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Monte Carlo Methods

 Early History

 Probability was first used to understand games 
of chance

 Pascal, Fermat, Huygens, Jacob Bernoulli, 
Laplace (1812: Théorie Analytique des Probabilités)

 Buffon Needle Problem (1777)

 drop a needle on a lined surface

   2n/m, where n is the count 
of experiments, m is count of 
intersection of needle and grid 
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Monte Carlo Methods

 Modern Monte Carlo Method

 Fermi, Ulam, von Neumann, Metropolis, et al., in 
Los Alamos National Lab

 1930’s, sampling used to estimate quantities in 
controlled fission / thermonuclear reaction

 The Name: Ulam’s uncle would borrow money 
from the family by saying that “I just have to go 
to Monte Carlo”

 After the world war II, digital computer 
becomes perfect for “statistical sampling”
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Monte Carlo Methods

 Classic Examples -- Integration

 Conventional quadrature has the drawback of “the curse 
of dimensionality” while calculating high-dimensional

 Estimate with a Monte Carlo process 

 random variable: 𝑥𝑖 ~ U[0, 1]

 the score: 𝑓(𝑥𝑖)

  measures error of  𝐼

𝐼 =  
0

1

𝑓 𝑥 𝑑𝑥

𝐼 ≈  𝐼 =
1

𝑛
 

𝑖=1

𝑛

𝑓(𝑥𝑖)

Estimate I with the average

𝐼 ≈ 

𝑖=1

𝑘

𝑤𝑖𝑓(𝑥𝑖)

 𝐼 ~ N(I, 2),

𝜎 ≡ 𝑣𝑎𝑟(  𝐼) = 𝑣𝑎𝑟 𝑓(𝜉) /𝑛, 𝑣𝑎𝑟 𝑓(𝜉) ≈
1

𝑛−1
 𝑖=1
𝑛 𝑓 𝑥𝑖 −  𝐼
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Monte Carlo Methods

 Classic Examples -- Linear algebra
 𝑆 =  𝑖=1

𝑚 𝑎𝑖 , define probabilites {𝑝𝑖} for index 𝑖,  𝑝𝑖 = 1

 𝑆 =  𝑝𝑖(𝑎𝑖/𝑝𝑖),  i.e., S is the statistical mean of  
𝑎𝑖

𝑝𝑖
if 𝑎𝑖 is 

chosen with probability 𝑝𝑖. 

 Similar method applies to 𝑆 =  𝑖=1
𝑚 𝑎𝑖𝑥𝑖

 Under certain condition, can even be use to solve a 
solution component of 𝒙 = 𝑨𝒙 + 𝒃,   𝜌 𝑨 < 1

𝐼 ≈  𝐼 =
1

𝑛
 

𝑖=1

𝑛

𝑓(𝑥𝑖)  𝐼 ~ N(I, 2)

𝐼

 𝐼’s distribution
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Monte Carlo Methods

 Factors/Features of a Monte Carlo Method
 Pseudo-random number generator

 Uniform distribution, nonuniform distribution

 Parallelization
 Many independent works due to sampleing nature
 Synchronization is only needed for computing 

overall mean and variance (checked infrequently)

 Minimal memory usage
 No geometry discretization
 Memoryless Markov process (no intermediate data)

 Runtime
 Convergence rate; computation for each sampling
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Monte Carlo Methods

 Morden Applications of Monte Carlo Method

 Methods for partial differential and integral 
equations based on random walks (Markov process)

 Random walk based method for linear algebra

 Generation of random fields

 Stochastic ODEs and PDEs

 Uncertainty quantification (UQ)

 Financial computing

 ... ...
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Random Walk Process and Method

 Definition
 A mathematical formalization of a path that consists of a 

succession of random steps

 Abstraction of the phenomenon of
particle’s Brownian motion

 A fundamental model for 
the recorded stochastic activity

 Markov process: can predict the
future of the process based solely on
its present state (memoryless)

 Countable state space (Markov chain)

1-D random walks

A random walk 
on 2-D lattice
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Random Walk Process and Method

 Classification of Random Walk Methods

 A category of the general MC methods for 
numerical computation

 Solve system of linear equations

 Discrete random walk (DRW) on a 
predefined grid

 Solve PDE (potential field)

 Walk on sphere (WOS), floating 
random walk (FRW)

 Other technique (WOB, etc) with limited applications

Markov process on a 
continuous state space
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Random Walk Process and Method

 Pros
 Locality: calculating local solution, instead of the global 

solutions

 Stability: only statistical error; gradually decreases

 Low memory cost: geometric meshless; Markov 
property; better for large, high-dimentional problems

 Parallelizable: walks are independent

 Cons
 Not as general as FDM/FEM/BEM

 The convergence can be very slow 𝐸𝑟𝑟 ∝
1

𝑛
𝑇𝑖𝑚𝑒 ∝

1

𝐸𝑟𝑟2
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DRW for Circuit Simulation

 Circuit Equation

  𝑖=1
𝑑𝑒𝑔𝑟𝑒𝑒(𝑥)

𝑔𝑖(𝑉𝑖 − 𝑉𝑥) = 𝐼𝑥

 𝑉𝑥 =  
𝑔𝑖
 𝑔𝑖
𝑉𝑖 −

𝐼𝑥
 𝑔𝑖

 Regard 𝑝𝑖 =
𝑔𝑖
 𝑔𝑖

as probability 

 𝑉𝑥 statistically relies to the 
voltages of neighbor nodes

 “random walk game”

 N random walkers; motel(cost), 
home(known voltage=reward)

 𝑉𝑥 = E[total money earned]
14

cost



DRW for Circuit Simulation

 Probabilistic potential theory
 1-volt / 0-volt nodes. node x: V(x)= ?

 A Markov random process: N particles
released from x, perform random walks 
on the grid. Absorption node: 1-volt / 0-volt nodes

 Probability of a particle reaching 1-volt: P(x)= ?

 Define  

 Markov:

15

𝑉 𝑥 ↔ 𝑃(𝑥)

1 volt

0 volt

x

A MC method can 
be used with RWs

𝑝(𝑖 → 𝑗|𝑗ϵ𝒜𝑖) =
𝑔𝑗
 𝑗ϵ𝒜𝑖 𝑔𝑗

𝑃 𝑥 = 
𝑗ϵ𝒜𝑥

𝑝(𝑥 → 𝑗)𝑃(𝑗)

𝑉 𝑥 = 𝑃 𝑥 Generalized if absorption 
nodes with other voltage



DRW for Circuit Simulation

 Application to P/G analysis
 Generic random walk

 Run a number of random walk 
path; each includes steps/hops

 Error ~ N(0, 2)

 Under fixed confidence level, Time  1/err2

 An accuracy-runtime tradeoff

 Time complexity for each node: O(NwalkNhop)

 number of walks, average length of a walk 

99.7% for err=3
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DRW for Circuit Simulation

 Tricks to speed up
 Not all nodes need high accuracy;  adaptive 

stopping criterion for different node voltage 

 Once a high-accuracy result of a node is obtained, it 
can be set as a new “home”

 Truncate very long walk path (limiting L=#step)

 Factors limiting the efficiency

 “Trap” by isolated low resistance

 Smaller resistances of lower-layer 
power wires; barrier for walk upward

Larger gi, pi
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DRW for Circuit Simulation

 Further techniques for P/G analysis
 Feasible for transient simulation (“travel back time”)

 Walks reused for different time points (“bookkeeping”)

 Hierarchical RW with macromodeling local grids is 
several to more than ten times faster [TCAD’2005] 

 Importance sampling [GLSVLSI’2011]; Backward 
random walk for incremental analysis [TODAES’2014]

 Advantages over traditional P/G solver methods

 Easy speed-accuracy tradeoff

 Solving a small number of nodes

 Easy for parallel computing
18



DRW for Circuit Simulation

 Problem of thermal analysis
 Equivalence between electrical field and thermal field

 Equation:

 Quantities

 Finite volume discretization obtain “thermal circuit”

𝛻 ∙ −𝜎𝛻𝜙 = 𝜏 𝛻 ∙ −𝑘𝛻𝑇 = 𝑝

steady electric current field thermal field

potential 𝜙
conductivity 𝜎
source density 𝜏
current density D
current I

temperature 𝑇
conductivity 𝑘
power density 𝑝
heat flow density Q
power P

𝛻 ∙ −𝜀𝛻𝜙 = 𝜌

potential 𝜙
permititity 𝜀
charge density𝜌
displacement 𝐷
charge Q

electrostatic field
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DRW for Circuit Simulation

 Problem of thermal analysis
 Finite volume method

 Circuit with thermal resistors

 Like P/G grid, can be solved
with DRW

 Difficulty

 Convective boundary condition

 Ramb is much larger, make it hard to reach “home” 

 Much larger number of nodes

cell
hx

hy

hz

x-y view𝜅
𝜕𝑇

𝜕𝑛
+ ℎ 𝑇 − 𝑇𝑎𝑚𝑏 = 0,

20

𝑅𝑎𝑚𝑏 =
1
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FRW for Field Simulation

 MC method for linear elliptic and parabolic 
problems
 Electrostatic:

 Diffusion of point-like particles:

 Thermal problem: steady state

 transient state

 Laplace equation, Poisson equation, parabolic equation

 Other general equations

 With finite difference (volume) discretization, 
DRW applies. It’s better to directly solve with FRW
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𝛻 ∙ −𝜀𝛻𝜙 = 𝜌

𝛻 ∙ 𝛻𝜌 = 0

𝛻 ∙ −𝑘𝛻𝑇 = 𝑝

𝛻 ∙ 𝑘𝛻𝑇 + 𝑝 =
𝜕𝑇

𝜕𝑡



Probabilistic Potential Theory

 A simple Dirichlet problem of Laplace
 Calculate the potential at point x

 We define a spherical random process:
the particle always hops from center to sphere surface;
terminates (absorbed) at boundary

 The probability of particle reaching Γ1 boundary P(x)=?

 There is a correspondence between P(x) and 𝜙(𝑥)

 For each hop, if have 

 𝑃𝑟(𝑥𝑘+1, 𝑥𝑘) is the PDF for one-step transition in Markov

 The equations for P(x) and 𝜙(𝑥) are just the same !

 MC with initiating particles from x can calculate 𝜙(𝑥)
23

𝛻2𝜙 = 0

𝜙 = 1

x

Γ1

𝜙 𝑥𝑘 =  
𝑆

𝑃𝑟(𝑥𝑘+1, 𝑥𝑘)𝜙 𝑥𝑘+1 d𝑠



Walk on Sphere Method

 Walk on sphere (WOS) method

 Integral for potential 

 For homogeneous material, 𝑃1 ~ uniform distribution

 Spherical random process is feasible

 Drawbacks

 Touching threshold  causes error

 Small hop near absorption boundary

 Not good for inhomogeneous material
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x

S1

𝜙 𝑥 =  
𝑆1

𝑃1(𝑥, 𝑥1)𝜙 𝑥1 d𝑠



First-
passage
location



Floating Random Walk Method

 Floating random walk

 Can use general-shape transition (first-passage) domain; 
Shape depends on the geometry of absorption
boundary & the availability of  hop probability

 Green’s function first passage (GFFP):
includes portions of absorbing boundary 

 Advantage: no threshold , reduce small hops

 Prerequisite: hop probability is a quasi-analytical 
function or can be tabulated

 FP domains: 

25
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Floating Random Walk Method

 Successful applications of FRW 
 Bulk properties (linear functionals of the solution)

 electrical/thermal conductivity of structural composites

 permeability of porous media

 electrostatic free energy of a bio-molecule in solution

 electrical capacitance between conductors

 Characteristics of absorption boundary may facilitate 
highly-efficient GFFP approach

 Choice of transition domains (FPs) and their usage in 
FRW affect efficiency  (or efficiency/memory tradeoff) 
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 Integral formula for the potential calculation 

 Monte Carlo method:

 What if m is unknown?

FRW Method for Electric Capacitance

r

Transition 
domain

S1

P1 is called surface Green’s function, and can be

regarded as a probability density function 

m is the potential of a point on S1, randomly sampled with P1

expand the integral recursively

This spatial sampling 
procedure is called
floating random walk

28

1 2

(1) (1) (2)

1 1

( 1) ( ) ( ) ( ) (2) (1)

1

( ) ( , ) ( , )

( , ) ( )
k

S S

k k k k

S

P P

P d d d

 



 



r r r r r

r r r r r r

1

(1) (1) (1)

1( ) ( , ) ( )
S

P d  r r r r r

1

1
( )

M

mmM 
  r



 A 2D example with 3 walks 

 Use maximal cube transition domain

 How to calculate capacitances?

FRW Method for Electric Capacitance
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 Q1=C11V1+C12V2+C13V3

Integral for calculating charge (Gauss theorem)
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F g P d d  r r r r r r r r weight value, estimate of 

C11, C12, C13 coefficients
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 How to know P1 for random sampling ?

 Available for homogeneous transition cube 

 Pre-calculate the probabilities from center
to surface panels (GFT)

 is also pre-calculated (WVT)

 Efficient FRW for Manhattan geometries

 Choose cubic transition domain which fits well Manhattan 
(absorption boundary) interconnects in IC layout

 Load pre-calculated GFT/WVT for fast sampling on Sk

 Runtime:                                  vs.                                 for DRW

FRW Method for Electric Capacitance

S1
(1)( , ) r r

walk hop hopT N N T ( )walk hopT O N N
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 IC interconnects are embedded in dielectric layers

 A recipe is using sphere transition domain

 Cause frequently stops of a walk

 For a cube with two dielectric layers, 
numerically calculate and tabulate GFTs 
and WVTs (solve a Dirichlet problem)

Treatment for Multi-Dielectric Env.

Homogenization and 

other techniques used

in commercial solvers
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Space Management for Large Problem

 Problem
 Thop (calculate distance to the nearest conductor) increases 

with the complexity of absorption boundary 

 Space management: decompose whole domain into cells 
and store local information for faster nearest inquiry

 Basic Octree-based approach
 Candidate list for each node:

possible nearest conductors 
for any point in spatial cell

 Build by checking domination

 Grow 8 child nodes if the candidate list is so long

 Largely reduces Thop, with overhead of tcons

walk hop hopT N N T
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Space Management for Large Problem

 The construction of Octree
 Large case has thousands of conductors, Octree nodes

 Simple implementation causes large tcons: ~ 30 min. for a 
case with 37062 conductor blocks

 The distance limit:
upper bound of the
nearest distance to 
conductor for T

 Prune domination
check with L(T), in
Octree construction

 600X reduction tcons

Algorithm 1 CandidateCheck(block B, node T)
1. d := d(B, T); l is the size of T;
2. If d  L(T) then return false;
3. For each b in the candidate list of T do
4. If b dominate B then return false;
5. Elseif B dominate b then
6. Remove b from the candidate list of T;
7. Endif
8. Endfor
9. Add B to the candidate list of T;
10.If (d + l) < L(T) then L(T) := d + l; Endif
11.Return true.
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Space Management for Large Problem

 The construction of the Octree
 Another idea is the neighbor-region search

 Reduce tcons by 4~5X again

 Not guarantee the largest transition 
cube. But with suitable neighbor setting, 
this degradation is limited 

 A grid/Octree hybrid structure
 Different spatial structures: K-D tree, Octree, uniform grid, 

etc.

 Grid/Octree hybrid: make each node a cube rather 
than rectangular cuboid when handling large-layout case

 Code optimization for fast inquiry of the candidate list
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Space Management for Large Problem

 Efficiency/memory tradeoff for various spatial strucures

 Thresholds for node size, candidate list length vary 
 With same memory cost, grid-Octree hybrid structure 

reduces NhopThop for >12%
 With same speed of random walk, it costs half memory
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RWCap vs RWCap2 (new space management)

case1: 2000 wire cross-over
case2: “FreeCPU”, 37062 blocks
case3: 101595 blocks

case4: 484441 blocks, for which
Tcons of RWCap2 is only 4.4s

 Very fast geometric computation makes “best scalability”

 Handle the whole large problem without any approximation

 For cross-over structures, RWCap2 is compared with Rapid3D©

 RWCap2 is 3X faster, while running same #walk
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 Capacitance extraction for VLSI 
interconnects

 Finite difference/finite element method

 Stable, versatile; slow

 Boundary element method

 Fast; not stable (discretization)

 Floating random walk method

 Stable (discretization-free); restriction on geometry

 Scalable/fast, parallelizable

 Easy for accuracy-runtime tradeoff

Comparison with Deterministic Methods

Golden tool: Raphael

FastCap, Act3D , QBEM

QuickCap/Rapid3D , RWCap

©

©

©
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 Diffusion-limited reaction rate

 A large molecule interacting with small diffusion particles

 𝜌: density of particles, analogy to potential 

 K = capacitance of molecule, but
different boundary conditions

 Walk starts from launch sphere

 Geometry of the molecule may
be complex, union of spheres,
with spherical cavity, etc.

Biophysical Computations
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𝐾 =  
𝜕𝐺

𝐷
𝜕𝜌

𝜕𝑛
𝑑𝑠



 Internal energy of a molecule

 Electrostatic effect play a crucial role in structure, stability, 
dynamics, folding, binding behaviors of biomolecules

 Every spherical atom has a charge qm

 In exterior medium, ion distribution
follows the Boltzmann law

 Approximated with linearized Poisson-
Boltzmann equation

Biophysical Computations

40



 Internal energy of a molecule

 Electrostatic free energy

 um is nonsingular part of electrostatic 
potential at the m-th sphere’s center

 G is a union of intersecting spheres

 Interior medium: Laplace equation

 A “walk on subdomain” method, 
avoid distance calculation in WOS

 Exterior medium: linearized P-B

 WOS with specific surface Green’s function

Biophysical Computations
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 The random walk method is a discretization-free, 
and reliable computing method

 For calculating a few of local solutions, or linear 
functionals of solution, RW method is advantageous

 For solving particular PDEs, RW method can 
outperform the deterministic methods

 Suitable transition domains, pre-calculated tran-
sition probabilities, and their usage in the RW 
procedure are the keys to reduce runtime of FRW

Conclusions
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