2} P_1(r^{(1)}, r^{(2)}) \ldots \]
 \[\int_{S_k} P_1(r^{(k-1)}, r^{(k)}) \phi(r^{(k)}) ds^{(k)} \ldots ds^{(2)} ds^{(1)} \]
 This spatial sampling procedure is called floating random walk
The floating random walk alg.

- The Markov random process + MC method prove the correctness of the FRW method
- A 2-D example with 3 walks
 - Use maximal cubic transition domain
- How to calculate capacitances?

Definition:

\[
\begin{bmatrix}
C_{11} & C_{12} & C_{13} \\
C_{12} & C_{22} & C_{23} \\
C_{13} & C_{23} & C_{33}
\end{bmatrix}
\begin{bmatrix}
V_1 \\
V_2 \\
V_3
\end{bmatrix}
= \begin{bmatrix}
Q_1 \\
Q_2 \\
Q_3
\end{bmatrix}
\]

\[Q_1 = C_{11}V_1 + C_{12}V_2 + C_{13}V_3\]

Integral for calculating charge (Gauss theorem)

\[Q_1 = \int_{G_1} F(r) \cdot \hat{n} \cdot \nabla \phi(r) \, dr = \int_{G_1} F(r) \cdot \hat{n} \cdot \nabla \int_{S_1} P_1(r, r^{(1)}) \phi(r^{(1)}) \, dr^{(1)} \, dr\]

\[= \int_{G_1} F(r) g \int_{S_1} P_1(r, r^{(1)}) \phi(r^{(1)}) \omega(r, r^{(1)}) \, dr^{(1)} \, dr\]

weight value, estimate of coefficients C_{11}, C_{12}, C_{13}

Outline

- Background and motivation
- The floating random walk algorithm for capacitance extraction
- FRW based technique for the cylindrical ITVs
- Comprehensive modeling of TSVs in 3-D IC
- Conclusions
Techniques for cylindrical ITVs

- Runtime of FRW: $T_{\text{total}} = N_{\text{walk}} \cdot N_{\text{hop}} \cdot T_{\text{hop}}$

- The ideas
 - Manhattan transition cube \rightarrow rotated transition cube
 - Larger probability to terminate; potentially smaller N_{hop}
 - If the rotated cube touching ITV is within the second smallest Manhattan cube, choose the rotated cube.

Simple extension of original FRW
Techniques for cylindrical ITVs

- The ideas
 - Traversing all cylinders increases T_{hop} for cases with many ITVs!
 - Special space management
 - Add ITV's bounding boxes to the conventional space management structure
 - The nearest block is ITV's: may use the rotated cube
 - With the second nearest block, choose valid transition cube

By setting ITV's neighbor region, we can either get the second nearest block efficiently or have a large enough transition cube

Techniques for cylindrical ITV's

- The ideas
 - Optimized Gaussian surface and importance sampling for TSV structure
 - Setting Gaussian surface the equidistance positions is preferred, but induces large variance to the weight value
 \[I_k = \int_{\Gamma_{j,k}} gF(r) \int_{S_{a}} -\frac{K_a}{gL(r)} q_a(r, r^{(1)}) \phi(r^{(1)}) dr^{(1)} dr \]
 Weight value: \[\omega_a(r, r^{(1)}) = -\frac{K_a}{gL(r)} \]

 - With compensation of \(D(r) \), the variance largely reduced
 - Analytical integral is derived for \(A' = \int_{g_j} \frac{F(r)}{D(r)} dr \)
 - Sampling on Gaussian surface with new probability density function finally accelerates the convergence rate for 10X
Techniques for cylindrical ITVs

Experimental results

Accuracy

<table>
<thead>
<tr>
<th></th>
<th>Raphael (aF)</th>
<th>newFRW (aF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSV-first(C<sub>t</sub>)</td>
<td>3740 3962 5.9%</td>
<td>3793 1.4%</td>
</tr>
<tr>
<td>TSV-last(C<sub>t</sub>)</td>
<td>3866 4065 5.1%</td>
<td>3885 0.5%</td>
</tr>
<tr>
<td>MIV(C<sub>t</sub>)</td>
<td>14.7 15.8 7.5%</td>
<td>14.8 0.7%</td>
</tr>
<tr>
<td>TSV-first(C<sub>c</sub>)</td>
<td>49.9 60.2 21%</td>
<td>50.0 0.2%</td>
</tr>
<tr>
<td>TSV-last(C<sub>c</sub>)</td>
<td>48.2 58.6 22%</td>
<td>47.9 -0.6%</td>
</tr>
<tr>
<td>MIV(C<sub>c</sub>)</td>
<td>2.06 2.24 8.7%</td>
<td>2.12 2.9%</td>
</tr>
</tbody>
</table>

0.5% criterion

1% criterion

Runtime

<table>
<thead>
<tr>
<th></th>
<th>oldFRW</th>
<th>newFRW</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSV-first(C<sub>t</sub>)</td>
<td>2.06 1.66 -19%</td>
<td></td>
</tr>
<tr>
<td>TSV-last(C<sub>t</sub>)</td>
<td>2.01 2.79 39%</td>
<td></td>
</tr>
<tr>
<td>MIV(C<sub>t</sub>)</td>
<td>0.61 1.88 3.1X</td>
<td></td>
</tr>
<tr>
<td>TSV-first(C<sub>c</sub>)</td>
<td>3.5 4.22 21%</td>
<td></td>
</tr>
<tr>
<td>TSV-last(C<sub>c</sub>)</td>
<td>4.2 5.11 22%</td>
<td></td>
</tr>
<tr>
<td>MIV(C<sub>c</sub>)</td>
<td>2.6 6.83 2.6X</td>
<td></td>
</tr>
</tbody>
</table>

- The proposed technique scarifies affordable runtime to achieve higher accuracy.
Techniques for cylindrical ITVs

- Experimental results
 - Comparison with fast BEMs

<table>
<thead>
<tr>
<th></th>
<th>FastCap*</th>
<th></th>
<th>QBEM*</th>
<th></th>
<th>newFRW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Err</td>
<td>time(s)</td>
<td>Mem.</td>
<td>Err</td>
<td>time(s)</td>
</tr>
<tr>
<td>TSV-first(C)<sub>t</sub></td>
<td>-0.8%</td>
<td>67.3</td>
<td>1.8GB</td>
<td>-3.7%</td>
<td>402</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.6GB</td>
<td>1.66</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>~1MB</td>
<td>40</td>
</tr>
<tr>
<td>TSV-last(C)<sub>t</sub></td>
<td>-3.4%</td>
<td>79</td>
<td>1.9GB</td>
<td>-4.1%</td>
<td>404</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.7GB</td>
<td>2.79</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>~1MB</td>
<td>28</td>
</tr>
<tr>
<td>TSV-first(C)<sub>c</sub></td>
<td>30%</td>
<td>67.3</td>
<td>1.8GB</td>
<td>-3.8%</td>
<td>298</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.9GB</td>
<td>4.22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>~1MB</td>
<td>18</td>
</tr>
<tr>
<td>TSV-last(C)<sub>c</sub></td>
<td>34%</td>
<td>79</td>
<td>1.9GB</td>
<td>-4.4%</td>
<td>299</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.0GB</td>
<td>5.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>~1MB</td>
<td>16</td>
</tr>
</tbody>
</table>

- Scalability to large-scale cases

<table>
<thead>
<tr>
<th></th>
<th>FRW(non-rotate)</th>
<th>newFRW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N<sub>walk</sub></td>
<td>N<sub>hop</sub></td>
</tr>
<tr>
<td>TSV-first</td>
<td>2.3M</td>
<td>37.6</td>
</tr>
<tr>
<td>TSV-last</td>
<td>2.2M</td>
<td>37.4</td>
</tr>
<tr>
<td>MIV</td>
<td>224K</td>
<td>23.6</td>
</tr>
<tr>
<td>100TSV</td>
<td>6.0M</td>
<td>36.0</td>
</tr>
<tr>
<td>400TSV</td>
<td>6.0M</td>
<td>36.0</td>
</tr>
<tr>
<td>576MIV</td>
<td>149K</td>
<td>13.0</td>
</tr>
</tbody>
</table>

*approximate cylinder with 16-side prism

Favorable speedup
Huge memory save

random TSV layout
Techniques for cylindrical ITV

- **Experimental results**
 - For large-scale cases, Raphael and FastCap don’t work due to runtime and memory usage limitations
 - For case 576MIV, FRW is 192X faster than QBEM
 - Multi-dielectric cases
 - Speedup to QBEM is up to 143X
 - Verified accuracy with Raphael

<table>
<thead>
<tr>
<th></th>
<th>QBEM</th>
<th></th>
<th></th>
<th>newFRW</th>
<th></th>
<th></th>
<th>Sp.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cap.</td>
<td>Mem.</td>
<td>Time(s)</td>
<td>Cap.</td>
<td>Error</td>
<td>Mem.</td>
<td>Time(s)</td>
</tr>
<tr>
<td>TSV-first</td>
<td>32.56</td>
<td>11GB</td>
<td>534</td>
<td>33.9</td>
<td>1.5%</td>
<td>22MB</td>
<td>3.73</td>
</tr>
<tr>
<td>TSV-last</td>
<td>30.96</td>
<td>5.2GB</td>
<td>188</td>
<td>33.2</td>
<td>0.9%</td>
<td>22MB</td>
<td>8.04</td>
</tr>
<tr>
<td>MIV</td>
<td>0.146</td>
<td>581MB</td>
<td>18.4</td>
<td>0.148</td>
<td>1.4%</td>
<td>22MB</td>
<td>2.33</td>
</tr>
<tr>
<td>TSV-first2</td>
<td>31.88</td>
<td>8.8GB</td>
<td>400</td>
<td>33.5</td>
<td>1.9%</td>
<td>22MB</td>
<td>7.62</td>
</tr>
<tr>
<td>144MIV</td>
<td>0.276</td>
<td>856MB</td>
<td>35.9</td>
<td>0.292</td>
<td>--</td>
<td>23MB</td>
<td>6.33</td>
</tr>
<tr>
<td>576MIV</td>
<td>0.29</td>
<td>6.7GB</td>
<td>344</td>
<td>0.291</td>
<td>--</td>
<td>25MB</td>
<td>5.69</td>
</tr>
</tbody>
</table>

For pre-built GFTs and WVTs
Outline

- Background and motivation
- The floating random walk algorithm for capacitance extraction
- FRW based technique for the cylindrical TSVs
- Comprehensive modeling of TSVs in 3-D IC
- Conclusions
Comprehensive modeling of TSVs

- RC circuit model for analyzing the signal integrity on TSVs (e.g. on a “victim” TSV)
 - Considers both electrostatic and semiconductor effects

\[R_{si} = \frac{\varepsilon_{si}}{\sigma_{si} C_{si}} \]

- \(C_{si} \): electrostatic cap.
- \(C_{tsv} \): MOS cap.

Couplings among 'A' TSVs not shown
Comprehensive modeling of TSVs

- **Extraction algorithm flow**
 - Input geometry/material information, the voltages of TSVs
 - Extract C_{si}’s with the FRW based capacitance solver
 - Extract C_{TSV}’s with an analytical method

- An algorithm calculating the total lump capacitance of a victim TSV

Input: Equivalent RC circuit of the structure, signal frequency ω;
Output: The total lump capacitance of victim TSV C_1.

1. $Y_m = j\omega C_{si} + 1/R_{si}$;
2. For ($i=2$; $i \leq n$; $i++$) // n is the number of TSVs

 $Y_i = j\omega C_{tsv,i} + j\omega C_{sig,i} + 1/R_{sig,i}$;

 $Y_m = Y_m + (j\omega C_{si,i} + 1/R_{si,i}) Y_i / (j\omega C_{si,i} + 1/R_{si,i} + Y_i)$;

 EndFor;
3. $Y_1 = j\omega C_{tsv,1} Y_m / (j\omega C_{tsv,1} + Y_m)$;
4. $C_1 = \text{real}(Y_1 / (j\omega))$;

Suitable for arbitrary TSV/interconnect layout

Comprehensive modeling of TSVs

- Experimental results
 - Copper TSVs embedded in a P-Si substrate
 - \[
 \begin{array}{c|c|c|c}
 R_{\text{metal}} (\mu m) & R_{\text{ox}} (\mu m) & l_{\text{TSV}} (\mu m) & N_a (\text{cm}^{-3}) \\
 \hline
 2.5 & 2.6182 & 20 & 2 \times 10^{15} \\
 \end{array}
 \]
 - Compared with Sdevice, using FEM for electro/semi simulation

- Results for structures with multiple TSVs
 - Capacitance trends vs. f and \(V_{\text{TSV}}\)
 - Error is within 5%

\[\sim 47X \text{ speedup in runtime comparison}\]
Outline

- Background and motivation
- The floating random walk algorithm for capacitance extraction
- FRW based technique for the cylindrical TSVs
- Comprehensive modeling of TSVs in 3-D IC
- Conclusions
Conclusions

- Extend the FRW algorithm to fast and accurately extract the capacitances of high-density ITVs in 3-D ICs
 - With the *rotated transition cube, a special space management* and *an optimized importance sampling* techniques, the proposed method can be over 200X faster than a simple extension of original FRW solver
- The solver is combined with analytical model to simulate electrostatic/semiconductor effects of TSV structures
- Reference
Thank You!

Wenjian Yu / Tsinghua University, China

Codes are shared on
http://numbda.cs.tsinghua.edu.cn
Email: Yu-wj@tsinghua.edu.cn