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Introduction of Scientific

Computing and
Numerical Algorithm
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Numerical analysis = Scientific computing
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" A
Evolution of scientific computing from other
sciences and engineering disciplines
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Top ten algorithms of the century

“We tried to assemble the 10 algorithms with the greatest influence on the
development and practice of science and engineering in the 20th century”

—— Editors

m 1.1946 Los Alamos#} 5 5L K = ). von Neumann, S.
UlamAIN. MetropolisZr¥)Metropolis&.7%,BlMonte Carlo
IJTiE(“BENLE S ” )

m 2.1947 2= #E(RAND)A & HIG. Dantzig )i il 2t 30 ki i) 2
i B (simplex method)

m 3.1950 3£ & E X fr#E /BEE 7P FrfIM. Hestenes, E.

Q'I'ln'FQFEI'If‘ IQnr\7ncI-‘Alllfl/'lllruln\:Zf?IE_ll-tﬁb/—F/—'l: [l an ncz

ULICIVIH ] HNVD.,. LAl ITVAVO ) UJHJI\I’IU I Rad AN IAVE PAN I_CA.I

W7, CGHH)
m 4.1950’s I (Oak Ridge)E K L4 EHIA. Householder
T A IR B 708 5V (27 B AE 27 ERE T 1 /75/7"_5’)
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Top ten algorithms of the century

m 5.1957 IBMHJ. Backus’h

FHI/NABH|Fortranfi At 4 25 2%

m 6.1959-61 /£ Ferranti Ltd.]J.G.F. Francis X BHQRE& Y,
FEH T FE . DAL EERT P IF
m 7.1962 £ Elliot Brothers, Ltd.[\JTony Hoare$& H tR i HE

FF &1 (Quicksort)

m 8.1965 IBM WatsontF5X 3L i) J.

R AT&T Bell 2 =17,

Tukey £ [A];

Cooley 5Princeton K2
BT RIFFTHEYA

Ny

m 9.1977 Brigham Young X22HJH. Ferguson#IR. Forcade
e Y BRIk RN IR (M T30 407, Y2, 2 72922 18)

— AN ANO™ 1

H 7 M

H IV.1J90/ ldIEJ\%HJL UIECIIngU/I‘I-IV I'(UKIIIIIIR"ij NI

ZRHE % (fast multipole algorithm, A&, 46HEE 72/
B A

I}/%TNO 25 55 7&"9 %B/E%
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The art of computer programming &%)

We might call the subject of these books “nonnumerical
analysis.” Computers have traditionally been associated with
the solution of numerical problems such as ...... Numerical
computer programming is an extremely interesting and rapidly
expanding field, and many books have been written about it.

From D. E. Knuth, The art of computer
programming, Vol. 1 ( GHENEFEITZER) )

n HEan “BUESER” M “ARBUEFR”

n BEFZHBIRE 2, KELAE, RAEFERR R 4
HIESHFNE, FEBTEED D Rosdrsrt.

n “EREFIRY MATRE R 3T EY R

n FEFD: FRIGERSHER)EE, PHEHERE.
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Numerical Software /

Package and Matlab
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AR gkl b/ % Bt w4
CMLIB FH HHK b AR 2 (NIST) R | %% |gams.nist.gov
VR AU RS R R 45

FMIM Computer Methods for Mathematical ki www.netlib.org
Computations —[3[2] B B i {):

HSL J1[¥ Science and Techn:::l:::gy Facilities i 7 www.hsl.rl.ac.uk
Council $efltfyRl= i B0

IMSL Visual Numerics %3y },J;T SE RS G4 WWW.vni.com
VR 3R A P

NAG NAG 7y w] PR (L RO E(F STV R P 2 ik |www.nag.com

NAPACK Applied Numerical Linear Algebra J ki www.netlib.org
317 B R A

NETLIB LR 75 Fh 4 e B il"?'iﬂftfifl'- Fiey %4 s %% |www.netlib.org

NR Numerical Recipes 41 5[4 BT A | #4950 % | www.nr.com

NUMERALGO | 1] Numerical Algorithms 1 fi*) & {1} o, B¢ www.netlib.org

MATLAB MathWorks 2% H] Hi i i) 25 22 502 1) fe b www.matlab.com

PORT DU 7R S 0 55 s A o ?% | www.netlib.org

SLATEC 5 [ I S 58 S i R R AL %% |www.netlib.org

SOL 56 [/ s e Rl se e =4 & T 5 www.stanford.edu/group/SOL/
F['ﬁﬂﬁ’fbﬁi*ﬁﬁ’%[“ AT

TOMS Bl Hl ACM Transactions on Mathe- T 5% www.netlib.org

matical Software T AT ILFER-, H#
TRVEC T RN T = kR i




7 1-2 Matlab 5 58 {CHRFEIE TR LL &

Matlab({: A gmfEil = C, C++, Fortran
AR TV O #-wmiEiEs
it 1y 2l fEFEAs, ol JIT D25 (v 6.5 BLS RAY) I 1 o
s AR ANt B iy
A L] BRI L5yl
EAThIT B8 Bith
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" A
Some useful Matlab commands

= Start: matlab

= Constants: pi, i, 7

= Arithmetic operators: +, -, *, /, ~, .+, .-, .*, ./
= Relational operators: ==, ~=, >, >=, <, <=

= |ogical operators: and, or, not

= Help: help, @oe, lookfor, demo

= Qutputs: disp, fprintf, ; (supressoutput), format

= Elementary junctions: sin, cos, tan, sinh, asin, exp, log, loglO0,

sgrt
= Variables: who, whos, clear, save, load, ans, diary
= Vectors: [.., ..], rand, length

= Matrices: [..., .. ; .., ..], ones, eye, rand, size, diag, tril,
triu

= Graphs: plot, subplot, loglog, ezplot, hold , plot3, figure,

close
= Files: edit, type, 1ls, path
= Programming: function, if, for, while, end, inline, @
= End: quit

Wenjian Yu 24



Source of Errors
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Source of approximation

m \WWhich occur before a computation begins

Modeling: with simplified or omitted physical features
(friction, viscosity, air resistance)  pgEg, ZFh¥dk

Empirical measurements: laboratory measurements
have finite precision

Previous computations: Input data may be the results
/\[ of a previous computational step
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Source of approximation

m \Which occur during computation

Truncation or discretization: omitting or simplifying
some mathematical features (derivative to finite differen
-ce, using a finite number of terms in an infinite series)

Rounding: representation of real numbers and
arithmetic operations is ultimately limited to some finite

amount of precision

Final accuracy is affected by all approx. Uncertainty in input may be amplified by the
nature of problem; Perturbations during computation may be amplified by algorithm.

Surface area of the > r ~ 6370 km, based on empirical measurements
Earth: > Value of © must be truncated at some point

A — 472' 8 2 » The numerical values of input and the arithmetic

operations are rounded
Wenjian Yu 28
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Absolute Error & Relative Error

Absolute error = approximate value — true value

absolute error Final error

true value iInvolving all
approximations

Relative error =

The absolute error is not its “absolute value”

Note the relative error is undefined if the true value is O

A completely error approx. ~ a relative error of at least 100%
E, of 10 ~ p correct significant digits in 10-representation
Precision: number of digits with which to be expressed
Accuracy: number of correct significant digits

We estimate or bound the error rather than compute it
exactly, because the true value is unknown

Wenjian Yu 29
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ata Error and Computational Error

Typical problem: compute value of function
f:R — R for given argument

x = true value of input, f(x) = desired result
r = approximate (inexact) input
f: approximate function computed

Total error = f(z) — f(z) =

(J@ - 1@+ (f@) - f(@) =
4 I

computational error 4+ propagated data error

B R ZE WL
Algorithm has no effect on propagated data
error

Wenjian Yu
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IF

Truncation Error and Rounding Error

HWRE, Truncation error. difference between true re-
YRR R sult (for actual input) and result produced by
=LA R given algorithm using exact arithmetic
X 1 B
Due to approximations such as truncating in-
finite series or terminating iterative sequence
before convergence

& \iR#, 3} Rounding error: difference between result pro-

HHAMRKEE duced by given algorithm using exact arith-
LA metic and result produced by same algorithm

using limited precision arithmetic

Due to inexact representation of real numbers
and arithmetic operations upon them

(f(@) - (@)

Computational error is sum of truncation error

and rounding error, but one of these usually
dominates

"Glljlclll 1u

31



Example: Finite Difference Approx.

Error in finite difference approximation

ey = LEE W 1)

exhibits tradeoff between rounding error and
truncation error
Taylor’s series: f(x+h)=f(x)+ f'(x)h+ 1"’(9)h2 /2
Truncation error bounded by Mh/2, where M
bounds |f”(t)| for t near =

Rounding error bounded by 2¢/h, where error
in function values bounded by ¢

Mh 2e 4T}alerrur minimized when h =~ 2,/¢/M

+
2 h

Error increases for smaller h because of round-
ing error and increases for larger h because of
truncation error

Wenjian Yu 32



Example: Finite Difference Approx.

| 2%, ExffiMatlab
| SELG ] H X AN B ?

1>> h=logspace(-16, 0, 17);
|>> nd=(sin(1+h)-sin(1))./h;

e >> loglog(h, abs(nd-cos(1)),

~. ]>>axis([1e-16 1 1e-18 1e2])

10 L 4

| - e e
1o ~ 7 truncation errar rounding error ~

L - s ._\‘._
10—13 | . ks |
1D_1B 1 | 1 | 1 1 1 1 1 | 1 | |

107" 107 107" 107" 107 10" 107 107 10
step size

Function: f(X)=sin(x), atx=1

Wenjian Yu
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1%

Forward and Backward Error

Suppose we want to compute y = f(x), where
f:R — R, but obtain approximate value y

Forward error = Ay =4 — vy fegiE X Bttt iRE
Backward error = Az =1 — z, where f(Z) =73 & 3V1EE

PE IR 2=

As approximation to v = V2, ¥ = 1.4 has ab- ot
4 y ] SRR

solute forward error

Ayl =|j—y| =|1.4—1.41421...| =~ 0.0142,

or relative forward error about 1 percent

Since +v1.96 = 1.4, absolute backward error is
Azx| = |r — x| =1]1.96 — 2| = 0.04,

or relative backward error 2 percent
Wenjian Yu 34
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Example: Backward Error Analysis

To approximate cosine function f(x) = cos(x),
truncating Taylor series after two terms gives

§=f(x) =1-22/2

Forward error:

Ay=3—y= f(z) — f(z) =1 - 22/2 — cos(x)

To determine backward error, need value =z
such that f(z) = f(z)

For cosine function,

T = arccgs(f(m)) = arccos(y)

Wenjian Yu
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Example, continuted

For - = 1,

y = f(1) = cos(1) =~ 0.5403,
j=Ff(1)=1-1%/2=0.5,

r = arccos(y) = arccos(0.5) ~ 1.0472
BEGHVH

Forward error:

Ay=73—y~0.5—0.5403 = —0.0403,

=

Backward error:

Ar=x—xr~1.0472—-1 = 0.0472

Wenjian Yu
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. e
Sensitivity and Conditioning

Problem insensitive, or well-conditioned, if rel-
ative change in input causes similar relative
change in solution

e T
Problem sensitive, or ill-conditioned, if relative
change in solution can be much larger than
that in input data

Condition number:

Irelative change in solution|
[relative change in input data|

_F@) — f@)]/f(@)| _ |By/yl
(Z —2)/2 | Az /x|

cond =

Problem sensitive, or ill-conditioned, if

cond > 1 M HE KT

Wenjian Yu



Condition Number

i NS

Condition number is "amplification factor’

G EH ST
MXIRZE

— cond x

N\ BHEH]
X RZE

Condition number usually not known exactly
and may vary with input, so rough estimate or
upper bound used for cond, vielding B:

G/ ESUHN B N 1) ‘

X IRZE FAXFIRE

gcond X

Wenjian Yu
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T
Example: Evaluating Function
PR Z SR A ] /3
Evaluating function f for approximate input
r = x+ Az instead of true input = gives

HIEEERIRE = f(e+Az)—f(z) = f'(z)Ax,

ot p s i ge _ @+ A — [@)  f@)Ax
L e

zf'(x)

f(x)

f'(z)Ax/f(x)
Azx/x

PR SR AH ) et
& A R v 5K

cond =~

Relative error in function value can be much
larger or smaller than that in input, depending

on particular f and x A% T ELAK 1K R B 5 x I B

Wenjian Yu 40



" A
Example: Sensitivity U ) i

Tangent function for arguments near 7/2. 1.570796

tan(1.57079) ~ 1.58058 x 10°

tan(1.57078) ~ 6.12490 x 10%

Relative change in output quarter million times
greater than relative change in input

For z = 1.57079, cond = 2.48275 x 10°

xf'(x)
fx)

x(1 + tan?x)

tanxy

1
cond =~ = ‘x(

+ tanx)
tanx

) \ 4 5
VRETFG S 3 9.6809x104/1.58058 x10
10-5/1.57079

~1x10°

Wenjian Yu 41
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HiEmRREN

Stability of algorithm analogous to condition- f##[F—A )G %
ing of problem AT P LY

Algorithm .st.ab!e i I’:@Su|t relatwel‘y insensitive R &
to perturbations during computation NIRZE, ik

From point of view of backward error analy-
sis, algorithm stable if result produced is exact
solution to nearby problem 7] JG iR =T

For stable algorithm, effect of computational
error no worse than effect of small data error
in input

K A 5] — 1) /R ) A [R] VAR 0] 5 Rl S B AS ] 1] /33

A REJR A M AR A, (EREVANRIEE R E R
AR PR, WzFEEERARER.
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" A
Accuracy

Accuracy refers to closeness of computed so-
lution to true solution of problem

Stability alone does not guarantee accuracy

Accuracy depends on conditioning of problem
as well as stability of algorithm

Inaccuracy can result from applying stable al-
gorithm to ill-conditioned problem or unstable
algorithm to well-conditioned problem

Wenjian Yu
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Floating Point Arithmetic




m FEALHI A BRBEEARER

7 R

IERAL

FRARGHRE S
A FEN]
LA AE
HIE AL S & i
5 ME
#K7E I % (Cancellation)

46



Floating-Point Numbers

Floating-point number system characterized by
four integers:

&} base or radix X%
P precision
[L,U] exponent range

Number = represented as

dg + — + =+ +p‘).6E,
(U GESTE E3

where

0<d;<B—-1,i=0,....p—1, and L<E<U

dody - -~ dp_1 called mantissa RH

FE called exponent

didp---dyp_1 called fraction var OANY
Wenjian Yu 47



" J
Typical Floating-Point Systems

Most computers use binary (3 = 2) arithmetic

Parameters for typical floating-point systems
shown below

system 3 P L U
UG IEEE SP > 24  —126 127 32fuEk
P75 IEEE DP 2 53 —1022 1023  @4fiEkK
Cray 2 48 16383 16384
HP calculator 10 12 —499 499
IBM mainframe 16 6 —64 63

IEEE standard floating-point systems almost
universally adopted for personal computers and

workstations

Wenjian Yu
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Normalization FHAL,

Floating-point system normalized if leading digit

do always nonzero unless number represented
IS zero

In normalized system, mantissa m of nonzero }%i&(dodlmd
floating-point number always satisfies

p-1

1<m< g FE

Reasons for normalization:

e representation of each number unique
e NoO digits wasted on leading zeros

e leading bit need not be stored (in binary

system)
B

Wenjian Yu 49



Properties of Floating-Point Systems

Floating-point number system finite and dis-
crete

-
-

- -

- - i

—_—

-

- -

- -
- -
- -
- -
- -
- -
- -
- -
-

-
- _ == _ ="
- —_— == _ ==
- —_— == =
- —_— == =
- —
—

——
J—
e

-
- - -
- - -

_— - e

-
-
-
-

Smallest positive normalized number:

TuifE  underflow level = UFL = g*

argest floating-point number:

L#E  overflow level = OFL = gU+1(1 — g7P)

Floating-point numbers equally spaced only be- A#4514040,

tween powers of 3 ﬁéEﬁE'éﬁE”Zl‘Eﬂi@@ﬁ?ﬁ

Not all real numbers exactly representable; those
that are are called machine numbers BEFREHIR LB HIFR AN EL

Wenjian Yu
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" J
Example: Floating-Point System

Tick marks indicate all 25 numbers in floating-

point system having 3=2,p=3, L = —1, and 3&)—%%&
U =1 FeH 121

OFL = (1.11)5 x 21 = (3.5)10

UFL = (1.00)» x 2—1 = (0.5)10
NS

At sufficiently high magnification, all normal-
ized floating-point systems look grainy and un-

equally spaced like this LR
{NFERES BEH 2 [R] 35 43 A
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Rounding Rules
5 AFE]
If real number =z not exactly representable, then
approximated by “nearby’” floating-point num-

ber fl(x)

l: P EREHIRE
Process called rounding, and error introduced fl(1.75)=(1.11) L
called rounding error fl(1.5):(1.10)22

1(1.625)=(? ),

Two commonly used rounding rules: 110

“Be chop: truncate base-3 expansion of = after N E S
(p—1)st digit; also called round toward zero 3| “ FEUFE” )

e round to nearest: fl(z) nearest floating- BiEa A (Al
point number to z, using floating-point num- “PUEFN” )
ber whose last stored digit is even in case
of tie; also called round to even

JEF, AN

Round to nearest most accurate, and is default (5325 2 yE & A
rounding rule in IEEE systems P 10/2i 1 #)
5

Wenjian Yu
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Machine Precision

Accuracy of floating-point system character- E=0ff, & A\
ized by wunit roundoff, machine precision, or Sk FER

machine epsilon, denoted by €mach dy . do dy_1
— e e T P—
I_i(d0+ﬁ+,82+ +.5p_1

With rounding by chopping, emach = 8P

gl—p

With rounding to nearest, epach = 3,

Alternative definition is smallest number € such

that fI(1 1 X v b ok
at fi(1+e¢) > fl: BB (7R A

Maximum relative error in representing real num-
ber z in floating-point system given by

‘fl(m)—m

< Emach
£

—NF RBUR G XS 18] B
RE B HER
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- Machine Precision, continued

=2, p=3, L=-1, and

For toy system illustrated earlier, U 1

€mach = 0.25 with rounding by chopping
emach = 0.125 with rounding to nearest 'B—p

For IEEE floating-point systems,

€mach = 2724~ 107 in single precision TR IIFN
53 _i1—16' Rz
vy — € = 2722 =10 *°'in double precision
AN R mach
floatshow.m IEEE single and double precision systems have
about 7 and 16 decimal digits of precision

Though both are “small,” unit roundoff error
emach Should not be confused with underflow

level UFL Z >
w/DHIIEZL " \
H5RHEKERX
In all practical floating-point'systems,

giggﬁ O < UFL < €mach < OFL overflow, & K%L

~—_ " WenjianYu 54




Subnormals and Gradual Underflow

Normalization causes gap around zero in floating-
point system 0~pB-, UFL

If leading digits allowed to be zero, but only fEIEEEARH#ER,

57 e b —
when exponent at its minimum value, then gap SERR B — MR

Y =% =gy
“filled in" by additional subnormal or denor- Bﬁj’aﬁfﬂﬁ{g‘mﬁi
_ T (T ARG

malized floating-point numbers YR IE FRAL S 8

=2, p=3, L=-1, and .

U=1
4 -3 -2 —1 0 1 2 3 4
Subnormals extend range of magnitudes repre- B/
sentable, but have less precision than normal- ﬁ%ﬁi %

ized numbers, and unit roundoff is no smaller

€mach

JEL‘)H\%: ﬁ%%ﬂ—:\‘ B@%

WRE A o
ugmented system exhibits gradual underflow " X
g y g NS F A A2

2T W
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Exceptional Values

IEEE floating-point standard provides special
values to indicate two exceptional situations:

e Inf, which stands for "“infinity,” results from
dividing a finite number by zero, such as

1/0

e NalN, which stands for “not a number,” re-
sults from undefined or indeterminate op-

erations such as 0/0, O % Inf, or Inf/Inf

Inf and NaN implemented in IEEE arithmetic
through special reserved values of exponent

field

HP RGN, BB TRERS. RIEES M IFER.
IR A, AR TR R

Wenjian Yu
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Floating-Point Arithmetic

Addition or subtraction: Shifting of mantissa
to make exponents match may cause loss of
some digits of smaller number, possibly all of
them

Multiplication: Product of two p-digit mantis-
sas contains up to 2p digits, so result may not
be representable

/l:?

Division. Quotient of two p-digit mantissas
may contain more than p digits, such as non-
terminating binary expansion of 1,/10

Result of floating-point arithmetic operation
may differ from result of corresponding real
arithmetic operation on same operands

Wenjian Yu
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Example: Floating-Point Arithmetic
Assume =10, p =6
Let z = 1.92403 x 102, y=6.35782 x 101

Floating-point addition gives

r+ y = 1.93039 x 1072,

assuming rounding to nearest

Last two digits of y do not affect result, and

with even smaller exponent, y could have had
no effect on result

Floating-point multiplication gives

r*y = 1.22326 x 107,

which discards half of digits of true product
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Floating-Point Arithmetic, continued

Real result may also fail to be representable
because its exponent is beyond available range

Overflow usually more serious than underflow

because there is no good approximation to ar-
bitrarily large magnitudes in floating-point sys-
tem, whereas zero is often reasonable approx-

imation for arbitrarily small magnitudes

On many computer systems overflow is fatal,
but an underflow may be silently set to zero

Wenjian Yu
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Example: Summing a Series

Infinite series

%

has finite sum in floating-point arithmetic even
though real series is divergent

K
Possible explanations:
e Partial sum eventually overflows

e 1/n eventually underflows

e Partial sum ceases to change once 1/n be-

comes negligible relative to partial sum: o dek . L e T

ExE/NT Emach HIEK n—1 %gj}%;grj
= n < e k

ﬂ(l + 8) 1 1f < €mach kgl(lf ) m[{ﬁﬂ:fa%:%

flla+c-a)=a PRIIPIEINR
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Floating-Point Arithmetic, continued

Ideally, = flop v = fl(z op y), i.e., floating-
point arithmetic operations produce correctly

rounded results =IRE & BFHEHNRZE ~ Emach

Computers satisfying IEEE floating-point stan-
dard achieve this ideal as long as x op vy is within

ER:
range of floating-point system .
1.XRE—PiE
2, — LR B )
But some familiar laws of real arithmetic not S
7B ﬁ?%#%ﬂ

necessarily valid in floating-point system

Floating-point addition and multiplication com- B, BSR4y

mutative but not associative paj&4 WE—H e RE, x5

A BOr S A B N R4

Example: if € is positive floating-point number MraEE WX .

slightly smaller than emach. T €mach 2R/ D%, &
(1+€¢)+e=1, but 1+ (e+e) > 1 AR (AL,

RERKNIREASRK
61
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Cancellation

Subtraction between two p-digit numbers hav-
ing same sign and similar magnitudes vields
result with fewer than p digits, so it is usually
exactly representable

Reason is that leading digits of two numbers
cancel (i.e., their difference is zero)

Example:

1.92403x10%2-1.92275x10% = 1.28000x 101,

which is correct, and exactly representable, but
has only three significant digits

N =7 BT

Wenjian Yu
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Cancellation, continued

Despite exactness of result, cancellation often
implies serious loss of information

Operands often uncertain due to rounding or
other previous errors, so relative uncertainty in

difference may be large PR Z EZRMHFTIREDR K !

Example: if € is positive floating-point number

slightly smaller than eqach» S AR 2
(14+¢)—(1-¢) fQO %gﬁﬁgg

in floating-point arithmetic, which is correct XK. BRA&
for actual operands of final subtraction, but VeV B1.5
true result of overall computation, 2¢, has been

completely lost
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Cancellation, continued

Digits lost to cancellation are most significant,
leading digits, whereas digits lost in rounding
are least significant, trailing digits

Because of this effect, it is generally bad idea
to compute any small quantity as difference of
large quantities, since rounding error is likely
to dominate result

For example, summing alternating series, such

4 . 4 IEFAE A

T £ I
I AP TR THR N

for x < 0, may give disastrous results due to
catastrophic cancellation

T “cancellation” k™ & )5
R:
Wenjian Yu i+ﬁ§ﬁ$@1ﬁﬁ 64



“0 20 40 &0 0 20 40 60
N i)
B 1.5 x = —150f 9 FIg v AE FE D L N8k 26,
A ch g sl F s S AE B2 A G, A b B A .

1

4 : - 10
il 0
=) Z 1 10
{H

0 1107

5 _ _ 10.2 l’ﬂ:flfl ] .
0 20 40 B0 0 20 40 60
N N

4 1.7 x = =30 Eor RIE TH SR A N ARk i 2k,

Wenjian Yu
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£ £
f=ldat ot

HAEBN=5318F £
W TR, ARt s
RiRE/NF5%

mEx=15, MASKEHK
HINS, THN=230 4 F
FIiRZEB /DT 5%, FTER

ﬂXIﬁ%{N 12, 435

22 2y —1 PAZ 7~

HEHERNRENCRER
1.8%

mRx=3, WAERERH
%, THN=8HHRZ /N
F1.2%
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Example: Quadratic Formula

Two solutions of quadratic equation

az? +br+c=0
given by

—b 4+ /b2 — 4ac
2a

Naive use of formula can suffer overflow, or
underflow, or severe cancellation

o r—

Rescaling coefficients can help avoid overflow
and harmful underflow

Cancellation between —b and square root can
be avoided by computing one root using alter-
native formula

2c
b /b2 — 4dac

by =

Cancellation inside square root cannot be eas-

ily avoided without using higher precision
Wenjian Yu
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Example: Standard Deviation _
PR
Mean of sequence z;, : = 1,...,n, IS given by
1 T
= 2

and standard deviation by

=1

o= ln i > (@ — 5)2]

Mathematically equivalent formula

(Z : Mz)r R i

g=[
n—1 i=1

avoids making two passes through data

D] D AR e )

Unfortunately, single cancellation error at end ) Vﬁﬁf{ JEH

of one-pass formula is more damaging numeri- . ‘jF’ Jﬂ%&'ﬁ

cally than all of cancellation errors in two-pass T HIALEE
formula combined - %

67
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524

B iR 22 e H RN

FEARES: OFL. UFL. 2B, PLESKE
F fman; VRIS A ENIRZE “HRIH”

n B ZE SR BOIN IS C “ REME R
7D, HERBEERE o

n B RLF S5 A E R P ARIT ZAE R (cancellation)

n KRV EPERZH,

T AR RS )&

B ﬁ'f’hig’%’ M&Eﬁﬁ\%ﬁ
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Assignment

IR A —EH RAR
W ks http://www.cse.illinois.edu/iem/

S35, 1.5, 1.11, 1.19, 1.20
(. floatshow.miEF
(FEN M 28225 BBk )
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