
Dynamic Programming AssistedQuantization Approaches for

Compressing Normal and Robust DNN Models

Dingcheng Yang1, Wenjian Yu1∗, Haoyuan Mu1, Gary Yao2

1Dept. Computer Science & Tech., BNRist, Tsinghua Univ., Beijing, China.
2Case Western Reserve University, USA.

Email: ydc19@mails.tsinghua.edu.cn, yu-wj@tsinghua.edu.cn, muhy17@mails.tsinghua.edu.cn,

gxy76@case.edu

ABSTRACT

In this work, we present effective quantization approaches for com-

pressing the deep neural networks (DNNs). A key ingredient is

a novel dynamic programming (DP) based algorithm to obtain

the optimal solution of scalar K-means clustering. Based on the ap-

proaches with regularization and quantization function, two weight

quantization approaches called DPR and DPQ for compressing nor-

mal DNNs are proposed respectively. Experiments show that they

produce models with higher inference accuracy than recently pro-

posed counterparts while achieving same or larger compression.

They are also extended for compressing robust DNNs, and the rele-

vant experiments show 16X compression of the robust ResNet-18

model with less than 3% accuracy drop on both natural and adver-

sarial examples.

KEYWORDS

Dynamic Programing, Neural Network Compression, Quantization,

Robust Model, Weight Sharing.

ACM Reference Format:

Dingcheng Yang1, Wenjian Yu1∗, Haoyuan Mu1, Gary Yao2, 1Dept. Com-

puter Science & Tech., BNRist, Tsinghua Univ., Beijing, China., 2Case West-

ern Reserve University, USA., Email: ydc19@mails.tsinghua.edu.cn, yu-

wj@tsinghua.edu.cn, muhy17@mails.tsinghua.edu.cn, gxy76@case.edu, .

2021. Dynamic Programming Assisted Quantization Approaches for Com-

pressing Normal and Robust DNNModels. In 26th Asia and South Pacific De-

sign Automation Conference (ASPDAC ’21), January 18–21, 2021, Tokyo, Japan.

ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3394885.3431538

1 INTRODUCTION

Deep neural networks (DNNs) have been demonstrated to be suc-

cessful on many tasks. However, the size of DNN model has contin-

uously increased while it achieves better performance. As a result,

the storage space of DNN becomes a major concern if we deploy it

on resource-constrained devices, especially in the edge-computing

and AI-of-things applications

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-7999-1/21/01. . . $15.00

https://doi.org/10.1145/3394885.3431538

In recent years, there are a lot of work on compressing DNNmod-

els. The proposed techniques consist of pruning [12, 17], knowledge

distillation [14], quantization [2–4, 8, 11, 28], low-rank approxima-

tion [5, 7, 21, 25], etc. Among them, quantization based methods

represent the network weights with very low precision, thus yield-

ing highly compact DNN models compared to their floating-point

counterparts. Weight sharing [2, 3, 8, 11] is a kind of quantiza-

tion method, which applies clustering on the weights, so as to

achieve compression by only recording cluster centers and weight

assignment indexes. Other quantization methods can be regarded

as variants of scalar weight sharing, which restrict the weights to

floating-point numbers satisfying certain constraints [4, 28]. The

parameter space with them is a subspace of the parameter space

for the DNN applying the weight sharing with same bit length.

Therefore, the weight sharing approach could provide better perfor-

mance of compression, while the other quanization schemes may

be more friendly to inference acceleration.

DNNs are vulnerable to adversarial examples, which can be

crafted by adding visually impercetible perturbations on images.

Several approaches for training robust DNN models were recently

proposed [9, 29], to defense the adversarial examples. However,

there is few work devoted to the compression of robust DNNmodel,

and most of them only employ the pruning and/or simple quantiza-

tion technique [10, 15].

In various quantization approaches, the K-means clustering prob-

lem is often involved. It is always solved with the Lloyd’s algorithm

[20] in existing work, resulting in a solution which is non-optimal,

and sensitive to the initial guess as revealed by experiments in [11].

In this work, we focus on the compression of DNN models. We

consider the scalar K-means clustering without using the Lloyd’s

algorithm, and explore better weight quantization approaches for

the compression of normal and robust DNNs. One of our key contri-

butions is a dynamic programming (DP) based algorithm producing

the optimal solution of scalar clustering problem. It has 𝑂 (𝑁 2𝐾)
time complexity, where 𝑁 and 𝐾 are the numbers of scalars and

clusters respectively. The algorithm is collaborated with the weight

quantization approaches to improve the compression of normal

and robust DNN models.

The major contributions of this work are as follows.

• A dynamic programming (DP) based algorithm is proposed to

obtain the optimal solution of the K-means clustering problem

with scalar data.

• A DP assisted approach with regularization (called DPR) and a

DP assisted approach with quantization function (called DPQ)

are proposed to compress normal DNN models. DPR trains a

351

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan Yang and Yu, et al.

clustering-friendly network and then compresses it with weight

clustering. DPQ trains the network with a formulation including

quantization function and employs the DP based algorithm to

obtain better clustering. They are then extended to DPR+ and

DPQ+ approaches respectively, through collaborating with the

state-of-the-art TRADES [29], for compressing robust DNNs.

• Experiments on normal DNNs have shown the advantages of

DPR and DPQ over other compression approaches like Deep

K-Means [24] and LQ-Net [28]. For GoogLeNet on ImageNet

dataset, DPQ results in a model which is 2.5X smaller and with

1% higher inference accuracy than that produced by Deep K-

means. For ResNet-18, the models obtained with DPQ show 0.5%

higher accuracy than those by LQ-Net with same compression

ratio. Besides, up to 77X compression of Wide ResNet is achieved

(with < 3% accuracy drop) by a combinatorial scheme including

DPR, the pruning and Huffman coding techniques.

• Experiments on robust DNNs have validated the effectiveness

of the proposed DPR+ and DPQ+ approaches. With 2-bit quan-

tization, DPR+ produces a compressed robust ResNet-18 model

which exhibits less than 3% accuracy drop on both natural and

adversarial examples.

2 BACKGROUND

2.1 Weight Sharing and Quantization

The scalar weight sharing introduced by [11] is the first quantization

approach. Regard the weights of DNN as a set of vectors 𝑊 =
{𝑊1, · · · ,𝑊𝑚}, where𝑊𝑖 ∈ R

𝑛𝑖 . Accordingly, the result of scalar

weight sharing can be expressed as 𝐶 = [𝐶1, · · · ,𝐶𝑚] ∈ R
𝐾×𝑚 ,

where 𝐾 is the number of clusters and vector 𝐶𝑖 contains the 𝐾
cluster centers. The uncompressed DNN needs 32

∑𝑚
𝑖=1 𝑛𝑖 bits for

storing the weights, as each weight is expressed as a 32-bit floating-

point number. With the weight sharing, each element of 𝑊𝑖 is

represented by an element in 𝐶𝑖 ∈ R
𝐾 . So, we just need log2 𝐾 ·∑𝑚

𝑖=1 𝑛𝑖 bits to encode the index and 32𝑚𝐾 bits to store the cluster

centers. This scalar clustering leads to the compression ratio:

𝑟 =
32

∑𝑚
𝑖=1 𝑛𝑖

log2 𝐾 ·
∑𝑚
𝑖=1 𝑛𝑖 + 32𝑚𝐾

, (1)

which approximates 32/log2 𝐾 .
A naive approach for weight sharing regards the problem as the

K-means clustering of the trained weights. However, the weights

often follow the Gaussian distribution, which is consistent with the

phenomenon observed by [3] that the weights of learned convo-

lutional filters are typically smooth. This is shown in Fig. 1(a) as

an example, and means the learned weights may be unsuitable for

clustering or quantization. Thus, the network has to be retrained

to compensate for the accuracy loss caused by weight sharing [11].

Because for each weight, the cluster it belongs to is fixed during

the retraining, this is the same as what’s done for HashedNet [2],

i.e randomly grouping each weight and then training, and could

not produce a good DNN model [19].

Training DNN and performing weight sharing can be formulated

as a single optimization problem. If the loss function of training

DNN is 𝐿(𝑊), the optimization problem can be expressed as:

min𝑊,𝐶 𝐿(𝑊), (2)

s. t. 𝐶 = [𝐶1,𝐶2, · · · ,𝐶𝑚] ∈ R
𝐾×𝑚,

𝑊 = {𝑊1,𝑊2, · · · ,𝑊𝑚} , and ∀𝑖, 𝑗, 𝑊𝑖, 𝑗 ∈ 𝐶𝑖 .

The constraint means every element in vector𝑊𝑖 appears in the

vector 𝐶𝑖 containing cluster centers. This formulation is also suit-
able for a general quantization method. For a non-weight-sharing

approach (e.g. low-bit representation), a problem with more con-

straints added to (2) is solved.

If the weights are regarded as vectors for clustering, it becomes

the vector weight sharing problem, which was investigated in [24].

Vector weight sharing produces larger compression ratio than (1)

(even > 32), but it may induce sacrifice on accuracy as compared

with the scalar weight sharing. A non-weight-sharing quantization

approach can be regarded as a variant of scalar weight sharing. It

trades off smaller parameter space for faster inference computation.

There are mainly two kinds of approaches for the quantization

problem. One coverts (2) to a formulation with regularization item.

The other takes the constraints into account with quantization func-

tion. They are briefly introduced in the following two subsections.

2.2 The Approach with Regularization

The optimization problem (2) is difficult to solve. One can convert

the constraints to a regularization item in the loss function. Then,

solving the new formulation results in a clustering-friendly model.

For simplicity, we just consider the problem with𝑚 = 1 where

the weight vector𝑊 ′ ∈ R𝑛 is clustered to 𝐾 centers 𝑐1, 𝑐2, · · · , 𝑐𝐾 .
For (2), the constraints can be converted to a regularization item

𝜆
∑𝑛
𝑖=1 min1≤𝑘≤𝐾 (𝑊

′
𝑖 − 𝑐𝑘)

2 in the loss function, where 𝜆 is a La-
grange multiplier. The regularization item corresponds to the loss

of K-means clustering problem, which is generally NP-hard for

vector data. An approximate algorithm for K-means clustering

was proposed in [27], which relaxed the problem to minimizing

𝑇𝑟 (𝑊 ′𝑇𝑊 ′) −𝑇𝑟 (𝐹𝑇𝑊 ′𝑇𝑊 ′𝐹) with constraint 𝐹𝑇 𝐹 = 𝐼 . Here, 𝑇𝑟
denotes the matrix trace, 𝐹 ∈ R𝑛×𝐾 , and 𝐼 is the identity matrix. A
singular value decomposition (SVD) based algorithm was proposed

in [27] to obtain the closed-form solution of the relaxed problem.

Based on this, an approach called Deep K-means was proposed for

the weight-sharing compression of DNN, which solves [24]:

min𝑊 ′,𝐹 {𝐿(𝑊
′) + 𝜆[𝑇𝑟 (𝑊 ′𝑇𝑊 ′) −𝑇𝑟 (𝐹𝑇𝑊 ′𝑇𝑊 ′𝐹)]}, (3)

s. t. 𝐹 ∈ R𝑛×𝐾 , 𝐹𝑇 𝐹 = 𝐼 .

(a) (b)

Figure 1: The histograms of weights in the FreshNet model’s

first convolution layer obtained from (a) a normal training,

and (b) a clustering-friendly training.

352

Dynamic Programming AssistedQuantization Approaches for Compressing Normal and Robust DNN Models ASPDAC ’21, January 18–21, 2021, Tokyo, Japan

An iterative procedure was proposed in [24] to solve (3), which

updates𝑊 ′ and 𝐹 alternatively.𝑊 ′ is updated with the stochastic

gradient descent (SGD) approach at each iteration, while 𝐹 is up-

dated by computing 𝐾-truncated SVD after training every 𝑡 epochs.

2.3 The Approach with Quantization Function

The quantization function is also used to model the effect of cluster-

ing in (2). Suppose we have a quantization function 𝑄𝑖 for each𝑊𝑖

and 𝐶𝑖 , where 𝑄𝑖 (𝑥) = argmin𝑐∈𝐶𝑖
|𝑥 − 𝑐 |. Then, the quantization

functions can be plugged into the neural network directly. The

optimization problem for quantization (2) is converted to:

min𝑊,𝐶 𝐿(𝑄1 (𝑊1), 𝑄2 (𝑊2), · · · , 𝑄𝑚 (𝑊𝑚)), (4)

s. t. 𝐶 = [𝐶1,𝐶2, · · · ,𝐶𝑚] ∈ R
𝐾×𝑚,

∀𝑖, 𝑗, 𝑄𝑖 (𝑊𝑖, 𝑗) = argmin𝑐∈𝐶𝑖
|𝑊𝑖, 𝑗 − 𝑐 | .

Once the cluster centers 𝐶 is given,𝑊 can be optimized by SGD.

However, the
𝜕𝑄𝑖 (𝑊𝑖,𝑗)

𝜕𝑊𝑖,𝑗
is zero almost everywhere, which makes

𝜕𝐿
𝜕𝑊𝑖,𝑗

= 0 and training neural network is infeasible. A common solu-

tion to this is a so-called straight-through estimator (STE) technique

[4], which approximates 𝜕𝐿
𝜕𝑊𝑖,𝑗

with 𝜕𝐿
𝜕𝑄𝑖 (𝑊𝑖,𝑗)

.

The remaining problem is how to choose𝐶 . Let 𝐿 be the bit length
for quantization, i.e.𝐾 = 2𝐿 . With LQ-Net [28], which is an effective

DNN quantization scheme with quantization function, a quantizer

basis 𝑣𝑖 ∈ R
𝐿 and an encoding matrix 𝐵𝑖 ∈ {−1, 1}𝑛𝑖×𝐿 for each

vector𝑊𝑖 are found at each iteration to minimize | |𝐵𝑖𝑣𝑖 −𝑊𝑖 | |
2
2.

Then, for each quantization function 𝑄𝑖 vector 𝐶𝑖 = 𝐵∗𝑣𝑖 , where
matrix 𝐵∗ ∈ R𝐾×𝐿 contains all vectors from set {−1, 1}𝐿 .

3 DYNAMIC PROGRAMMING ASSISTED
APPROACHES FOR DNN COMPRESSION

In this section, we first propose the dynamic programming based

algorithm for the scalar clustering problem. Then, we present its

applications to improve the aforementioned two approaches for

DNN quantization.

3.1 A DP Based Algorithm for Scalar Clustering

As we know, the K-means clustering problem is NP-hard for general

vector data. Therefore, the global optimum for the vector quantiza-

tion cannot be found in reasonable time. Nevertheless, we find out

that the optimal solution of the scalar K-means clustering can be

obtained in polynomial time, based on the following Theorem 1.

Theorem 1. Let 𝑥1 ≤ 𝑥2 ≤ · · · ≤ 𝑥𝑁 be 𝑁 scalars which need to

be clustered into 𝐾 classes. The clustering result is expressed as an

integer index set 𝑝 = {𝑝1, 𝑝2, · · · , 𝑝𝑁 }, 1 ≤ 𝑝𝑖 ≤ 𝐾 , which means 𝑥𝑖
belongs to the 𝑝𝑖 -th cluster. If the K-means clustering is to minimize

𝑔(𝑝, 𝑐) =
∑𝑁
𝑖=1 (𝑥𝑖 − 𝑐𝑝𝑖)

2 , (5)

s.t. 𝑐 = {𝑐1, 𝑐2, · · · , 𝑐𝐾 }, 𝑐1 < 𝑐2 < · · · < 𝑐𝐾 ,

an optimal solution 𝑝 satisfies: 1 = 𝑝1 ≤ 𝑝2 ≤ · · · ≤ 𝑝𝑁 = 𝐾 .

Proof. Suppose the ascending array 𝑐 = {𝑐𝑖 } stands for the
cluster centers for the optimal solution. Let 𝑐 ′0=−∞, 𝑐

′
1= (𝑐1+𝑐2)/2,

𝑐 ′2= (𝑐2+𝑐3)/2, · · · , 𝑐
′
𝐾−1= (𝑐𝐾−1+𝑐𝐾)/2, 𝑐

′
𝐾 =∞. We can construct

a clustering solution by setting 𝑝𝑖 = 𝑗 , for any 𝑥𝑖 satisfying 𝑐 ′𝑗−1 ≤

𝑥𝑖 <𝑐 ′𝑗 (meaning 𝑐 𝑗 is the closest cluster center for 𝑥𝑖). Therefore,

this solution minimizes 𝑔(𝑝, 𝑐) and is an optimal solution satisfying
1 = 𝑝1 ≤ 𝑝2 ≤ · · · ≤ 𝑝𝑁 = 𝐾 . �

Theorem 1 infers that by suitable interval partition we can get

the optimal K-means clustering of the weights (see Fig. 2). Let

𝑥1 ≤ · · · ≤ 𝑥𝑁 be the sorted weights for quantization, and 𝐺𝑛,𝑘 be
the minimum loss for clustering the first 𝑛 weights into 𝑘 clusters.

Based on Theorem 1, we have

𝐺𝑛,𝑘 = min
𝑘−1≤𝑖<𝑛

{𝐺𝑖,𝑘−1 + ℎ(𝑖 + 1, 𝑛)}, 1 < 𝑘 ≤ 𝐾, 𝑘 ≤ 𝑛 ≤ 𝑁, (6)

where ℎ(𝑙, 𝑞) = min𝑐
∑𝑞
𝑖=𝑙 (𝑥𝑖 − 𝑐)2, meaning the minimum cluster-

ing error (loss) for clustering 𝑥𝑙 , 𝑥𝑙+1, · · · , 𝑥𝑞 to one class. For the
trivial situation with 𝑘 = 1, 𝐺𝑛,1 = ℎ(1, 𝑛). Now, we consider how
to obtain the optimal clustering corresponding to 𝐺𝑛,𝑘 for the situ-
ations with 𝑘 > 1. Following (6), we need to enumerate all possible

𝑖 which represents the largest index of scalar not belonging to the
𝑘-th cluster. The minimum loss for clustering (i.e. quantization er-

ror) includes two parts: the minimum loss for clustering 𝑥1, · · · , 𝑥𝑖
into 𝑘 − 1 clusters, i.e. 𝐺𝑖,𝑘−1, and the minimum quantization error

that quantizing 𝑥𝑖+1, · · · , 𝑥𝑛 into a single value, i.e. ℎ(𝑖 + 1, 𝑛). The
latter part can be easily calculated, and the mean of scalars should

be the cluster center (quanitzed value). So,

ℎ(𝑙, 𝑞) =
𝑞∑

𝑖=𝑙

(𝑥𝑖 −
1

𝑞 − 𝑙 + 1

𝑞∑

𝑗=𝑙

𝑥 𝑗)
2 (7)

=
𝑞∑

𝑖=𝑙

𝑥2𝑖 −
1

𝑞 − 𝑙 + 1
(

𝑞∑

𝑖=𝑙

𝑥𝑖)
2 .

For clustering, we need to know the optimal solution {𝑐𝑖 }, instead
of the clustering error. We can use an auxiliary array 𝑧 to depict
the optimal clustering obtained by solving (6):

𝑧𝑛,𝑘 = argmin𝑘−1≤𝑖<𝑛{𝐺𝑖,𝑘−1 + ℎ(𝑖 + 1, 𝑛)} + 1. (8)

𝑧𝑛,𝑘 is the index of the first scalar in the last class, when the first
𝑛 scalars in {𝑥𝑖 } are clustered into 𝑘 classes optimally. During the

recursive procedure of solving (6) we can get the 𝑧𝑛,𝑘 values. And,
for example, with 𝑧𝑁,𝐾 the last cluster center 𝑐𝐾 can be obtained.

The core idea of dynamic programming is breaking a complicated

problem down into simpler sub-problems in a recursive manner

[6]. From the above discussion, we see that (6) reflects the optimal

substructure for solving the scalar K-means clustering problem, and

(8) guides us to find an optimal solution. Along with (7) and other

dynamic programming skills, we derive Algorithm 1 for optimally

solving the scalar quantization problem.

Based on Theorem 1, the related derivation (6) through (8), and

the principle of dynamic programming, we can prove the optimality

of the DP based algorithm for scalar quantization, i.e. Theorem 2.

Theorem 2. The DP based algorithm for scalar quantization (Al-

gorithm 1) obtains the optimal solution for the K-means clustering

problem of scalar data (i.e., the minimization of (5)).

�� �� �� �� �� ���	 �
 ��� ��

� �� �� ��

�

Figure 2: Illustration of the optimal solution of clustering 𝑁
scalars into 𝐾 classes.

353

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan Yang and Yu, et al.

Algorithm 1 DP based scalar quantization

Input: 𝑁 scalars 𝑥1 ≤ 𝑥2 · · · ≤ 𝑥𝑁 , number of clusters 𝐾 .
Output: The 𝐾 cluster centers in the optimal solution.

1: Define two 𝑁 × 𝐾 arrays 𝐺 and 𝑧.
2: for 𝑖 ← 1 to 𝑁 do

3: Pre-compute ℎ(𝑗, 𝑖) for 1 ≤ 𝑗 ≤ 𝑖 based on (7).
4: 𝐺𝑖,1 ← ℎ(1, 𝑖), 𝑧𝑖,1 ← 1.

5: Calculate 𝐺𝑖,𝑘 and 𝑧𝑖,𝑘 based on (6) and (8) for 1 < 𝑘 ≤ 𝐾 .
6: end for

7: 𝑛 ← 𝑁
8: for 𝑖 ← 𝐾 downto 1 do

9: 𝑐𝑖 ← (
∑𝑛
𝑗=𝑧𝑛,𝑖

𝑥 𝑗)/(𝑛 − 𝑧𝑛,𝑖).
10: 𝑛 ← 𝑧𝑛,𝑖 − 1.
11: end for

12: return 𝑐1, 𝑐2, · · · , 𝑐𝐾 .

For Step 3 of Alg. 1, we just need enumerate 𝑗 from 𝑖 to 1, and
use two variables to store

∑𝑖
𝑘=𝑗 𝑥

2
𝑘
and

∑𝑖
𝑘=𝑗 𝑥𝑘 . Then, with (7) we

can obtain ℎ(𝑗, 𝑖) for all 𝑗 < 𝑖 , with a time complexity of 𝑂 (𝑖) for
a given 𝑖 . The time complexity of Step 5 is 𝑂 (𝑖𝐾) for a given 𝑖 ,
since (6) needs𝑂 (𝑖) time for calculating each𝐺𝑖,𝑘 and 𝑧𝑖,𝑘 with the
pre-computed ℎ(𝑗, 𝑖). This derives that the time complexity of Alg.
1 is𝑂 (𝑁 2𝐾), where 𝑁 is the numbers of scalars. We will make sure

that 𝑁 is not very large to save computation, when applying it to

the weight quantization. It should be pointed out that, Alg. 1 can be

easily extended to other kinds of clustering problem, such as that if

the 𝐿2 norm in the loss function (5) is replaced with 𝐿1 norm.

3.2 DP Assisted Approach with Regularization

Inspired by Deep K-means [24], we propose a DP assisted approach

with regularization (called DPR) for DNN compression, which di-

rectly optimizes the Lagrangian function of (2) during the training

process with the help of the proposed DP based algorithm. The

problem is an unconstrained optimization:

min
𝑊,𝐶

{𝐿(𝑊) + 𝜆
𝑚∑

𝑖=1

𝑛𝑖∑

𝑗=1

min
1≤𝑘≤𝐾

(𝑊𝑖, 𝑗 −𝐶𝑖,𝑘)
2}, (9)

where 𝜆 is the Lagrange multiplier. After solving it, we can obtain
a clustering-friendly network (an example is shown in Fig. 1(b)).

The problem is solved through alternatively optimizing𝑊 and

𝐶 . After every 𝑡 epochs of SGD based optimization of𝑊 , we opti-

mize 𝐶 by solving a scalar K-means clustering with the DP based

algorithm (Alg. 1). In practice, for an fully-connected (FC) layer

with 𝑛𝑓 𝑐 ×𝑚𝑓 𝑐 weights, we divide them into 𝑛𝑓 𝑐 parts (each con-
tains 𝑛 = 𝑚𝑓 𝑐 weights). We cluster the weights row by row. For a

convolutional layer with 𝑛𝑐𝑜𝑛𝑣 ×𝑚𝑐𝑜𝑛𝑣 × ℎ𝑐𝑜𝑛𝑣 ×𝑤𝑐𝑜𝑛𝑣 weights,
we divide the weights into 𝑛𝑐𝑜𝑛𝑣 parts and each part contains

𝑛 = 𝑚𝑐𝑜𝑛𝑣 × ℎ𝑐𝑜𝑛𝑣 × 𝑤𝑐𝑜𝑛𝑣 weights. In this way, the number of
weights on which we do clustering will be no more than 10000

for most mainstream DNNs. So, the computational time for the

DP based algorithm is affordable. This fine-grained scalar cluster-

ing improves the accuracy if compared with clustering all weights

as a whole, and just induces negligible drop of compression ratio.

Compared with Deep K-means [24], we do not relax the original

optimization problem and thus may achieve better accuracy.

The DPR is also applicable to the robust DNN models. We just

need to add the clustering error, i.e. the minimum loss 𝐺𝑁,𝐾 , as a
regularization term to the loss function optimized during the train-

ing process. We consider the state-of-the-art TRADES (TRadeoff-

inspiredAdversarial DEfense via Surrogate-lossminimization)model

for robust DNN [29]. The new formulation for training becomes:

min
𝑊,𝐶

{𝐿(𝑓 (𝑋 ;𝑊), 𝑌) + max
𝑋 ′ ∈B(𝑋,𝜖)

𝛾𝐿(𝑓 (𝑋 ;𝑊), 𝑓 (𝑋 ′;𝑊))

+ 𝜆
𝑚∑

𝑖=1

𝑛𝑖∑

𝑗=1

min
1≤𝑘≤𝐾

(𝑊𝑖, 𝑗 −𝐶𝑖,𝑘)
2}, (10)

where 𝑓 (𝑋 ;𝑊) is the output vector of learningmodel given parame-

ters𝑊 , 𝐿 denotes the cross-entropy loss function,B(𝑥, 𝜖) represents
a neighborhood of 𝑥 : {𝑥 ′ : | |𝑥 ′ −𝑥 | |2 ≤ 𝜖}, and 𝛾 is a regularization
parameter to trade off between accuracy and robustness. With this

formulation, we can train a clustering-friendly robust model.

3.3 DP Assisted Approach with Quantization
Function

Based on the formulation (4), we propose a DP assisted approach

with quantization function (called DPQ). The core idea is perform-

ing DP based algorithm to find an accurate quantizer, i.e. obtaining

the optimal 𝐶𝑖 to minimize | |𝑄𝑖 (𝑊𝑖) −𝑊𝑖 | |
2
2. This is the standard

scalar K-means clustering problem. Then, we solve (4) directly.

We do not consider the constraints for quantizer in LQ-Net [28],

and thus search in a larger parameter space. During the solution

of (4), we do not perform the proposed DP based algorithm at

each iteration to save computation. Instead, it is executed every 𝑡
epochs while for other iteration we perform the Lloyd’s algorithm

for clustering. Thanks to the small perturbation of weights incurred

by SGD, the cluster centers𝐶 in last iteration is a good initial guess

of Lloyd’s algorithm. The fine-grained scalar clustering strategy in

last subsection is also used to improve the runtime efficiency.

This approach is also applicable to the robust DNN model. We

just need to plug the quantization function into the loss function for

robust model (such as TRADES) to derive the optimization problem:

min
𝑊,𝐶

{𝐿(𝑓 (𝑋 ;𝑄 (𝑊)), 𝑌)+ max
𝑋 ′ ∈B(𝑋,𝜖)

𝛾𝐿(𝑓 (𝑋 ;𝑄 (𝑊)), 𝑓 (𝑋 ′;𝑄 (𝑊)))}.

(11)

And, the STE technique is used during the training, for either the

normal model or robust model.

4 EXPERIMENTAL RESULTS

In this section, we present the experimental results to demonstrate

the effectiveness of the proposed DPR and DPQ approaches for

DNN compression. We first conduct experiments with CIFAR-10

dataset [16] for compressing the normal DNN models in [7], [3],

and the Wide ResNet [26]. The results show the benefit of using the

proposed DP based algorithm to replace the Lloyd’s algorithm, and

the advantage of the proposed approaches over the counterparts.

Then, the experiments are carried out with the ImageNet dataset,

for compressing GoogLeNet [23] and ResNet-18 [13]. Lastly, the

experiments on compressing robust DNN models are presented.

The proposed approaches are implemented with Python 3.6.

The DPR approach has two hyperparameters: 𝜆, the regularizer
factor in (9); 𝑡 , the clustering frequency during training. We choose

354

Dynamic Programming AssistedQuantization Approaches for Compressing Normal and Robust DNN Models ASPDAC ’21, January 18–21, 2021, Tokyo, Japan

𝜆 = 100 for all experiments. The value of 𝑡 varies for different
datasets because it affects the number of training epochs to reach

convergence. The DPQ approach has only one hyperparameter 𝑡 ,
which is set to 5 for all experiments. The training and inference

are conducted on PyTorch. In all experiments, the compression

ratio (CR) of the proposed approaches is obtained with (1) and then

rounded to an integer.

4.1 Compressing Normal Models on CIFAR-10

The TT-Conv model [7] contains six convolutional layers and one

fully-connected (FC) layer. The authors of TT-Conv used tensor

train decomposition to compress the convolutional layer by 4X

which makes the inference accuracy decreases by 2%. In [3], a Fresh-

Net approach is proposed to quantize the weights of a DNNmodel’s

weights on the frequency domain, based on the observation that

the learned convolutional weights are smooth and low-frequency.

It achieves a CR of 16, with a 6.51% drop of inference accuracy.

In [24], Deep K-means is used to compress the TT-Conv model

and FreshNet model, which achieves less accuracy loss with same

compression ratio.

We first test the proposed DPR and DPQ with these two models.

We choose 𝑡 = 20 for DPR and use SGD with cosine annealing

for training. The learning rate reduces from 0.05 to 0.01 during

the training. The inference accuracy of the pretrained models we

obtained for TT-Conv and FreshNet model are 91.45% and 87.51%,

respectively. They are higher than those reported in [24]. For the

TT-Convmodel, we train 300 epochs. Because the FreshNet model is

prone to overfitting [3], we just train 150 epochs and obtain a better

result than training 300 epochs. The number of training epochs used

for our DP assisted approaches is consistent with the pretrained

model.We also use a variant of DPR called LR as a baseline, which

employs Lloyd’s algorithm to do clustering during training. The

other details of LR are consistent with DPR. The experimental

results of DPR, DPQ, and the baselines are listed in Table 1.

The results in Table 1 demonstrate two important phenomena.

Firstly, the inference accuracy of the model compressed by DPR is

always higher than that by LR, which means that the proposed DP

based algorithm is helpful to improve the accuracy of compressed

model. Secondly, the models compressed with our DPR performs

the best, and even can exhibit better accuracy than the pretrained

uncompressed model. The possible reason is that the constraint of

quantization may suppress overfitting, like what a 𝐿2-norm regular-

ized factor often behaves. Therefore, we believe that performing a

suitable weight quantization cannot only reduces the size of model,

but also improve the performance of DNN.

Table 1: The results of compressing themodels in [7] and [3].

Δ means the change of inference accuracy compared to the
pretrained model.

TT-Conv model [7] FreshNet model [3]

Approach CR Δ(%) Approach CR Δ(%)

TT Decomposition [7] 4 -2.00 Hashed Net [2] 16 -9.79

Deep K-means [24] 2 +0.05 FreshNet [3] 16 -6.51

Deep K-means [24] 4 -0.04 Deep K-means [24] 16 -1.30

LR (3 bits) 10 -0.87 LR (2 bits) 16 -0.76

DPR (3 bits) 10 +0.31 DPR (2 bits) 16 -0.57

DPQ (3 bits) 10 +0.22 DPQ (2 bits) 16 -1.56

Compared with Deep K-means [24], the model compressed by

DPR exhibits much higher accuracy with same or larger CR. For

the proposed DPQ, it performs the same as DPR for the TT-Conv

model, but worse for the FreshNet model. This is possibly caused by

the network architecture of FreshNet and the small size of dataset.

FreshNet has very simple structure, which makes the overfitting

easy to happen. We will show the experiments with more popu-

lar networks (GoogLeNet and ResNet-18) and the larger dataset

(ImageNet) in the following subsections.

An additional experiment is carried out, following that was done

in [24]. We combine the proposed approach with the pruning and

Huffman coding to compress the Wide ResNet [26] on CIFAR-10.

The sparsity for each layer and the pruning method are the same as

those in [24], where a total CR=47 is achieved with 2.23% drop of

inference accuracy and CR=50 is achieved with 4.49% drop of accu-

racy. We use DPR to replace Deep K-means for 2-bit quantization,

resulting in CR of 77 with only 2.94% accuracy drop.

4.2 Compressing Normal Models on ImageNet

The proposed approaches are first tested on GoogLeNet trained

on the ImageNet ILSVRC2012 dataset. We use the PyTorch offi-

cial model as a pretrained model, whose top-1 accuracy is 69.78%

and top-5 accuracy is 89.53%. We quantize the all convolutional

layer and fully-connected layer. Our experiment settings are con-

sistent with the PyTorch example1 of ImageNet except the number

of training epochs. We just train 30 epochs and make the learning

rate decay 10X at the 20th and 25th epoch respectively, because

the pretrained model provides a good initial solution. The learn-

ing rate is initialized at 0.001. We choose 𝑡 = 3 for DPR because

three epochs are enough for SGD to converge when the cluster

centers are fixed. The results are listed in Table 2. It shows that

the proposed approaches result in better accuracy than Deep K-

means with 2.5X larger compression as well. Similar to those for

TT-Conv, the models compressed by our DPR and DPQ even exhibit

better inference accuracy than the pretrained uncompressed model.

While comparing DPR and DPQ, we see that the latter performs

remarkably better than the former.

Table 2: The results of compressing GoogLeNet. Δ-top1 and
Δ-top5 are the changes of top1-accuracy and top5-accuracy
compared to the pretrained model, respectively.

Approach CR Δ-top1 (%) Δ-top5 (%)

Deep K-means [24] 4 -1.95 -1.14

DPR (3 bits) 10 -1.56 -0.88

DPR (4 bits) 7 +0.30 +0.20

DPQ (3 bits) 10 +0.04 +0.05

DPQ (4 bits) 7 +1.85 +1.02

Then, we conduct the experiment of compressing ResNet-18

with ImageNet dataset. The proposed approaches are compared

with LQ-Net and other approaches, whose results are obtained from

[28]. For fairness, we quantize all the convolutional layer and fully-

connected layer except the first and last layers and do not employ a

pretrained model, the same as in [28]. The results are listed in Table

3. From it we see that DPQ surpasses the others when compressing

ResNet-18 to more than 2 bits. For 2-bit quantization of ResNet-18,

the accuracy of the model compressed with DPQ is comparable to

1https://github.com/pytorch/examples/tree/master/imagenet

355

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan Yang and Yu, et al.

Table 3: The results of compressing ResNet-18. acc-top1 and

acc-top5 are the top1-accuracy and top5-accuracy on Ima-

geNet, respectively.

Approach CR acc-top1 (%) acc-top5 (%)

TTQ (2 bits) [30] 16 66.6 87.2

ADMM (2 bits) [18] 16 67.0 87.5

LQ-Net (2 bits) [28] 16 68.0 88.0

LQ-Net (3 bits) [28] 10 69.3 88.8

LQ-Net (4 bits) [28] 7 70.0 89.1

DPR (2 bits) 16 63.0 84.5

DPR (3 bits) 10 69.2 88.6

DPR (4 bits) 7 70.3 89.5

DPQ (2 bits) 16 67.7 87.9

DPQ (3 bits) 10 69.8 89.3

DPQ (4 bits) 7 70.5 89.6

that compressed with LQ-Net. And for the quantization with 4 bits,

the accuracy of the model compressed with DPR is also better than

that with LQ-Net. This shows that the proposed approach, especially

DPQ, has superior or comparable performance of compression to

the recent LQ-Net approach.

4.3 Compressing Robust Models

The proposed DPR and DPQ are extended to compress the robust

DNN models. They are denoted by DPR+ and DPQ+ respectively,

and train the compressed model through solving (10) and (11) based

on the TRADES technique [29]. The training settings and evaluat-

ing settings are consistent with the public codes2 of TRADES . We

choose 𝑡 = 5 for DPR+ because their training epochs are small. We

first test a small network proposed by [1], which consists of four

convolutional layers and three FC layers. We called it SmallCNN

and train it on the MNIST dataset. The pretained model achieves

99.54% accuracy on normal testing data and 96.91% accuracy under

a powerful attack algorithm named PGD (projected gradient de-

scent) [22]. Then, we train a robust ResNet-18 model on CIFAR-10,

which achieves 92.44% accuracy on normal testing data and 46.74%

accuracy under the PGD attack.

Because there is few work on compressing a robust model with

quantization approach, we consider a baseline called DP0 for com-

parison. DP0 directly quantizes the weights of the pretrained model

with the proposed DP based algorithm to realize compression. Table

4 shows the accuracy drop of different compressed robust models

obtained with DP0, DPR
+ and DPQ+. From the table, we see that

DP0 employing the simple weight-clustering quantization cannot

preserve the accuracy of the robust model. It results in the accu-

racy drop on natural example and adversarial example up to 22.6%.

With the proposed DPR+ and DPQ+ approaches, the accuracy drop

caused by the compressed model is remarkably reduced (no more

than 4.81%). This is due to the proposed formulations (10) and (11)

for training the compressed robust model. On the other hand, we

find out that DPR+ performs better than DPQ+. Although they have

comparable accuracy drop on the natural examples, DPR+ produces

the model with 2% less accuracy drop than DPQ+ on the adversarial

example. With 2-bit quantization, DPR+ obtains a compressed ro-

bust ResNet-18 model which exhibits less than 3% accuracy drop

on both natural and adversarial examples.

2https://github.com/yaodongyu/TRADES

Table 4: The results of compressing the robust SmallCNN (on

MNIST) and ResNet-18 (on CIFAR-10). Δ𝑛𝑎𝑡 and Δ𝑎𝑑𝑣 are the
accuracy changes for natrual images and adversarial images

compared to the pretrained model, respectively.

Approach CR Model Δ𝑛𝑎𝑡 (%) Δ𝑎𝑑𝑣 (%)

DP0 (2 bits) 14 SmallCNN -0.44 -5.90

DPR+ (2 bits) 14 SmallCNN -0.11 -2.38

DPQ+ (2 bits) 14 SmallCNN -0.37 -4.44

DP0 (2 bits) 16 ResNet-18 -22.48 -22.60

DPR+ (2 bits) 16 ResNet-18 -0.98 -2.77

DPQ+ (2 bits) 16 ResNet-18 +0.40 -4.81

5 CONCLUSIONS

A dynamical programming based algorithm for scalar clustering

and two DNN compression schemes, DPR and DPQ, are proposed.

DPR includes training a clustering-friendly network with a formu-

lation including the regularization item and the DP based algorithm

obtaining the optimal solution of scalar weight clustering. DPQ

includes using the DP based algorithm to find a better quantizer

and training/compressing the DNN with a formulation with quanti-

zation function. DPR and DPQ are also extended to compress robust

DNNs, through a combination with the TRADES approach [29].

Exhaustive experiments have been carried out to show the ad-

vantages of the proposed approaches over existing counterparts for

compressing normal and robust DNNs. Experimental results also

show, the DPR approach performs better for robust models while

the DPQ approach is more suitable for large DNN models.

6 ACKNOWLEDGMENT

This work was supported by the National Key Research and Devel-

opment Plan of China (2020AAA0103502), and Beijing National Re-

search Center for Information Science and Technology (BNR2019ZS01001).

REFERENCES
[1] N. Carlini and D. Wagner. 2017. Towards evaluating the robustness of neural

networks. In Proc. IEEE Symposium on Security and Privacy. 39–57.
[2] W. Chen, J. Wilson, S. Tyree, K. Weinberger, and Y. Chen. 2015. Compressing

neural networks with the hashing trick. In Proc. ICML. 2285–2294.
[3] W. Chen, J. Wilson, S. Tyree, K. Weinberger, and Y. Chen. 2016. Compressing

convolutional neural networks in the frequency domain. In Proc. SIGKDD. 1475–
1484.

[4] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio. 2016. Binarized

neural networks: Training deep neural networks with weights and activations

constrained to +1 or -1. arXiv preprint arXiv:1602.02830 (2016).
[5] R. Dai, L. Li, and W. Yu. 2018. Fast training and model compression of gated

RNNs via singular value decomposition. In Proc. IJCNN. 1–7.
[6] S. E. Dreyfus and A. M. Law. 1977. Art and Theory of Dynamic Programming.

(1977).

[7] T. Garipov, D. Podoprikhin, A. Novikov, and D. Vetrov. 2016. Ultimate ten-

sorization: Compressing convolutional and FC layers alike. arXiv preprint
arXiv:1611.03214 (2016).

[8] Y. Gong, L. Liu, M. Yang, and L. Bourdev. 2014. Compressing deep convolutional

networks using vector quantization. arXiv preprint arXiv:1412.6115 (2014).
[9] I. J. Goodfellow, J. Shlens, and C. Szegedy. 2014. Explaining and harnessing

adversarial examples. arXiv preprint arXiv:1412.6572 (2014).
[10] S. Gui, H. N. Wang, H. Yang, C. Yu, Z. Wang, and J. Liu. 2019. Model compression

with adversarial robustness: A unified optimization framework. In Proc. NIPS.
1285–1296.

[11] S. Han, H. Mao, and W. J. Dally. 2015. Deep compression: Compressing deep

neural networks with pruning, trained quantization and Huffman coding. arXiv
preprint arXiv:1510.00149 (2015).

[12] S. Han, J. Pool, J. Tran, andW. Dally. 2015. Learning both weights and connections

for efficient neural network. In Proc. NIPS. 1135–1143.
[13] K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep residual learning for image

recognition. In Proc. CVPR. 770–778.

356

Dynamic Programming AssistedQuantization Approaches for Compressing Normal and Robust DNN Models ASPDAC ’21, January 18–21, 2021, Tokyo, Japan

[14] G. Hinton, O. Vinyals, and J. Dean. 2015. Distilling the knowledge in a neural

network. arXiv preprint arXiv:1503.02531 (2015).
[15] T. Hu, T. Chen, H. Wang, and Z. Wang. 2019. Triple wins: Boosting accuracy,

robustness and efficiency together by enabling input-adaptive inference. In Proc.
ICLR.

[16] A. Krizhevsky, G. Hinton, et al. 2009. Learning multiple layers of features from
tiny images. Technical Report. Citeseer.

[17] Y. LeCun, J. S. Denker, and S. A. Solla. 1990. Optimal brain damage. In Proc. NIPS.
598–605.

[18] C. Leng, Z. Dou, H. Li, S. Zhu, and R. Jin. 2018. Extremely low bit neural network:

Squeeze the last bit out with ADMM. In Proc. AAAI. 3466–3473.
[19] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell. 2019. Rethinking the value of

network pruning. In Proc. ICLR.
[20] S. Lloyd. 1982. Least squares quantization in PCM. IEEE Trans. Information

Theory 28, 2 (1982), 129–137.
[21] Y. Ma, R. Chen, W. Li, F. Shang, W. Yu, M. Cho, and B. Yu. 2019. A unified ap-

proximation framework for compressing and accelerating deep neural networks.

In Proc. ICTAI. 376–383.
[22] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. 2018. Towards deep

learning models resistant to adversarial attacks. In Proc. ICLR.

[23] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-

houcke, and A. Rabinovich. 2015. Going deeper with convolutions. In Proc. CVPR.
1–9.

[24] J. Wu, Y. Wang, Z. Wu, Z. Wang, A. Veeraraghavan, and Y. Lin. 2018. Deep

𝑘-Means: Re-training and parameter sharing with harder cluster assignments
for compressing deep convolutions. In Proc. ICML. 5363–5372.

[25] W. Yu, Y. Gu, and Y. Li. 2018. Efficient randomized algorithms for the fixed-

precision low-rank matrix approximation. SIAM J. Matrix Anal. Appl. 39, 3 (2018),
1339–1359.

[26] S. Zagoruyko and N. Komodakis. 2016. Wide residual networks. In Proc. BMVC.
[27] H. Zha, X. He, C. Ding, M. Gu, and H. D. Simon. 2002. Spectral relaxation for

k-means clustering. In Proc. NIPS. 1057–1064.
[28] D. Zhang, J. Yang, D. Ye, and G. Hua. 2018. LQ-Nets: Learned quantization for

highly accurate and compact deep neural networks. In Proc. ECCV. 365–382.
[29] H. Zhang, Y. Yu, J. Jiao, E. Xing, L. El Ghaoui, and M. Jordan. 2019. Theoretically

principled trade-off between robustness and accuracy. In Proc. ICML. 7472–7482.
[30] C. Zhu, S. Han, H. Mao, and W. Dally. 2017. Trained ternary quantization. In

Proc. ICLR.

357

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

