

Random Walk Methods and Their Applications to Simulation Problems

Wenjian Yu Department of Computer Science & Tech. Tsinghua University

May 30, 2014

Outline

- Monte Carlo Methods
- Random Walk Process and Method
- Discrete Random Walk in Circuit Simulation
- Floating Random Walk in Field Simulation
 - Theory and preliminary
 - FRW for capacitance extraction
 - Biophysical computations
- Conclusions

- Early History
 - Probability was first used to understand games of chance
 - Pascal, Fermat, Huygens, Jacob Bernoulli, Laplace (1812: Théorie Analytique des Probabilités)
 - Buffon Needle Problem (1777)
 - drop a needle on a lined surface
 - π ≈ 2n/m, where n is the count of experiments, m is count of intersection of needle and grid

- Modern Monte Carlo Method
 - Fermi, Ulam, von Neumann, Metropolis, et al., in Los Alamos National Lab
 - 1930's, sampling used to estimate quantities in controlled fission / thermonuclear reaction
 - The Name: Ulam's uncle would borrow money from the family by saying that "I just have to go to Monte Carlo"
 - After the world war II, digital computer becomes perfect for "statistical sampling"

Classic Examples -- Integration

$$I = \int_0^1 f(x) dx \qquad I \approx \sum_{i=1}^{\kappa} w_i f(x_i)$$

- Conventional quadrature has the drawback of "the curse
 of dimensionality" while calculating high-dimensional
- Setimate with a Monte Carlo process
- random variable: x_i ~ U[0, 1]
 the score: f(x_i)
 I ~ N(I, σ²), σ measures error of I
 Estimate I with the average

 Estimate I with the average
 I ≈ I = 1/n ∑_{i=1}ⁿ f(x_i)
 - $\sigma \equiv \sqrt{var(\bar{I})} = \sqrt{var(f(\xi))/n}, \quad var(f(\xi)) \approx \frac{1}{n-1} \sum_{i=1}^{n} [f(x_i) \bar{I}]^2$ error $\propto 1/\sqrt{n}$

$$I \approx \overline{I} = \frac{1}{n} \sum_{i=1}^{n} f(x_i)$$
 $\overline{I} \sim N(I, \sigma^2)$ \overline{I} 's distribution

- Classic Examples -- Linear algebra
 - $_{\diamond}~S=\sum_{i=1}^{m}a_{i}$, define probabilites $\{p_{i}\}$ for index $i,\sum p_{i}=1$

 - ♦ Similar method applies to $S = \sum_{i=1}^{m} a_i x_i$
 - Under certain condition, can even be use to solve a solution component of x = Ax + b, $\rho(A) < 1$

6σ

Factors/Features of a Monte Carlo Method

- - Uniform distribution, nonuniform distribution
- Parallelization
 - Many independent works due to sampleing nature
 - Synchronization is only needed for computing overall mean and variance (checked infrequently)
- Minimal memory usage
 - No geometry discretization
 - Memoryless Markov process (no intermediate data)
- Runtime
 - Convergence rate; computation for each sampling

- Morden Applications of Monte Carlo Method
 - Methods for partial differential and integral equations based on random walks (Markov process)
 - Random walk based method for linear algebra
 - Generation of random fields
 - Stochastic ODEs and PDEs
 - Uncertainty quantification (UQ)
 - Financial computing
 - la 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 199

Outline

- Monte Carlo Methods
- Random Walk Process and Method
- Discrete Random Walk in Circuit Simulation
- Floating Random Walk in Field Simulation
 - Theory and preliminary
 - FRW for capacitance extraction
 - Biophysical computations
- Conclusions

Random Walk Process and Method

Definition

- A mathematical formalization of a path that consists of a succession of random steps
 ²⁰ 1-D random walks
- Abstraction of the phenomenon of particle's Brownian motion
- A fundamental model for the recorded stochastic activity
- Markov process: can predict the future of the process based solely on its present state (memoryless)
- Countable state space (Markov chain)

Random Walk Process and Method

- Classification of Random Walk Methods
 - A category of the general MC methods for numerical computation
 - Solve system of linear equations
 - Discrete random walk (*DRW*) on a predefined grid
 - Solve PDE (potential field)
 - Walk on sphere (WOS), floating random walk (FRW)

Markov process on a continuous state space

Other technique (WOB, etc) with limited applications

Random Walk Process and Method

Pros

- Locality: calculating local solution, instead of the global solutions
- Stability: only statistical error; gradually decreases
- Low memory cost: geometric meshless; Markov property; better for large, high-dimentional problems
- Parallelizable: walks are independent
- Cons
 - Not as general as FDM/FEM/BEM
 - The convergence can be very slow $Err \propto \frac{1}{\sqrt{n}} \implies Time \propto \frac{1}{Err^2}$

Outline

- Monte Carlo Methods
- Random Walk Process and Method
- Discrete Random Walk in Circuit Simulation
- Floating Random Walk in Field Simulation
 - Theory and preliminary
 - FRW for capacitance extraction
 - Biophysical computations
- Conclusions

Circuit Equation

$$\sum_{i=1}^{degree(x)} g_i (V_i - V_x) = I_x$$

$$V_x = \sum \frac{g_i}{\sum g_i} V_i - \left(\frac{I_x}{\sum g_i}\right) \text{ cost }$$

• Regard
$$p_i = \frac{g_i}{\sum g_i}$$
 as probability

• V_x statistically relies to the voltages of neighbor nodes

"random walk game"

- N random walkers; motel(cost), home(known voltage=reward)
- $◊ V_x = E[total money earned]$

Probabilistic potential theory

- A Markov random process: N particles released from x, perform random walks on the grid. Absorption node: 1-volt / 0-volt nodes
- ♦ Define $p(i \rightarrow j | j \in A_i) = \frac{g_j}{\sum_{j \in A_i} g_j}$ ♦ Markov: $P(x) = \sum_{j \in A_x} p(x \rightarrow j)P(j)$ ► V(x) = P(x)

A MC method can be used with RWs

X

 $V(x) \leftrightarrow P(x)$

Generalized if absorption nodes with other voltage

1 volt

Application to P/G analysis

- Generic random walk
- Run a number of random walk path; each includes steps/hops^{Integrated Circuit}
- Error ~ $N(0, \sigma^2)$ 99.7% for err=3 σ
- $_{\odot}$ Under fixed confidence level, Time $\propto 1/err^2$
- An accuracy-runtime tradeoff
- Time complexity for each node: $O(N_{walk}N_{hop})$
- number of walks, average length of a walk

Connections to external power source

Tricks to speed up

- Not all nodes need high accuracy; adaptive stopping criterion for different node voltage
- Once a high-accuracy result of a node is obtained, it can be set as a new "home"
- Truncate very long walk path (limiting L=#step)
- Factors limiting the efficiency
 - "Trap" by isolated low resistance
 In In In Larger g_i, p_i
 Smaller resistances of lower-layer
 power wires; barrier for walk upward

- Further techniques for P/G analysis
 - Feasible for transient simulation ("travel back time")
 - Walks reused for different time points ("bookkeeping")
 - Hierarchical RW with macromodeling local grids is several to more than ten times faster [TCAD'2005]
 - Importance sampling [GLSVLSI'2011]; Backward random walk for incremental analysis [TODAES'2014]
 - Advantages over traditional P/G solver methods
 - Easy speed-accuracy tradeoff
 - Solving a small number of nodes
 - Easy for parallel computing

- Problem of thermal analysis
 - Equivalence between electrical field and thermal field
 ¹⁶

steady electric current fieldthermal fieldelectrostatic field \diamond Equation: $\nabla \cdot (-\sigma \nabla \phi) = \tau$ $\nabla \cdot (-k \nabla T) = p$ $\nabla \cdot (-\epsilon \nabla \phi) = \rho$

Quantities

potential ϕ temperature Tpotential ϕ conductivity σ conductivity kpermititity ε source density τ power density pcharge density ρ current density Dheat flow density Qdisplacement Dcurrent Ipower Pcharge Q

(J) 92

Finite volume discretization obtain "thermal circuit"

Problem of thermal analysis

- Finite volume method
- Circuit with thermal resistors
- Like P/G grid, can be solved with DRW
- Difficulty
 - Convective boundary condition $\kappa \frac{\partial T}{\partial n} + h(T - T_{amb}) = 0, \qquad R_{amb} = \frac{1}{h \cdot h_x h_y}$

cell

amb

- x-y view
- *R_{amb}* is much larger, make it hard to reach "home"
- Much larger number of nodes

Outline

- Monte Carlo Methods
- Random Walk Process and Method
- Discrete Random Walk in Circuit Simulation
- Floating Random Walk in Field Simulation
 - Theory and preliminary
 - FRW for capacitance extraction
 - Biophysical computations
- Conclusions

FRW for Field Simulation

- MC method for linear elliptic and parabolic problems
 - Electrostatic:

 \otimes

- Diffusion of point-like particles:
- Thermal problem: steady state

 $\nabla \cdot (-\varepsilon \nabla \phi) = \rho$ $\nabla \cdot \nabla \rho = 0$ $\nabla \cdot (-k \nabla T) = p$ $\nabla \cdot (k \nabla T) + p = \frac{\partial T}{\partial t}$

- Laplace equation, Poisson equation, parabolic equation
- Other general equations
- With finite difference (volume) discretization,
 DRW applies. *It's better to directly solve with FRW*

transient state

Probabilistic Potential Theory

- A simple Dirichlet problem of Laplace
 - Calculate the potential at point x
 - We define a *spherical random process*: the particle always hops from <u>center</u> to sphere <u>surface</u>; terminates (absorbed) at boundary
 - The probability of particle reaching Γ_1 boundary P(x)=?
 - There is a correspondence between P(x) and $\phi(x)$
 - For each hop, if have $\phi(x_k) = \oint_C P_r(x_{k+1}, x_k) \phi(x_{k+1}) ds$
 - $P_r(x_{k+1}, x_k)$ is the PDF for one-step transition in Markov
 - The equations for P(x) and $\phi(x)$ are just the same !
 - MC with initiating particles from x can calculate $\phi(x)$

 $\phi = 1$

Walk on Sphere Method

- Walk on sphere (WOS) method
 - Integral for potential $\phi(x) = \oint_{S_1} P_1(x, x_1) \phi(x_1) ds$
 - For homogeneous material, $P_1 \sim$ uniform distribution
 - Spherical random process is feasible
- o Drawbacks
 - $\diamond~$ Touching threshold δ causes error
 - Small hop near absorption boundary
 - Not good for inhomogeneous material

First-

ocation

Floating Random Walk Method

Floating random walk

- Can use general-shape transition (first-passage) domain;
 Shape depends on the geometry of absorption
 boundary & the availability of hop probability
- Green's function first passage (GFFP): includes portions of absorbing boundary
- \diamond Advantage: no threshold δ , reduce small hops
- Prerequisite: hop probability is a quasi-analytical function or can be tabulated
- FP domains:

G,

Improve efficiency with

memory overhead

Floating Random Walk Method

Successful applications of FRW

- Bulk properties (linear functionals of the solution)
- electrical/thermal conductivity of structural composites
- permeability of porous media
- electrostatic free energy of a bio-molecule in solution
- electrical capacitance between conductors
- Characteristics of absorption boundary may facilitate highly-efficient GFFP approach
- Choice of transition domains (FPs) and their usage in FRW affect efficiency (or efficiency/memory tradeoff)

Outline

- Monte Carlo Methods
- Random Walk Process and Method
- Discrete Random Walk in Circuit Simulation
- Floating Random Walk in Field Simulation
 - Theory and preliminary
 - FRW for capacitance extraction
 - Biophysical computations
- Conclusions

FRW Method for Electric Capacitance

Integral formula for the potential calculation

$$\phi(\boldsymbol{r}) = \oint_{S_1} P_1(\boldsymbol{r}, \boldsymbol{r}^{(1)}) \phi(\boldsymbol{r}^{(1)}) d\boldsymbol{r}^{(1)}$$

 P_1 is called surface Green's function, and can be regarded as a probability density function

• Monte Carlo method: $\phi(\mathbf{r}) = \frac{1}{M} \sum_{m=1}^{M} \phi_m$

Transition domain

 ϕ_m is the potential of a point on \mathring{S}_1 , randomly sampled with P_1

What if ϕ_m is unknown? expand the integral recursively $\phi(r) = \oint_{S_1} P_1(r, r^{(1)}) \oint_{S_2} P_1(r^{(1)}, r^{(2)}) \cdots$ This spatial sampling procedure is called $\oint_{S_1} P_1(r^{(k-1)}, r^{(k)}) \phi(r^{(k)}) dr^{(k)} \cdots dr^{(2)} dr^{(1)}$ This spatial sampling procedure is called **floating random walk**

FRW Method for Electric Capacitance

- A 2D example with 3 walks
 - Use maximal cube transition domain
- How to calculate capacitances?

$$\begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{12} & C_{22} & C_{23} \\ C_{13} & C_{23} & C_{33} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \\ V_3 \end{bmatrix} = \begin{bmatrix} Q_1 \\ Q_2 \\ Q_3 \end{bmatrix}$$
$$\Rightarrow Q_1 = C_{11}V_1 + C_{12}V_2 + C_{13}V_3$$

Integral for calculating charge (Gauss theorem) $Q_{1} = \oint_{G_{1}} F(\boldsymbol{r}) \cdot \hat{\boldsymbol{n}} \cdot \nabla \phi(\boldsymbol{r}) d\boldsymbol{r} = \oint_{G_{1}} F(\boldsymbol{r}) \cdot \hat{\boldsymbol{n}} \cdot \nabla \oint_{S_{1}} P_{1}(\boldsymbol{r}, \boldsymbol{r}^{(1)}) \phi(\boldsymbol{r}^{(1)}) d\boldsymbol{r}^{(1)} d\boldsymbol{r}$ $= \oint_{G_{1}} F(\boldsymbol{r}) g \oint_{S_{1}} P_{1}(\boldsymbol{r}, \boldsymbol{r}^{(1)}) \phi(\boldsymbol{r}^{(1)}) \omega(\boldsymbol{r}, \boldsymbol{r}^{(1)}) d\boldsymbol{r}^{(1)} d\boldsymbol{r}$ weight value, estimate of C_{11}, C_{12}, C_{13} coefficients

FRW Method for Electric Capacitance

• How to know P_1 for random sampling?

- Available for homogeneous transition cube
- Pre-calculate the probabilities from center to surface panels (GFT)
- $\omega(\mathbf{r}, \mathbf{r}^{(1)})$ is also pre-calculated (WVT)

- Choose cubic transition domain which fits well Manhattan (absorption boundary) interconnects in IC layout
- Load pre-calculated GFT/WVT for fast sampling on S_k

• Runtime: $T = N_{walk} N_{hop} T_{hop}$ vs. $T = O(N_{walk} N_{hop})$ for DRW

 $\Gamma(r^{(1)})$

 r_c

Treatment for Multi-Dielectric Env.

IC interconnects are embedded in dielectric layers

- A recipe is using sphere transition domain'
- Cause frequently stops of a walk
- For a cube with two dielectric layers, numerically calculate and tabulate GFTs and WVTs (solve a Dirichlet problem)

N_{hop} reduced with some memory overhead

Homogenization and other techniques used in commercial solvers

Problem

$$T = N_{walk} N_{hop} T_{hop}$$

- *T_{hop}* (calculate distance to the nearest conductor) increases with the complexity of absorption boundary
- Space management: decompose whole domain into cells and store local information for faster nearest inquiry
- Basic Octree-based approach
 - *Candidate list* for each node: possible nearest conductors for any point in spatial cell
 - Build by checking *domination*

- Grow 8 child nodes if the candidate list is so long
- Largely reduces T_{hop} , with overhead of t_{cons}

The construction of Octree

- Large case has thousands of conductors, Octree nodes
- *Simple implementation* causes large t_{cons}: ~ 30 min. for a case with 37062 conductor blocks
- The distance limit: upper bound of the nearest distance to conductor for T
- Prune domination check with *L*(T), in Octree construction
- 600X reduction t_{cons}

Algorithm 1 CandidateCheck(block B, node T)

- 1. d := d(B, T); l is the size of T;
- 2. If $d \ge L(T)$ then return false;
- For each b in the candidate list of T do 3.
 - If b dominate B then return false;
- 4. 5. Elseif B dominate b then
 - Remove b from the candidate list of T;
 - Endif

6.

8. Endfor

 $L(T) = \min d(B_i, T) + l$

9. Add B to the candidate list of T; 10. If (d + l) < L(T) then L(T) := d + l; Endif 11. Return true.

- The construction of the Octree
 - Another idea is the neighbor-region search
 - Reduce t_{cons} by 4~5X again
 - Not guarantee the largest transition cube. But with suitable neighbor setting, this degradation is limited

- A grid/Octree hybrid structure
 - Different spatial structures: K-D tree, Octree, uniform grid, etc.
 - Grid/Octree hybrid: make each node a cube rather than rectangular cuboid when handling large-layout case
 - Code optimization for fast inquiry of the candidate list

• Efficiency/memory tradeoff for various spatial strucures

- Thresholds for node size, candidate list length vary
- With same memory cost, grid-Octree hybrid structure reduces $N_{hop}T_{hop}$ for >12%
- With same speed of random walk, it costs half memory

$RWCap \ vs \ RWCap2$ (new space management)

case1: 2000 wire cross-over case2: "FreeCPU", 37062 blocks case3: 101595 blocks case4: 484441 blocks, for which T_{cons} of RWCap2 is <u>only 4.4s</u>

Case	RWCap				RWCap2					Sp. for
	T_{cons}	IS Twalk (S)			Tcons	Mem	Twalk (s)			1000nets
	(5)	1 net	100nets	1000nets	(s)	(MB)	1 net	100nets	1000nets	
1	81.3	3.00	304	3185 /	0.13	6	1.17	119	1178	2.8
2	1758	1.80	297	2935	0.34	18	0.80	132	1265	3.7
3	16596	1.78	/ 173	1729	1.37	87	0.75	71	718	25.5

■ Very fast geometric computation makes "best scalability"

- Handle the whole large problem without any approximation
- For cross-over structures, RWCap2 is compared with Rapid3D[©]
- RWCap2 is 3X faster, while running same #walk

Comparison with Deterministic Methods

- Capacitance extraction for VLSI interconnects
 - Finite difference/finite element method
 - Stable, versatile; slow
 - Boundary element method
 - Fast; not stable (discretization)
 - Floating random walk method
 - Stable (discretization-free); restriction on geometry
 - Scalable/fast, parallelizable
 QuickCap/Rapid3D[®], RWCap
 - Easy for accuracy-runtime tradeoff

Golden tool: Raphael[©]

FastCap, Act3D[©], QBEM

Outline

- Monte Carlo Methods
- Random Walk Process and Method
- Discrete Random Walk in Circuit Simulation
- Floating Random Walk in Field Simulation
 - Theory and preliminary
 - FRW for capacitance extraction
 - Biophysical computations
- Conclusions

Biophysical Computations

Diffusion-limited reaction rate

- A large molecule interacting with small diffusion particles
- \circ ρ : density of particles, analogy to potential

$$K = \int_{\partial G} D \frac{\partial \rho}{\partial n} ds$$

- *K* = capacitance of molecule, but different boundary conditions
- Walk starts from launch sphere
- Geometry of the molecule may be complex, union of spheres, with spherical cavity, etc.

Biophysical Computations

Internal energy of a molecule

 Electrostatic effect play a crucial role in structure, stability, dynamics, folding, binding behaviors of biomolecules

 In exterior medium, ion distribution follows the Boltzmann law

$$\rho(x) = \sum_{i} q_j^{ion} en_j \exp(-q_j^{ion} e \ u(x)/k_b T) \ , \ x \in G_1^*$$

• Approximated with linearized Poisson-Boltzmann equation $\Delta u(x) - \kappa^2 u(x) = 0$

Biophysical Computations

- Internal energy of a molecule

 - u_m is nonsingular part of electrostatic potential at the *m*-th sphere's center
 - ◊ G is a union of intersecting spheres
 - Interior medium: Laplace equation
 - A "walk on subdomain" method, avoid distance calculation in WOS
 - Exterior medium: linearized P-B
 - WOS with specific surface Green's function

Outline

- Monte Carlo Methods
- Random Walk Process and Method
- Discrete Random Walk in Circuit Simulation
- Floating Random Walk in Field Simulation
 - Theory and preliminary
 - FRW for capacitance extraction
 - Biophysical computations
- Conclusions

Conclusions

- The random walk method is a discretization-free, and reliable computing method
- For calculating a few of local solutions, or linear functionals of solution, RW method is advantageous
- For solving particular PDEs, RW method can outperform the deterministic methods
- Suitable transition domains, pre-calculated transition probabilities, and their usage in the RW procedure are the keys to reduce runtime of FRW

Reference

- J. M. Hammersley and D. C. Handscomb, *Monte Carlo Methods*, Methuen, London, 1964.
- K. K. Sabelfeld, *Monte Carlo Methods in Boundary Value Problems*, Springer-Verlag, New York, 1991.
- H. Qian, S. R. Nassif, S. S. Sapatnekar, "Power grid analysis using random walks," *IEEE Trans. Computer-Aided Design*, Vol. 24, pp. 1204-1224, 2005.
- T. Miyakawa, K. Yamanaga, H. Tsutsui, H. Ochi, and T. Sato, "Acceleration of random-walk-based linear circuit analysis using importance sampling," in *Proc. GLSVLSI*, 2011, pp. 211-216.
- B. Boghrati and S. S. Sapatnekar, "Incremental Analysis of Power Grids using Backward Random Walks," *ACM Trans. Design Automation Electronic Systems*, 2014.
- Y. Le Coz and R. B. Iverson, "A stochastic algorithm for high speed capacitance extraction in integrated circuits," *Solid State Electron.*, vol. 35, no. 7, pp. 1005-1012, Jul. 1992.

Reference

- W. Yu, H. Zhuang, C. Zhang, G. Hu, Z. Liu, "RWCap: A floating random walk solver for 3-D capacitance extraction of VLSI interconnects," *IEEE Trans. Computer-Aided Design*, Vol. 32, No. 3, pp. 353-366, 2013.
- C. Zhang and W. Yu, "Efficient space management techniques for large-scale interconnect capacitance extraction with floating random walks," *IEEE Trans. Computer-Aided Design*, 32(10): 1633-1637, 2013
- T. El-Moselhy, I. M. Elfadel, and L. Daniel, "A Markov chain based hierarchical algorithm for fabric-aware capacitance extraction," *IEEE Trans. Advanced Packaging*, pp. 818-827, Nov. 2010.
- J. A. Given, J. B. Hubbard, and J. F. Douglas, "A first-passage algorithm for the hybrodynamic friction and diffusion-limited reaction rate of macromolecules," *The Journal of Chemical Physics*, Vol. 106, pp. 3761-3771, 1997.
- M. Mascagni and N. A. Simonov, "Monte Carlo Methods for Calculating Some Physical Properties of Large Molecules," *SIAM Journal on Scientific Computing*, 26(1): 339-357, 2004

Thank You !

Yu-wj@Tsinghua.edu.cn