

Efficient Algorithms for Resistance and Capacitance Calculation Problems in the Design of Flat Panel Display

Wenjian Yu¹ and Taotao Lu²

¹Department of Computer Science and Technology Tsinghua University ²Huada Empyrean Software Co., Ltd. Oct. 28, 2017

Outline

Background of FPD Design Automation

A Hybrid Method for Calculating Wire Resistance
 Floating Random Walk Based Capacitance Solver
 Conclusions

Background

We are surrounded by FPDs

- □ Very-large, high-brightness displays
- □ Small-area, high-resolution, low-power
- Thin-film transistor (TFT) based active matrix technology
- □ LCD, OLED with glass/plastic substrate
- Designing high-performance/low-cost FPDs
- The CAD flow for FPD Design
 - Wire resistance and capacitance need be calculated to validate the signal timing and high display quality

Background

The difference to the parasitic extraction of VLSI circuit

- The proximity of interconnect wires is less, so that capacitance is smaller and contributes less to signal delay
- Instead of pursuing small delay, the object in FPD design is keeping almost equal signal delay to display pixels
 Wire resistance calculation is important

Touch panel technology

- □ Largely enhance the interactivity and user experience
- TP-FPD includes more complex internal structure
- Capacitive touch sensor has advantages in durability, reliability and capability
- Accurate capacitance calculation is needed

Background

Our contributions

- □ A resistance calculation technique for FPD wire design
- A capacitance calculation technique for TP design
- They are more efficient than existing techniques, and are applied to actual FPD and TP-FPD designs

Outline

Background of FPD Design Automation

A Hybrid Method for Calculating Wire Resistance
 Floating Random Walk Based Capacitance Solver
 Conclusions

Structure characteristics

- Narrow routing area and equal-resistance object make wires with very complex geometry
- □ Since planar manufactory technology is employed, the wire geometry can often be regarded as a 2-D structure

2-D boundary element method

- With an automatic boundary partition approach, it works well for some small structures
- For the long-wire structure, a lot of unknowns involved
- An analytical-BEM coupled approach
 - Follows the divide-and-conquer idea
 - Divide the wire into some portions with long rectangle shape and the remaining portions
 - The rectangle part is solved with analytical formula
 - The remain parts are solved with BEM individually
 - □ Their results are combined to get the final result

Algorithm 1: The analytical-BEM coupled approach

 $1: \mathbf{R} := 0;$

- 2: Calculate the tilt angle θ_i , (*i*=1, ..., *n*) of all outer-loop edges of the wire profile;
- 3: For i=1,...,n //*n* is the number of outer-loop vertices
- 4: **For** j=i+1,...,n
- 5: If $|\theta_i \theta_i| < \theta_{tol}$, then
- 6: Calculate the valid rectangle;
- 7: If there is a rectangle with length/width ratio> η , then
- 8: Obtain a long-wire rectangle by cutting length of 3X width from the both ends of the valid rectangle;
- 9: Calculate resistance R_{rec} of the long-wire rectangle;
- 10: $R := R + R_{rec};$
- 11: Cut off the long-wire rectangle, and adjust ports;
- 12: **Endif**
- 13: **Endif**
- 14: **Endfor**
- 15:Endfor

16:For each left portion of the wire,

17: Use BEM to calculate resistance R_{lef} ;

- 18: $R := R + R_{lef};$
- 19:EndFor

- Numerical results of Res2d
 - Use LAPACK to solve Ax=b in BEM
 - Experiments on a Linux server with Xeon 6-core CPU
 - \Box Several FPD wires are calculated (assuming σ =1)
 - Results compared with Raphael RC2 (golden tool)

	Raphael RC2			Res2d				
Case	#orid	R	Time	#alamont	R	Error	Time	
	#gria	$(\Omega \cdot \mu m)$	(s)	#element	(Ω·µm)	(%)	(s)	
1	703K	4.158	2513.4	3873	4.183	0.60	5.54	
2				1547	261.2		1.48	300X~400X
3	100K	91.43	82.3	848	90.87	-0.61	0.25	Faster!
4	57K	2.092	40.1	280	2.08	-0.57	0.01	1 <i>uster</i> .
5				3931	1770		5.92	

Numerical results of Res2d (a real design)

Res2d costs 15.3 seconds to calculate the resistance. The result is 18.138 Ω , which well matches the result from a third-party solver based on FEM.

Outline

Background of FPD Design Automation

A Hybrid Method for Calculating Wire Resistance
 Floating Random Walk Based Capacitance Solver
 Conclusions

Structure complexity

- Touch sensor, FPD wires, finger stylus
- Calls for 3-D field-solver solution
- Methods for 3-D capacitance solver
 - Finite difference/finite element method
 - □ Stable, versatile; slow

Boundary element method

- Fast, handle complex geometry
- Not scalable, need discretization (may affect accuracy)

Ax = b

- □ Floating random walk method
 - □ Scalable for large problem (low memory cost)
 - No discretization of problem domain (stable accuracy)

FastCap, Act3D QBEM/HBBEM

QuickCap/Rapid3D, RWCap

The basics of FRW method

Integral formula for the electrostatic potential

$$\phi(\boldsymbol{r}) = \oint_{S_1} P_1(\boldsymbol{r}, \boldsymbol{r}^{(1)}) \phi(\boldsymbol{r}^{(1)}) ds^{(1)}$$

P₁ is called surface Green's function, and can be regarded as a probability density function $\Box \text{ Monte Carlo method: } \phi(r) = \frac{1}{M} \sum_{m=1}^{M} \phi_m$

Transition domain

 $\phi_{m} \text{ is the potential of a point on } S_{1}, \text{ randomly sampled with } P_{1}$ $\square \text{ What if } \phi_{m} \text{ is unknown? expand the integral recursively }$ $\phi(\boldsymbol{r}) = \oint_{S_{1}} P_{1}(\boldsymbol{r}, \boldsymbol{r}^{(1)}) \oint_{S_{2}} P_{1}(\boldsymbol{r}^{(1)}, \boldsymbol{r}^{(2)}) \cdots$ $for a point on S_{1}, \text{ randomly sampled with } P_{1}$ $\phi(\boldsymbol{r}) = \oint_{S_{1}} P_{1}(\boldsymbol{r}, \boldsymbol{r}^{(1)}) \oint_{S_{2}} P_{1}(\boldsymbol{r}^{(1)}, \boldsymbol{r}^{(2)}) \cdots$ $for a point on S_{1}, \text{ randomly sampled with } P_{1}$ $\phi(\boldsymbol{r}) = \oint_{S_{1}} P_{1}(\boldsymbol{r}, \boldsymbol{r}^{(1)}) \oint_{S_{2}} P_{1}(\boldsymbol{r}^{(1)}, \boldsymbol{r}^{(2)}) \cdots$ $for a point on S_{1}, \text{ randomly sampled with } P_{1}$ $\phi(\boldsymbol{r}) = \oint_{S_{1}} P_{1}(\boldsymbol{r}, \boldsymbol{r}^{(1)}) \oint_{S_{2}} P_{1}(\boldsymbol{r}^{(1)}, \boldsymbol{r}^{(2)}) \cdots$ $for a point on S_{1}, \text{ randomly sampled with } P_{1}$ $\phi(\boldsymbol{r}) = \oint_{S_{1}} P_{1}(\boldsymbol{r}, \boldsymbol{r}^{(1)}) \oint_{S_{2}} P_{1}(\boldsymbol{r}^{(1)}, \boldsymbol{r}^{(2)}) \cdots$ $for a point on S_{1}, \text{ randomly sampled with } P_{1}$ $for a point on S_{1}, \text{ randomly sampled with } P_{1}$ $\phi(\boldsymbol{r}) = \oint_{S_{1}} P_{1}(\boldsymbol{r}, \boldsymbol{r}^{(1)}) \oint_{S_{2}} P_{1}(\boldsymbol{r}^{(1)}, \boldsymbol{r}^{(2)}) \cdots$ $for a point of a point on S_{1}, \text{ randomly sampled with } P_{1}$ $for a point of a point on S_{1}, \text{ randomly sampled with } P_{1}$ $\phi(\boldsymbol{r}) = \oint_{S_{1}} P_{1}(\boldsymbol{r}, \boldsymbol{r}^{(1)}) \oint_{S_{2}} P_{1}(\boldsymbol{r}^{(1)}, \boldsymbol{r}^{(2)}) \cdots$ $for a point of a point of a point on S_{1}, \text{ randomly sampled with } P_{1}$ $for a point of a point of a point on S_{1}, \text{ randomly sampled with } P_{1}$ $for a point of a point of a point of a point on S_{1}, \text{ randomly sampled with } P_{1}$ for a point of a poin

- The Markov random process + MC method prove the correctness of the FRW method
- A 2-D example with 3 walks
 Use maximal cubic transition domain
 How to calculate capacitances?
 C₁₁ C₁₂ C₁₃ V₁ Q₁

Definition: $\begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{12} & C_{22} & C_{23} \\ C_{13} & C_{23} & C_{33} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \\ V_3 \end{bmatrix} = \begin{bmatrix} Q_1 \\ Q_2 \\ Q_3 \end{bmatrix} \longrightarrow Q_1 = C_{11}V_1 + C_{12}V_2 + C_{13}V_3$

Integral for calculating charge (Gauss theorem)

$$Q_{1} = \oint_{G_{1}} F(\boldsymbol{r}) \cdot \hat{n} \cdot \nabla \phi(\boldsymbol{r}) d\boldsymbol{r} = \oint_{G_{1}} F(\boldsymbol{r}) \cdot \hat{n} \cdot \nabla \oint_{S_{1}} P_{1}(\boldsymbol{r}, \boldsymbol{r}^{(1)}) \phi(\boldsymbol{r}^{(1)}) ds^{(1)} ds$$
$$= \oint_{G_{1}} F(\boldsymbol{r}) g \oint_{S_{1}} P_{1}(\boldsymbol{r}, \boldsymbol{r}^{(1)}) \phi(\boldsymbol{r}^{(1)}) \omega(\boldsymbol{r}, \boldsymbol{r}^{(1)}) ds^{(1)} ds \qquad \text{weight value, estimate of} \\ C_{11}, C_{12}, C_{13} \text{ coefficients} \end{cases}$$

- The secrets of fast FRW solver for VLSI interconnects
 - Cubic transition domain fits geometry
 - Numerically pre-calculate transition probabilities and weight values
 - Importance sampling; placement of Gaussian surface; space management

Differences in VLSI design & TP-FPD design

Cap. Extract. for VLSI vs. Cap. Simul. for TP-FPD

Conductor	Mostly Manhattan	Generally non-		
geometry	shape, with moderate	Manhattan shape, with		
geometry	aspect ratio	very large aspect ratio		
Dielectric	On-chip dielectric	In-device dielectrics and		
anvironment	insulators; relatively	out-device air; arbitrary		
environment	fixed dielectric profile	dielectric configuration		
Accuracy	Mainly self-capacitance	Need accurate coupling		
demand	for delay calculation	capacitances		

Proposed techniques

- Geometry engine for non-Manhattan metal shape, which allows planar rotation of transition cube
- A unified dielectric pre-characterization approach
 - Dielectric homogenization or a new approach?

Works only if the permittivity ratio \leq 2, and Has larger error

Pre-characterize the two-dielectric configurations with $0.1 \le r < 1$; Allows permittivity ratio up to 10 !

Proposed techniques

A unified dielectric pre-characterization approach

- Experimental results with 3 TP-FPD structures
- □ Dielectric permittivity ranges from 1.0 to 7.0

Case	RWC	ap [13]	Proposed method			Homogenization [9]		
	Time	Mem.	Time	Mem.	Error	Time	Mem.	Error
1	2.3s	9.6MB	2.4s	12.4MB	<0.1%	2.8s	251MB	<0.1%
2	539s	5.7MB	530s	11.2MB	<0.1%	629s	250MB	<0.1%
3	222s	21 MB	227s	34.7MB	0.01%	40.3s	273MB	-13%

- □ Homogenization approach with modification has large error
- □ The new approach is accurate and consumes less memory
- With only 177MB pre-characterization data, it suits to any dielectric profile of TP-FPD technology

Proposed techniques

Parallel simulation on a computer cluster

- For accurately calculating the coupling capacitances, further acceleration is necessary
- Develop a parallel FRW algorithm for distributed computing

Proposed techniques

- Parallel simulation on a computer cluster
 - Implemented with MPI on a homogenous cluster
 - \Box Three test cases are run with 0.1% 1- σ error

With 120 processes, the speedup is 91X, 111X and 113X

Notice in our previous work [GLSVLSI'2016], the speedup is at most 67X, under same settings

Outline

Background of FPD Design Automation

A Hybrid Method for Calculating Wire Resistance
 Floating Random Walk Based Capacitance Solver
 Conclusions

Conclusions

- Efficient resistance/capacitance calculation techniques have been developed for the design of high-quality FPD and TP-FPD
- The applications in Empyrean CAD toolset validated their effectiveness and practicality
- They have brought benefits to the time-to-market and yield of FPD products

Thank You !

Wenjian Yu / Tsinghua University, China http://numbda.cs.tsinghua.edu.cn