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"
mlecture 11 — ODE-BVP

Boundary Value Problem y' = f(ty), a<t<b,

. . g(y(a),y)) =0
m Separated, linear boundary condition
component of g involves solution Bay(a) + Bpy(b) = c

values only at a or at b Linear BVP
RRIFAAE ME—H A wma
n ZMHEBVP o BU# R FEAE . ME—E
s Mode solution: v’ = A(t)y with initial condition y(a) = e;
s BT NEFM: Q=BJY(a) + BY () FEHF

m UM, BREME RRRE NS R AR
SEYEBVP AT HE S 4 ES, R MR BURTER

Numerical methods
= Shooting Zktime integration; Z5&IERME T TRRKM T
» Multiple shooting seAFXA, #nmELE, REke
m Finite difference =M. BRIEEUS R LUSE
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mlecture 11 — ODE-BVP

Numerical methods (cont'd) fRERE -
s REFEEEIL w@) =o(t,z) = 3 () —IEFE PR

=1

s Collocation: 7ZE#& THECE mALT EODE%[IJ@?%%#F
n /D @: /| %ﬂ%@ﬁﬂﬁmﬁ[ r(t, $)2di u' = f(t)
e =Y el — f( E=p Az =b  ay= [ (D] (1)dt

=1

IR [ reoumda=0  and b= [ f0el @
b b |
ay = [ ¢j(Owiydt and b= [ f(Owi()dt

" Galerkin: wi = o SRS BHRMMKINY ,
m PR A HIEFE: 1%‘273‘12 FEM aj = — [ $(O)() dt

global support localized support

FSEH R = M), a<t<b S0 20
n WODEE RSN, AL AARETT PRI EE B B

2010-12-24 Wenjian Yu




Preliminaries of Partial

Differential Equation




Partial Differential Equations

Partial differential equations (PDEs) involve
partial derivatives with respect to more than
one independent variable

Independent variables typically include one or
more space dimensions and possibly time di-
mension as well

More dimensions complicate problem formula- ~
tion: can have pure initial value problem, pure
boundary value problem, or mixture

\ Oy A

Equation and boundary data may be defined
over irregular domain in space J

AT mglt — L] B o] LT 2 AN A 2 R
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"
Continuous phenomena modeled by PDE

m Maxwell's equations in electro-magnetics

IR ST e o1
8851; E.
@58E~ds=jﬁvpdv:>V~(8E):p o 1B, |=
R
TR B (. KRS AR FRRECS
_ ~OF Loz
‘VX‘I{ £ /%+J N o
R AN Y AL E X B
o(|| uH -ds — | x| B, |=—pu
(JSlE.dZ:— <Ijsﬁt )DVXEI—ﬂ%—It{ %y E
W43 2 oI ) 2]
V- (uH) =0 YAz, vy, 2 tHIRE
m HAh: FikFINavier-Stokes. #4452 Hlinear

elasticity.
owBlAStein’s

FH

—.

Fh¥
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" A
Partial Differential Equations, cont.
For simplicity, we will deal only with single

PDEs (as opposed to systems of several PDESs)
with only two independent variables, either

| %1 F-ODE
e two space variables, denoted by = and y, or AR 5] 5

e One space variable and one time variable, AL F-ODE
denoted by x and ¢, respectively ¥4 5] B

Partial derivatives with respect to independent
variables denoted by subscripts:

125 B
o ur = Ou/ot SKIEARFRE u
) 7E 5 S AL 458 PDE
* umy = O%u/0zdy, etc. RIS P 1
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Example: Advection Equation
XN RE, BT

Advection equation:

Ut = —Cug,

where ¢ is nonzero constant

Unique solution determined by initial condition
1 ol 5

where ug is given function defined on R
We seek solution u(t,z) fort > 0 and all x € R

From chain rule, solution given by IOAIE?
’Lﬁ(f;,:ﬂ) — U‘U(m — 'ﬂt):

i.e., solution is initial function ug shifted by ct
toright ife>0, ortoleftife<O

Wenjian Yu



" Jd
B XTE(X, ) “H4EM AR R S L R HEL, FEE
%%E<ﬁ~%ﬂ%%> a5% T —ct =1,

Typical solution of advection equation ut = —cug

Initial function u, is propagated to the right (or left) with velocity c

2010-12-24 Wenjian Yu 10
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Characteristics

Level curves of solution to PDE are called char-

acteristics  HF{EZk

Characteristics for advection equation, for ex-
ample, are straight lines of slope ¢

Characteristics determine where boundary con-
ditions can or must be imposed for problem to

be well-posed i, & X H0<z <1,t >0 KIHE RB R ATE

t t O X SRR )
L >0 c<0 Hu th5E, EFEMN
U TR E HoAth
BV DX 2 A
e
o Iv 1
Wenjian Yu 11



Classification of PDEs.

Second-order linear PDEs of form (M ECh B =W 520
augy + bugy + cuyy + dugz +euy + fu+g=20 FEANTBRZR)
are classified by value of discriminant, b2 — dac,
S alpilEae BV A L2 )
XH b2 — 4ac > 0: hyperbolic (e.g., wave eqn) w, —u, +--=0
W4 b2 — 4ac = 0: parabolic (e.g., heat eqn) w, —u, +--=0
#E b2 — 4ac < 0: elliptic (e.g., Laplace eqn) Uy, + Uy +- =0
[Bl{Z T — Ik 2 7 e
ar’ +bry+cy’ +dr+ey+ f=0 t-::ur_tv;'n}'ﬂ

R G | R

b 2 4aC—b2 2 d b
r+—y) + +—(x+—y)+ay+ L =0 @—w)f  -w) _
@+ Y +— Sy (@ y)ray+ e S tt
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Classification of PDEs, cont.

Classification of more general PDEs not so
clean and simple, but roughly speaking: %ﬁéﬁlﬁ‘]ﬁ%@ 5
HU P AR 753E FH
XY e Hyperbolic PDEs describe time-dependent,

conservative physical processes, such as con- 7. P ZEh
vection, that are not evolving toward steady

state

y@% e Parabolic PDEs describe time-dependent,

FEHL dissipative physical processes, such as dif- b8
fusion, that are evolving toward steady state

= e Elliptic PDEs describe processes that have
already reached steady state, and hence are

time-independent
B 5YHENBREKR, Wp. 387

2010-12-2310-12-24 Wenjian Yu 13



" S
Example - Heat equation (#i14%)%)
BRR A, SR TS 1

Qm,i—Qm—l_CpAAXE_Oj 0 @)dx cpnldx s THIME, UK
At At ot PR At
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" S
Example - Laplace equatlon (ﬂﬁﬁ 7] 7Y)

it L 37 TP ) e e
Cﬂ)ng - ds = Ijjvpdv =V.-(¢E)=0p

HpSEH M. HTiFHEpERRTY, B
WAEEMWE &R A0, WA5IAREHEA U,
(EEE

E=-Vu I = Laplace H AT HIA R HENE X
2 2 2
Viu = O u + Ou 8 __F PR ] FE(X,Y, 2) RE ) ERL T 5
ox’ 8y2 0z* E

Poisson 512, #74 AN 2D example: ®

Laplace 5 F&. Ugy F Uy = 0
X IBIA R &S, T
SK B A
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PDE ju] & Sk i ) 2 2
A% S n) R A

”% ik

RYER R 2% 2 OEIE IR

PDE [] @l 5 45 E

TR & P AR &

P

SILME R, AN EYIA)AR

o ok PDE;@M&EM

H. WH. BT

R

DE

PIAE R R, & EAEE

p——— N S Y Y N

PDEHIMYZL. —HrPDEZ2E

EE

Pl m—

B a2 e — —FFAELRHIME S sofm ity S 4o 1 FL T A

\:[1

)

Wi . WA

m _[FrPDEZG]——#H G, FHEIGTE
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Time-Dependent

Problems




Time-Dependent Problems

T ime-dependent PDEs usually involve both ini-
tial values and boundary values

¢ P A (heat)
bl 5 X &Y (wave)
O O
u u
n n
d d
a a
:5 problem domain :5
V V
a a

I I
u u
e e
S S

- T
a initial values b
BUE KR TT I 43 PR

o AT RHTERME BRI (BR%E4r. collocation %)
 2EHMAE (BERARERESS. BEXFRESD)
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Semidiscrete Methods

One way to solve time-dependent PDE numer-
ically is to discretize in space, but leave time
variable continuous

Result is system of ODEs that can then be
solved by methods previously discussed

For example, consider heat equation

Ut = CUzg, 0<z<1, t > 0,

with initial condition
u(0,z) = f(x), 0<z<1,

and boundary conditions

u(t,0) = 0, u(t,1) =0, t>0

Wenjian Yu
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[] —
Semidiscrete Finite Difference Method

If we introduce spatial mesh points z; = iAz,
i =0,...,n+ 1, where Ax = 1/(n+ 1) and
replace derivative uzy by finite difference ap-
proximation

u(t, z;41) — 2u(t, z;) + ult, 15—1)
(Ax)?
then we get system of ODEs

vt = x, )2 (%i41(8) = 2:(6) +3i-1(1)),

i=1,...,n, where y;(t) =~ u(t,z;)

'umm(t:, 3_??) ==

Klt, 1325k
From boundary conditions, yo(t) and y,41(%) £+ ODE
are identically zero, and from initial conditions, y = Ay

y;(0) = f(=z;), i=1,...,n

Can therefore use ODE method to solve initial
value problem for this system
2010-12-24 Wenjian Yu 20
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Method of Lines

Approach just described is called method of

lines

MOL computes cross-sections of solution sur-
face over space-time plane along series of lines,
each parallel to time axis and corresponding to
one of discrete spatial mesh points

1

0.8~

0.6~

0.4~

el ]

0.4

Ll

-

X B R
X I, ) e 2R £

>
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> FGerischgorinl[g
RSB LE

BAERE A= (ay),,

, EXEEFEEIN
AR X 35k
D. = |z —a;

1

n

S'Z

7=1,7#1

)4 B A B R A AEL
A, € UD,

R ODES L B
% BiXfhstiffness

2010-12-24

Stiffness

Semidiscrete system of ODEs just derived can

be written in matrix form

o1
1 -9
r—__°© o 1 -2
T (a2 |
0

y = Ay

Jacobian matrix A of this system has eigenval-
ues between —4c¢/(Ax)? and 0, which makes

ODE very stiff as spatial mesh size Ax be-

comes small

T his stiffness, which is typical of ODEs derived
from PDEs in this manner, must be taken into
account in choosing ODE method for solving

semidiscrete system

Wenjian Yu
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Semidiscrete Collocation Method

Spatial discretization to convert PDE into sys-

tem of ODEs can also be done by spectral or
finite element approach

Approximate solution is linear combination of
basis functions, but now coefficients are time

dependent  sion s pmtialt, u(t, \)BRETFXHEL, F

B HBRA—HERB LML E
T hus, we seek solution of form

T

‘H-(t:,l‘) ~ ‘U(t._.;l?:,ﬂi(t)) — Z &j‘(t)@j(m)}

=1
where ¢;(x) are suitably chosen basis functions

If we use collocation, then we substitute this
approximation into PDE and require that equa-
tion be satisfied exactly at discrete set of points

L

Wenjian Yu
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Semidiscrete Collocation, continued

mn

S di(t)pi(z) =c Y ()] (),

j=1 j=1
whose solution is set of coefficient functions

a;(t) that determine approximate solution to
PDE

\%,;u,\‘ A
Implicit form of this system is not explicit form ?;EE%%&%

required by standard ODE methods, so we de- g gk
fine n x n matrices M and N by

my; = ¢;(x;), ng = ¢5(x;)

Ma'(t)=cNa(t)

Wenjian Yu 24
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Semidiscrete Collocation, continued

Assuming M is nonsingular, we then obtain
system of ODEs

() =cM INa(t),

which is in form suitable for solution with stan-
dard ODE software (as usual, M need not be

inverted explicitly, but merely used to solve lin-
ear systems)

Initial condition for ODE can be obtained by
requiring that solution satisfy given initial con-
dition for PDE at points z;

Matrices involved in this method will be sparse
if basis functions are “local,” such as B-splines

Wenjian Yu
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Semidiscrete Collocation, continued

Unlike finite difference method, spectral or fi-
nite element method does not produce approx-
imate values of solution w directly, but rather
it generates representation of approximate so-
lution as linear combination of basis functions

Basis functions depend only on spatial variable,
but coefficients of linear combination (given by
solution to system of ODEs) are time depen-
dent

T hus, for any given time t, corresponding linear
combination of basis functions generates Ccross
section of solution surface parallel to spatial

axis

As with finite difference methods, systems of
ODEs arising from semidiscretization of PDE
by spectral or finite element methods tend to
be stiff

2010-12-z4 vvelijiail 1u

FHEEEE U
TME, TmER
plin (DTS
A AT
T [E) 5
AT stiff ja) 51
26



Fully Discrete Methods

Fully discrete methods for PDEs discretize in
both time and space dimensions FAEAAE == 8] _E S HY

In fully discrete finite difference method, we

e Replace continuous domain of equation by
discrete mesh of points

e Replace derivatives in PDE by finite differ- HRE4IT
ence approximations KRS

e Seek numerical solution that is table of
approximate values at selected points in

space and time

In two dimensions (one space and one time), . .

. ns ( . ) kR
resulting approximate solution values represent 5T
points on solution surface over problem domain

in space-time plane
2010-12-24 Wenjian Yu 27
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Fully Discrete Methods, continued

Accuracy of approximate solution depends on
stepsizes in both space and time

Replacement of all partial derivatives by finite
differences results in system of algebraic equa-
tions for unknown solution at discrete set of
sample points

System may be linear or nonlinear, depending
on underlying PDE

With initial-value problem, solution is obtained
by starting with initial values along boundary
of problem domain and marching forward in
time step by step, generating successive rows
in solution table

Time-stepping procedure may be explicit or
implicit, depending on whether formula for so-
lution values at next time step involves only

past information
Wenjian Yu

REOTREAR S

st eAr& it

MAMER S, W
b 1) 4 — 20 2515
2 e B

LR T e
AR T
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Example: Heat Equation

L]
Consider heat equation g‘ :
Ut = CUgz, 0<z<1, t>0,
v prablem domain y
with initial and boundary conditions : :
w(0,2) = f(z),  u(t,0)=a,  u(t,l)=p : - ..
L initial values b
Define spatial mesh points z; = iAx, ¢« = 0,1, ORI () A A
...,n+1, where Az =1/(n+1), and temporal
mesh points t;, = kAt, for suitably chosen At
Let «¥ denote approximate solution at (¢, x;)
If we replace us by forward difference in time ] B =43
and ugpz by centered difference in space, we get H0ZE 5
by —2ul
At (Azx)2 ’

Or ¢, 8] AL ) R BUfE

k41 k Atk ko k .
u; —ui:-I-C(&—m)z(ui+1—2ui+u,ﬂ;_1),-1=1}...}n

2010-12-24 Wenjian Yu 29



L] ‘ Heat Equation, continued

L]

Boundary conditions give us uf = cand uf | =

3 for all k, and initial conditions provide start-
ing values u? = f(z;), i =1,...,n

)
I\

Il
pmblen'“dc:main

________ Homm oo
________ o

b 't i M i

Mo —Lig = <WO 3000

0D — O

So we can march numerical solution forward in
time using this explicit difference scheme

]
H

L initial values b

SRR
Pattern of mesh points, or stencil, involved at
each level is shown below
k1 k At k k k
t, up = JFC(ﬂx)z (wipr — 2ui + uily)
E+1 e .

b 1 50 R 2 0 05
k . . BT B 8] L ESR VR ? R
Hstencil I BEW R~

EF—1 ] ] ®
i—1 i i+1 x

Local truncation error is @(At) + O((Az)2), AFFTODEFHIEX,
so scheme is first-order accurate in time and B xRBEEHEVHE D

. f Ny = |
second-order accurate in space IR ZE
2010-12-24 Wenjian Yu 30




" A
| ocal truncation error

X TR A4 R, wi Tt —uf o wly - 2w uy
THE IR E N (Ax)2 ’
Wty T) — ully, ;) o u(ty, T, ) — 2u(ly, 7)) + u(t,, ) _ 9

At (Ax)’

u(ty,,2,) —ull,z,) _ oulty, ;) + O(At)

At ot
\'\/ u(tkvxm) — 2“(@;7%) + u(tkvx¢—1) 62u(tk7xz') " 0((Ax)2)

A1) 2 R A — .
I (42) o ou
ot ow;

Ul T;) — W, ;) ; Uy Tiy) — 20, ) + ully, 3, ) = O(At) + O((Az)?)

At (Az)’

2010-12-24 Wenjian Yu 31




Example: Wave Equation

Consider wave equation

Ut = CUzz, O0<x<1, t >0,

with initial and boundary conditions

228 S P 1 R
u(0,2) = f(x), ut(0,2) = g(z), WII—MIGwEFME

u(t,0) = a, u(t,1) =p0

With mesh points defined as before, using cen-
tered difference formulas for both wus and ugy
gives finite difference scheme

— k k k % N S Y
WP gk p bl Wk —oub bk REEETRE

A7 T @7 o((an?) + O((Ax))
or
2
4 = 20t e (B0 (b 2t k).

2010-12-24 Wenjian Yu 32



Wave Equation, continued

Stencil for this scheme is shown below

tﬂ
k41 . t .
k . & »
E—1 ® ® P
i—1 i i+1 T

[
>

Using data at two levels in time requires addi-
tional storage

Also need u? and u} to get started, which can
be obtained from initial conditions

wd = f(z),  uf = flx;)+ (Ag(x), FRBTEHME
where latter uses forward difference approxi-
mation to initial condition u;(0,2) = g(x)

2010-12-24 Wenjian Yu 33



Stability

Unlike Method .of Lines, where time step is SemidiscreteiE:H,
chosen automatically by ODE solver, user must B[] 35 K ok R Ay 22
choose time step At in fully discrete method, ODE solver£g
taking into account both accuracy and stability

requirements

] B M ErE SR u, =cu
For example, fully discrete scheme for heat SE2&%ZMFMOLEZ|
equation is simply Euler's method applied to K AR AR Eulerf#

semidiscrete system of ODEs for heat equa- s 1 &5 . b
tion given previously I e
v 3 A
We saw that Jacobian matrix of semidiscrete L0 e 01 =2
system has eigenvalues between —4c¢/(Axz)? and At < 2
0, so stability region for Euler's method re- —m
quires time step to satisfy
Ar 2
A £( x)
2c

T his severe restriction on time step makes this
explicit method relatively inefficient compared

to implicit methods we will see next
2010-12-24 wenjlan Yu 34
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Implicit Finite Difference Methods

For ODEs we saw that implicit methods are
stable for much greater range of stepsizes, and
same is true of implicit methods for PDEs
1) b H m) 5 22 0 A 3
Applying backward Euler method to semidis-
crete system for heat equation gives implicit 52424 FMOLEF]

finite difference scheme K15 FEH [\ J5Eulerf#
k1 k At k41 k+1 |, k+1
up | =up e (Ax)2 (“‘-ﬁ+1 = 2u; T Uy ) S W G =y
r=1,...,n
Stencil for this scheme is shown below
t A
k+1 . .
k . ]
EF—1 ] [ [
11 ¢ f+ 1 Zg 35
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Implicit Finite Difference Methods, cont.

T his scheme inherits unconditional stability of
backward Euler method, which means there is
no stability restriction on relative sizes of At
and Ax

However, first-order accuracy in time still [imits
time step severely

Wenjian Yu
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Crank-Nicolson Method

Applyingﬁnezoid method to semidiscrete sys-

FIEEEG: tem of ODEs for heat equation yields implicit
- . BRI 2 30 Crank-Nicolson method
U. —U.
: L = k+1 _ ok At k+1 k41 . k+1
l[C i+1 _2u +u 2(&l) ( ?
2 A k k k . .
e (Aa;) ~ whichis unconditionally stable and second-order
accurate in time
Stencil for this scheme is shown below
t,
ZHr R - k+1 e .
2/ BT iR =
k ® ®
E—1 ® ° .
1 —1 i i+ 1
2010-12-24 Wenjian Yu > 37



Implicit Finite Difference Methods, cont.

Much greater stability of implicit finite differ-
ence methods enables them to take much larger
time steps than explicit methods, but they re-
quire more work per step, since system of equa-
tions must be solved at each step

#il: - B ECH 5, ) J5 Euler

For both backward Euler and Crank-Nicolson ¥ = Ay
methods for heat equation in one space dimen- Yy = ot 4+ AL Ayt

sion, this linear system is tridiagonal, and thus 1
both work and storage required are modest (I _ At-A)yk“ _ yk
B F gl

In higher dimensions, matrix of linear system
does not have such simple form, but it is still
very sparse, with nonzeros in regular pattern

“YERR): XA (CRrES AP A5 RO
=4E=2E: BXA (CHESANFE LT RD

2010-12-24 Wenjian Yu 38



"
Convergence
WSk -
» ‘_‘i" Vs
In order for approximate solution to converge I TE) S 22 [E) 2K — 0,

to true solution of PDE as stepsizes in time N EME i — TR
and space jointly go to zero, two conditions

must hold:
e (Consistency: local truncation error goes to *ﬁ[‘ﬁ, P
zero R ERTIRZ— O
e Stability: approximate solution at any fixed FiEH.: [FMEODE-
time ¢t remains bounded VP ) & R e E M

posed linear PDE, consistency and stability are
together necessary and sufficient for conver-

gence T B AT

2010-12-24 Wenjian Yu 39



Stability

Consistency is usually fairly easy verified using

Taylor series expansion SHTERBIREE, Br¥p>1EMEEA 2
Stability is more challenging, and several meth-
ods are available: A xE THE 23 A b s R X
y =Ay
e Matrix method, based on location of eigen- . L
values of matrix representation of differ- Yy =(I+At'A) Yy
ence scheme, as we saw with Euler's method _~4¢ < Eial(A) <
Az) ig(A) <0
e Fourier method, in which complex expo- de - At
nential representation of solution error is 1- (Az) < FEig(I+At-A)
€T

substituted into difference equation and an- -4 \
alyzed for growth or decay

e Domains of dependence, in which domains
of dependence of PDE and difference scheme SR XU R

are compared AR X 45k

2010-12-24 Wenjian Yu 40



" A
CFL Condition
Domain of dependence of PDE is portion of

problem domain that influences solution at given -
point, which depends on characteristics of PDE FHIEZR Ut = —CUg

EAMHR y >0
Domain of dependence of difference scheme is
set of all other mesh points that affect approx-
imate solution at given mesh point

BV

plicit finite difference scheme for hyperbolic
PDE to be stable is that for each mesh point
domain of dependence of PDE must lie within SRR ]
domain of dependence of finite difference scheme  PDERIK#ik

<

B! A RZE AR
A

2010-12-24 Wenjian Yu 41




Example: Wave Equation

Consider explicit finite difference scheme for
wave equation given previously

Characteristics of wave equation are straight
lines in (t,x) plane along which either x 4 /ct

or x — +/ct is constant PIANUFAE 2%

Domain of dependence for wave equation for
given point is triangle with apex at given point
and with sides of slope 1/,/c and —1/,/c

2010-12-24 Wenjian Yu

Utt = CUgpx

EEA R R
v(z +~Jct)
v (z —J/ct)

P DE {4 i dik
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2 Example: Wave Equation

CFL condition implies step sizes must satisfy

A Stencil:
xr
At < — . . .
Slop: ve el !
At > 1 ke [ g t
Ax /e
E—1 ® ® P
i—1 1 i+ 1
Unstable finite difference scheme
SR : 2200 =X A Rt 4k
. Axr
Slop: 5 . o CFL&M: ZEamMK
At - 1 " ' * o ¥ ﬂi>PDE1€EuﬁLU$§'
Az /e R
Stable finite difference scheme
43
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" S
S\ G5 —— I AR AT ) R PR SK A

m EEHFE: (BRI EZE)
ERZ44: (Method of Line)
Collocation method G BHEIT)

n RS (KSR )
KRR )
WA A el
BN RE. TBEMH
ISy o w— g | 1 Y € AN 5 /N 8
TR S . —BOME . RAERE (Lax b )

T Jetia Y

o B PR T ——FE PRV . ARSI AT (BTN AR =W
TR CFLEH)

\l\
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Time-Independent

Problems




B—R
BR

2010-12-24

Time-Independent Problems

We next consider time-independent, elliptic PDEs —_—
in two space dimensions, such as Helmholtz iz
equation

Upx + “‘yy + AU = f(miy) *ﬁ—‘z‘j\tl‘tﬂ;ﬁ@ ﬂznﬂﬂ_

EIPSS

Important special cases:
Poisson equation: A =20
Laplace equation: A=0and f=0

For simplicity, we will consider this equation on .
unit square B

Numerous possibilities for boundary conditions
specified along each side of square:

Dirichlet: u specified
Neumann: uz Or uy specified

Mixed: combinations of these specified ﬁﬁiﬂﬁ%{i

vverljidall yu



Finite Difference Methods

Finite difference methods for such problems
proceed as before:

e Define discrete mesh of points within do-
main of equation

e Replace derivatives in PDE by finite differ-
ences

e Seek numerical solution at mesh points

Unlike time-dependent problems, solution not FAE &) A
produced by marching forward step by step in  —3—3%3K

time

. . . LR TTIEE
Approximate solution determined at all mesh BB A A5 T
points simultaneously by solving single system DR, “ahiihfg”

of algebraic equations 5] it
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] - Example: Laplace Equation

Consider Laplace equation

Upp _I_ ﬂyy = 0

on unit square with boundary conditions shown

on left below
Yy Yy
4 1 i

Define discrete mesh in domain, including bound-
aries, as shown on right above

Interior grid points where we will compute ap-
proximate solution are given by

('-‘Tuyj) — (lh..j'h).. L, =1,...,n,

where in examplen =2 and h=1/(n+ 1) = 7'27/%%[?; o8
1/3 b K A] BEAR /)
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Finite Difference Methods

e Define discrete mesh of points within domain of equation

e Replace derivatives in PDE by finite differences

e Seek numerical solution at mesh points

EEFREOTIEEES R S RGTLUE, «2iafE” =

Example: Laplace equation on unit square

—HraaE4S
u‘i-l—]_,j _ 2;;:’_ —I— u'i'_laj_l_-u.isj-l_l — 2:?213 + -H?',__‘j—l —0
"4 -1 -1 J[u,] [0
-1 4 —1|| ;| |0
_ —l
1,2 o I8 PR RS
-1 -1 4w, | |1

2010-12-24

Wenjian Yu

FFAEFZ I 8]
A
Y
b1
4 L
* ® O o
0] O
e ® O o
il I &
0
'*u.lsl- -0*125-
“-2?1 _ 0.125
“ilLLQ 0.375
| UD D | 0.375 |
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" A
Finite Element Methods

EREEBHESL

e 4 e X
] ) 2

P i 4
AYITRZ

2010-12-24

Finite element methods are also applicable to
boundary value problems for PDEs as well as

for ODEs

Conceptually, there is no change in going from
one dimension to two or three dimensions:

e Solution is represented as linear combina-
tion of basis functions

e Some criterion (e.g., Galerkin) is applied to
derive system of equations that determines
coefficients of linear combination

Main practical difference is that instead of subin-
tervals in one dimension, elements usually be-
come triangles or rectangles in two dimensions,
or tetrahedra or hexahedra in three dimensions

Wenjian Yu
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Finite Element Methods, continued

Basis functions typically used are bilinear or — 4.

bicubic functions in two dimensions or trilinear SR ME . X = WA
or tricubic functions in three dimensions, anal- — 4,

ogous to "hat" functions or piecewise cubics géﬁﬁ ==%

in one dimension

Increase in dimensionality means that linear HARMENG N
system to be solved is much larger, but it is
still sparse due to local support of basis func-

tions FEREAT SRR R

Finite element methods for PDEs are extremely
flexible and powerful, but detailed treatment of
them is beyond scope of this course
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o G — — I ANAZ I AE ) L )oK i

n AR BRI R — — W 22 T e VAR AR
DA EOR: A
m =i 44— —Dirichlet. Neumann. mixed

m HREI I

—A™Laplace 5 T2 H1 1+
n G RICHETE
AR
ey R R N N = AN = .
= 4R L SR — B R 4 E
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" J
Matlab topics

m Matlab commands for PDE

— Y& 2 6] [ )
ey U B

pdepe (So
for parabo
Syntax: so

ve Initial-boundary value problems
Ic-elliptic PDEs in 1-D)

=pdepe(m,pdefun,icfun,bcfun,xmesh,tspan)

M7~ R SR EL: KA (0), BIAEXTFR(L), BRXFFR(2)

=
"

D H. du\du  -m O
d@jﬁ%} d(;r, t, H’EJE = X a_I

ncfun:

PDE Toolbox: 2-D FEM 5

2010-12-24 Wenjian Yu

(xm f[.t, t, i, g—z)] + s(:r, t, u, t;—i]

ndefun: [c,f,s] = pdefun(x, t, u, dudx) C Xt £ B,
™ HymE
plx,t,u) + g(x, t‘,lf(;x, t, u, ) " 0
Demo wu, =u,,, t>0, u(0,x)=sinx %4§i"ﬂ1@=

53



