

Efficient Capacitance Modeling and Extraction for the Cylindrical Inter-Tier-Vias in 3-D ICs

Wenjian Yu

Department of Computer Science & Technology, *Tsinghua University*, Beijing 100084, China Dec. 16, 2017

- Background and motivation
- The floating random walk algorithm for capacitance extraction
- FRW based technique for the cylindrical ITVs
- Comprehensive modeling of TSVs in 3-D IC
- Conclusions

- 3-D IC: a promising solution offering a path beyond the Moore's law
- Two types of vertical integrating for 3-D IC
 - Die stacking using through-silicon-via (TSV)
 - Monolithic integration using monolithic inter-tier-via (MIV)

The problem

- The inter-tier-vias (viz. TSV and MIV) play a critical role in 3-D ICs to deliver signal and power
- Their related parasitics need accurate modeling (rising number of analog effects, narrowed performance margins)

Extraction of ITV capacitances

- Most works focused on TSV's equivalent model and its MOS capacitance, instead of the electrostatic coupling among TSVs and horizontal wires
- [T-CPMT 2011]¹ reveals the electrostatic cap. can be comparable to the MOS cap.; The *analytical* technique is based on square-shape TSV, and has >20% error

Actual ITV is more like a cylinder in geometry

- □ TSV-first, TSV-last, TSV-middle, etc.
- □ Large size (diameter~ 5μ m), large aspect ratio (~10)
- \square In exiting work, calculation of C_{TT} and C_{TD} investigated

not considering the wires surrounded laterally and vertically

Monolithic 3-D IC similar to TSV-first; smaller-size MIV
 Larger density of MIV; larger aspect ratio than local via

Cylindrical ITV, or square-shape ITV?

The error of square-shape approximation

High-precision capacitance extraction -- Field Solver

Finite difference/finite element method

Stable, versatile; slow

Boundary element method

- Fast for small/medium size cases
- Polyhedron approximation; discretization
- Floating random walk method
 - Stable (discretization-free); Scalable (low memory cost),
 - Only efficient for Manhattan structures
- None of the fast solvers directly and efficiently handle the structure with *cylindrical* ITVs

W. Yu, et al., "Enhanced QMM-BEM solver for 3-D multiple-dielectric capacitance extraction within finite domain," *IEEE T-MTT*, 2004
 W. Yu, et al., "RWCap: A floating random walk solver for 3-D capacitance extraction of VLSI interconnects," *IEEE T-CAD*, 2013

Raphael, Q3D

QuickCap/Rapid3D, RWCap²

FastCap, Act3D, QBEM¹

Our work

- The *first* capacitance field solver that can directly handle cylindrical ITVs without any geometric approximation
- It can be tens to hundreds times faster than fast BEM solvers for TSV or large MIV structures, with great memory saving and more stable accuracy
- It is used in modeling complete electro/semiconductor effects of TSV structures, which results in 47X speedup over a commercial simulator while keeping accuracy

- Background and motivation
- The floating random walk algorithm for capacitance extraction
- FRW based technique for the cylindrical ITVs
- Comprehensive modeling of TSVs in 3-D IC
- Conclusions

The floating random walk alg.

Integral formula for the potential calculation

$$\phi(\boldsymbol{r}) = \oint_{S_1} P_1(\boldsymbol{r}, \boldsymbol{r}^{(1)}) \phi(\boldsymbol{r}^{(1)}) ds^{(1)}$$

 P_1 is called surface Green's function, and can be regarded as a probability density function

• Monte Carlo method: $\phi(\mathbf{r}) = \frac{1}{M} \sum_{m=1}^{M} \phi_m$

 ϕ_m is the potential of a point on S₁, randomly sampled with P₁

• What if ϕ_{m} is unknown? expand the integral recursively $\phi(\mathbf{r}) = \oint_{S_1} P_1(\mathbf{r}, \mathbf{r}^{(1)}) \oint_{S_2} P_1(\mathbf{r}^{(1)}, \mathbf{r}^{(2)}) \cdots$ This spatial sampling procedure is called $\oint_{S_k} P_1(\mathbf{r}^{(k-1)}, \mathbf{r}^{(k)}) \phi(\mathbf{r}^{(k)}) ds^{(k)} \cdots ds^{(2)} ds^{(1)}$ floating random walk

The floating random walk alg.

- The Markov random process + MC method prove the correctness of the FRW method
- A 2-D example with 3 walks Use maximal cubic transition domain.
- How to calculate capacitances?

Definition: $\begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{12} & C_{22} & C_{23} \\ C_{13} & C_{23} & C_{33} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \\ V_3 \end{bmatrix} = \begin{bmatrix} Q_1 \\ Q_2 \\ Q_3 \end{bmatrix} \xrightarrow{a_1} Q_1 = C_{11}V_1 + C_{12}V_2 + C_{13}V_3$ (picture from $Q_1 = C_{11}V_1 + C_{12}V_2 + C_{13}V_3$ (picture from [1]) Integral for calculating charge (Gauss theorem)

$$Q_{1} = \oint_{G_{1}} F(\boldsymbol{r}) \cdot \hat{\boldsymbol{n}} \cdot \nabla \phi(\boldsymbol{r}) d\boldsymbol{r} = \oint_{G_{1}} F(\boldsymbol{r}) \cdot \hat{\boldsymbol{n}} \cdot \nabla \oint_{S_{1}} P_{1}(\boldsymbol{r}, \boldsymbol{r}^{(1)}) \phi(\boldsymbol{r}^{(1)}) d\boldsymbol{r}^{(1)} d\boldsymbol{r}$$
$$= \oint_{G_{1}} F(\boldsymbol{r}) g \oint_{S_{1}} P_{1}(\boldsymbol{r}, \boldsymbol{r}^{(1)}) \phi(\boldsymbol{r}^{(1)}) \omega(\boldsymbol{r}, \boldsymbol{r}^{(1)}) d\boldsymbol{r}^{(1)} d\boldsymbol{r}$$
weight value, estimate of C₁₁, C₁₂, C₁₃ coefficients

[1] Y. Le Coz, et al., "A stochastic algorithm for high speed capacitance extraction in integrated circuits," Solid-State Electronics, 11 1992

- Background and motivation
- The floating random walk algorithm for capacitance extraction
- FRW based technique for the cylindrical ITVs
- Comprehensive modeling of TSVs in 3-D IC
- Conclusions

- Runtime of FRW: $T_{total} = N_{walk} \cdot N_{hop} \cdot T_{hop}$
- The ideas

Top view

 \square Manhattan transition cube \rightarrow rotated transition cube

Simple extension of original FRW

- Larger probability to terminate; potentially smaller N_{hop}
- If the rotated cube touching ITV is within the second smallest Manhattan cube, choose the rotated

The ideas

cube L3

- Traversing all cylinders increases T_{hop} for cases with many ITVs !
- Special space management

cube L₂

cube L_1

Add ITV's bounding boxes to the conventional space management structure¹

cube L_2

- The nearest block is ITV's: may use the rotated cube
- With the second nearest block, choose valid transition cube

By setting ITV's neighbor region, we can either get the second nearest block efficiently or have a large enough transition cube

[1] C. Zhang, et al., "Efficient space management techniques for large-scale interconnect capacitance extraction with floating 14 random walks," IEEE T-CAD, 2013

cube L_1

The ideas

- Optimized Gaussian surface and importance sampling for TSV structure
 - Setting Gaussian surface the equidistance positions is preferred, but induces large variance to the weight value

master

$$I_{k} = \int_{\Gamma_{j,k}} gF(\mathbf{r}) \int_{S_{a}} -\frac{\kappa_{a}}{gL(\mathbf{r})} q_{a}(\mathbf{r}, \mathbf{r}^{(1)}) \phi(\mathbf{r}^{(1)}) d\mathbf{r}^{(1)} d\mathbf{r} \qquad \text{Weight value: } \omega_{a}(\mathbf{r}, \mathbf{r}^{(1)}) = -\frac{\kappa_{a}}{gL(\mathbf{r})}$$

$$I_{k} = A' \int_{\Gamma_{j,k}} \frac{F(\mathbf{r})}{A'D(\mathbf{r})} \cdot gD(\mathbf{r}) \int_{S_{a}} -\frac{K_{a}}{gL(\mathbf{r})} q_{a}(\mathbf{r}, \mathbf{r}^{(1)}) \phi(\mathbf{r}^{(1)}) d\mathbf{r}^{(1)} d\mathbf{r} \quad \Longrightarrow \quad \omega_{a}(\mathbf{r}, \mathbf{r}^{(1)}) = -\frac{A'K_{a}D(\mathbf{r})}{L(\mathbf{r})}$$

 $D(\mathbf{r})$ is the distance from \mathbf{r} to TSV/

- With compensation of D(r), the variance largely reduced
- Analytical integral is derived for $A' = \int_{G_i} \frac{F(\mathbf{r})}{D(\mathbf{r})} d\mathbf{r}$
- Sampling on Gaussian surface with new probability density function finally accelerates the convergence rate for 10X

better sidewall

Experimental results

Accuracy		Rap	h ael (al	F)	newFR	W(aF)
		cylinder	square	Err	cylinder	_Err_
• =•/ · · ·	TSV-first(C _t)	3740	3962	5.9%	3793	1.4%
0.5% criterion	$TSV-last(C_t)$	3866	4065	5.1%	3885	0.5%
	$MIV(C_t)$	14.7	15.8	7.5%	14.8	0.7%
1% critorion	TSV-first(C _c)	49.9	60.2	21%	50.0	0.2%
	TSV-last(C _c)	48.2	58.6	22%	47.9	-0.6%
	$MIV(C_c)$	2.06	2.24	8.7%	2.12	2.9%

Runtime oldFRW newFRW

	square	cylinder	INC.
TSV-first(C _t)	2.06	1.66	-19%
$TSV-last(C_t)$	2.01	2.79	39%
$MIV(C_t)$	0.61	1.88	3.1X
TSV-first(C_c)	3.5	4.22	21%
$TSV-last(C_c)$	4.2	5.11	22%
$MIV(C_{c})$	2.6	6.83	2.6X

 The proposed technique scarifies affordable runtime to achieve higher accuracy

Experimental results

Comparison with fast BEMs

Favorable speedup

Huge memory save FastCap' QBEM* newFRW time(s) Mem. Err time(s) Mem. time(s) Mem. Sp1 Sp2 Err TSV-first(C_t) -0.8% 67.3 1.8GB -3.7% 402 7.6GB 1.66 ~1MB 40 242 TSV-last(C_t) -3.4% 79 1.9GB -4.1% 404 7.7GB 2.79 ~1MB 145 28 TSV-first(C_c) 30% 67.3 1.8GB - 3.8% 298 5.9GB 4.22 ~1MB 18 71 TSV-last(C_c) 34% 1.9GB -4.4% 79 299 6.0GB 5.11 ~1MB 16 59

*approximate cylinder with 16-side prism

Scalability to large-scale cases

			0				
	FRW(non-i	rotate)	newFRW			
	N _{walk}	N _{hop}	time(s)	N _{walk}	N _{hop}	time(s)	Sp.
TSV-first	2.3M	37.6	42.0	2.3M	11.8	1.66	25
TSV-last	2.2M	37.4	36.1	2.2M	11.8	2.79	13
MIV	224K	23.6	2.08	241K	16.7	1.88	1_1
100TSV	6.0M	36.0	231	6.0M	11.5	2.64	/88
400TSV	6.0M	36.0	710	5.9M	11.5	3.09	230
576MIV	149K	13.0	11.4	152K	11.2	1.5	7.7/

Experimental results

 For large-scale cases, Raphael and FastCap don't work due to runtime and memory usage limitations

Multi-layered

- □ For case 576MIV, FRW is 192X faster than QBEM
- Multi-dielectric cases
 - dielectrics
 Speedup to QBEM is up to 143X

Verified accuracy with Raphael

- Background and motivation
- The floating random walk algorithm for capacitance extraction
- FRW based technique for the cylindrical TSVs
- Comprehensive modeling of TSVs in 3-D IC>
- Conclusions

Comprehensive modeling of TSVs

- RC circuit model for analyzing the signal integrity on TSVs (e.g. on a "victim" TSV)
 - Considers both electrostatic and semiconductor effects

Comprehensive modeling of TSVs

Extraction algorithm flow

- Input geometry/material information, the voltages of TSVs
- Extract C_{si}'s with the FRW based capacitance solver
- Extract C_{TSV}'s with an analytical method¹
- An algorithm calculating the total lump capacitance of a victim TSV

Input: Equivalent RC circuit of the structure, signal frequency ω ; Ouput: The total lump capacitance of victim TSV C₁.

- 1. $Y_m = j\omega C_{si, gl} + 1/R_{si, gl};$
- 2. For (i=2; i ≤ n; i++) // n is the number of TSVs $Y_{i=j\omega C_{tsv,i} + j\omega C_{sig,i} + 1/R_{sig,i};$ $Y_{m}=Y_{m} + (j\omega C_{si,1i}+1/R_{si,1i})Y_{i}/(j\omega C_{si,1i}+1/R_{si,1i}+Y_{i});$ EndFor:
- 3. $Y_1 = j\omega C_{tsv,1} Y_m / (j\omega C_{tsv,1} + Y_m);$
- C₁=real(Y₁/(jω));

Suitable for arbitrary TSV/ interconnect layout

Comprehensive modeling of TSVs

Experimental results

Copper TSVs embedded in a P-Si substrate

R_{metal} (µm)	$R_{ox}(\mu m)$	$l_{TSV}(\mu m)$	N_a (cm ⁻³)
2.5	2.6182	20	2×10^{15}

Compared with Sdevice, using FEM for electro/semi simulation

Results for structures with multiple TSVs

- Capacitance trends vs. f and V_{TSV}
- Error is within 5%

	~ 47X	speed	up in	runtime	comparison
--	-------	-------	-------	---------	------------

Casa	Sde	evice	Proposed method		
Case	#Grid	Time(s)	Time(s)	Speedup	
2-TSV	3476	52.5	159.7	0.33X	
5-TSV	8464	147.8	13.8	11X	
9-TSV	14562	236.3	5.0	47X	

- Background and motivation
- The floating random walk algorithm for capacitance extraction
- FRW based technique for the cylindrical TSVs
- Comprehensive modeling of TSVs in 3-D IC

Conclusions

- Extend the FRW algorithm to fast and accurately extract the capacitances of high-density ITVs in 3-D ICs
 - □ With the rotated transition cube, a special space management and an optimized importance sampling techniques, the proposed method can be over 200X faster than a simple extension of original FRW solver
- The solver is combined with analytical model to simulate electrostatic/semiconductor effects of TSV structures

Reference

- Chao Zhang, Wenjian Yu, Qing Wang, and Yiyu Shi, "Fast random walk based capacitance extraction for the 3-D IC structures with cylindrical inter-tiervias," IEEE Trans. Computer-Aided Design, 34(12): 1977-1990, 2015.
- Qiang Yao, Zuochang Ye, Wenjian Yu, "An efficient method for comprehensive modeling and parasitic extraction of cylindrical through-silicon vias in 3D ICs," Journal of Semiconductor, 36(8): 085006-1~7, 2015.

Thank You !

Wenjian Yu / Tsinghua University, China

Codes are shared on http://numbda.cs.tsinghua.edu.cn Email: Yu-wj@tsinghua.edu.cn