
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 3, MARCH 2015 575

Transactions Briefs
Parallel Thermal Analysis of 3-D Integrated Circuits With

Liquid Cooling on CPU-GPU Platforms
Xue-Xin Liu, Kuangya Zhai, Zao Liu, Kai He, Sheldon X.-D. Tan, and Wenjian Yu

Abstract— In this brief, we propose an efficient parallel finite
difference-based thermal simulation algorithm for 3-D-integrated circuits
(ICs) using generalized minimum residual method (GMRES) solver on
CPU-graphic processing unit (GPU) platforms. First, the new method
starts from basic physics-based heat equations to model 3-D-ICs with
intertier liquid cooling microchannels and directly solves the resulting
partial differential equations. Second, we develop a new parallel GPU-
GMRES solver to compute the resulting thermal systems on a CPU-GPU
platform. We also explore different preconditioners (implicit and explicit)
and study their performances on thermal circuits and other types of
matrices. Experimental results show the proposed GPU-GMRES solver
can deliver orders of magnitudes speedup over the parallel LU-based
solver and up to 4× speedup over CPU-GMRES for both dc and transient
thermal analyzes on a number of thermal circuits and other published
problems.

Index Terms— 3-D-integrated circuit (IC), finite difference,
generalized minimum residual method (GMRES), graphic
processing unit (GPU) parallel computing, thermal analysis.

I. INTRODUCTION

Three-dimensional integrated circuits (3-D ICs) technology has
been viewed as a necessary driving force to maintain the trend
described by Moores law [17], [23]. To remove the excessive heat in
3-D chips, traditional fan-based cooling techniques are not sufficient
due to their limited heat removal capabilities [2]. Active cooling
techniques, such as embedded microchannel cooling, are promising
alternatives. Microchannel-based liquid cooling technique can remove
up to 200–400 W/cm2 and has the potential to reach 1000 W/cm2 [1],
[8]. To design efficient 3-D IC structures and packages with advanced
cooling solutions, accurate and fast detailed transient thermal analysis
techniques are required [21], [25].

Traditional thermal analysis solves the partial thermal diffusion
equation directly using numerical approaches such as finite difference
method, finite element method, and computational fluid dynamics.
This process is computationally intensive, especially for large-scale
3-D ICs, as it requires solving a large number of linear equations
given by the equivalent thermal circuit.

To significantly improve the simulation efficiency, exploiting the
parallelism of simulation algorithms on multicore and many-core
computing platforms becomes a viable solution. The family of
graphic processing units (GPU) are among the most powerful multi-
core computing systems in mass-market use [16]. On the other hand,

Manuscript received November 10, 2012; revised July 13, 2013 and
November 11, 2013; accepted February 23, 2014. Date of publication April 7,
2014; date of current version February 20, 2015. This work was supported in
part by NSF under Grant CCF-1017090 and Grant CCF-1255899, in part by
the Semiconductor Research Corporation under Grant 2013-TJ-2417, in part
by NSFC under Grant 61076034, and in part by Tsinghua University Initiative
Scientific Research Program.

X.-X. Liu, Z. Liu, K. He, and S. X.-D. Tan are with the Department of
Electrical Engineering, University of California at Riverside, Riverside, CA
92521 USA (e-mail: xliu@ee.ucr.edu; stan@ee.ucr.edu).

K. Zhai and W. Yu are with the Department of Computer Science and
Technology, Tsinghua University, Beijing 100090, China.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2014.2309617

Fig. 1. 3-D stacked IC with intertier liquid cooling.

iterative solvers such as generalized minimum residual (GMRES)
method [18], which depend on many matrix-vector multiplications
and other relatively cheap matrix operations, are more amicable for
parallelization, especially on GPU platforms.

In this brief, we propose an efficient GPU-accelerated GMRES
iterative solver for finite difference thermal analysis of 3-D ICs. First,
the new method starts from fundamental physics principles to model
3-D ICs with intertier liquid cooling microchannels and directly
solves the resulting partial differential equations, which consist of
both convection of liquid flows and heat diffusions. Second, we
develop a new parallel GMRES iterative solver to solve the resulting
large thermal equation systems on CPU-GPU platforms. We carefully
partition the computing tasks among CPU and GPU in the GMRES
method to minimize the communication traffic between GPU and
CPU and thus boost the overall performance. Third, we explore and
compare different preconditioners (implicit and explicit) for GMRES
on typical thermal matrices with liquid cooling channels and other
types of matrices. We observe that the implicit preconditioners like
incomplete LU (ILU) decomposition show better performance for
thermal analysis. Experimental results show the proposed solver,
called GPU-GMRES solver can deliver orders of magnitudes speedup
over the parallel LU based solver and up to 4× speedup over CPU-
GMRES solver for both dc and transient thermal analyzes on a
number of thermal circuits and other published problems.

II. BACKGROUND

A. 3-D-ICs With Integrated Intertier Microchannels

Fig. 1 shows a 3-D system consisting of a number of stacked layers
(with cores, L2 caches, crossbars, memory controllers, buffers, etc.)
and microchannels built in-between the vertically stacked layers for
liquid cooling. The microchannels are distributed uniformly. Forced
interlayer convective cooling with water is applied [7], and fluid flows
through each channel at the same flow rate. The liquid flow rate
provided by the pump can be dynamically altered at runtime.

Laminate liquid flows in the microchannels make the resulting
heat equations more complicated as heat is removed by both heat
sinks and laminate liquid flows via convection effect. To mitigate
this problem, some simple models were proposed as an add-on to
the existing thermal models for packages and chips at the cost of
accuracy. In [22] and [21], the liquid cooling effects are modeled
by simplified RC networks with simplified voltage-controlled cur-
rent sources to model the dominant convective heat flow (in flow
direction). In [12], a simple resistor model is proposed for the liquid
cooling microchannels. In this brief, we consider both conductive heat
flow in the solid (chips and packages) and the convective heat flow
in the coolant flow, and directly solve the resulting partial differential
equations without any approximation.

1063-8210 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

576 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 3, MARCH 2015

Fig. 2. View of 3-D-IC stack.

Fig. 3. Model of heat transfer between coolant and the sidewall of the
channel.

B. Relevant Previous Arts of Linear Solvers

Recently, there have been several works published on GPU-based
circuit analysis and simulation. Work in [11] uses multigrid as a pre-
conditioner for the conjugate gradient method in dc analysis of power
distribution networks. The work was later extended consider liquid
cooling by using a purely resistance-based symmetric model [12].
While this model generates symmetric matrices, which are easy to
solve and parallelize, its approximation to the fundamental physics
of heat flow will compromise the accuracy.

There are also several papers implementing GMRES on GPU.
In [24], GMRES with a block ILU preconditioner, which conducts
ILU only along the main diagonal (DIAG) is parallelized on GPU.
The block ILU preconditioner can easily provide some levels of
parallelism to GPU. However, it drops the entries outside the DIAG
blocks, and hence tends to be inaccurate and incur more iterations
to converge. A more thorough GPU implementation of GMRES is
proposed in [14], but it uses JAD and DIA sparse matrix formats,
which are inefficient compared with NVIDIA-supported Compressed
Sparse Row format [3]. In addition, [14] does not mention what
precision is used for testing, making comparison difficult. Recently
a GPU-accelerated preconditioned GMRES solver was proposed for
solving power grid networks [15].

III. MODELING OF 3-D-ICs WITH

INTEGRATED MICROCHANNELS

The thermal systems with both heat diffusion and convection due
to the liquid flow (incompressible material) can be written in the
following:

ρcp
∂T

∂t
= −ρcp �u · ∇T + k∇2T + q̇ (1)

where cp is the specific heat, ρ is density of the material, q̇ is the
rate of the heat generation, �u is fluid’s velocity field, and k is thermal
conductivity of the material.

Fig. 4. (a) Coolant flow inside a channel. (b) Modeling heat convection in
the direction of the channel using thermal resistor R f [12]. (c) Modeling heat
convection in the direction of the channel using current sources Ic derived
from the energy equation.

TABLE I
GEOMETRICAL AND MATERIAL INFORMATION OF THE 3-D STRUCTURE

Applying finite difference method and assuming the channel is
along x-axis, the discretized form of (1) will lead to

GT(t) + C
dT(t)

dt
= BU(t) (2)

where G and C are the coefficient matrices that represent thermal
conductivities and capacitance, B is the input position matrix of the
heat sources, T(t) is the vector of on-chip temperature, and U(t) is
the vector of input power sources.

Boundary conductance is used to model the heat exchange between
channel sidewall and the coolant, as shown in Fig. 3. It is calculated
as gside = hsideS, side = {top/bottom/left/right}, where hside is the
convection coefficient and S is the area of the convective surface [20].

Notice that in microchannels, each cell has the convective term
(using central differencing)

Ic = Acv(Ti+1, j,k − Ti−1, j,k) = AacTi+1, j,k − AacTi−1, j,k

(3)

where Acv = ρcpux x/2�x represents the convective constant. Ti, j,k
is the temperature on meshed grid (i, j, k), ux x is the flow rate which
goes along x-direction. As we can see, the convective item Ic is
essentially modeled by two voltage controlled current source terms,
as shown in (3)-one representing convective heat transport from the
previous cell to the current cell along the channel (controlled by the
temperature Ti+1, j,k at the front surface of the cell) by and the other
representing the heat transport away from the current cell to the next
cell (controlled by the temperature Ti−1, j,k at the end surface of the
cell).

The conductive heat flow linearly depends on the temperature
difference between the two boundaries of the cell along the flow
direction. Thus, they can be viewed as temperature-controlled heat
sources (or voltage controlled current sources in circuit model). Since
we have the controlled sources, the resulting G matrices will no
longer be symmetric. Since cells of solids (chips or packages) has
no liquid flow inside, there is no convection term.

We remark that our model is different from the simplified circuit
model proposed in [12], which uses very small thermal resistors R f
in coolant flow direction to model the convective heat exchange, as
shown in Fig. 4(b). Our model uses the heat-controlled temperature
flow naturally derived from the energy (1) to model the unidirectional
heat convection in the channel, as shown in Fig. 4(c).

Without loss of generality, the example used in our test case is
a 3-D-IC stack IC shown in Fig. 2. It consists of two active layer
stacked IC with a heat sink on the top, and microchannels embedded
in the active silicon layers. The geometrical and material properties
of the test stack are listed in Table I, where BL represents the

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 3, MARCH 2015 577

Algorithm 1 GMRES With Left Preconditioning. (Note: e1 Is the
Unit Vector [1, 0, . . . , 0], and Vector ym Is Calculated in the LS
Problem, Which Minimizes the 2-Norm Residual)

bounding layer between the two dies, and TIM represents the thermal
interface materials. Inside the channel we assume the coolant flows
at a constant rate.

IV. PARALLEL GMRES SOLVER ON GPU-CPU PLATFORM

The GMRES method is an iterative method for solving large-scale
systems of linear equations (Ax = b), where A is sparse in our case.
Algorithm 1 shows the standard Krylov subspace-based GMRES with
left preconditioning, which uses projection method to form the mth
order Krylov subspace [19].

A. Parallelization on GPU-CPU Platforms

To parallelize GMRES, we need to identify several computation
intensive steps in Algorithm 1. There exist many GPU-friendly oper-
ations in GMRES, such as vector addition (axpy), 2-norm of vectors
(nrm2), and sparse matrix-vector (SpMV) multiplication (csrmv).
Based on the examples we focus on, we have noticed that SpMV
takes up to 50% of the overall runtime to build the Krylov subspace.
Those routines are GPU-friendly and efforts have been made already
to accelerate them in generic parallel algorithms for sparse matrix
computations library [4].

GPU programming is typically limited by the data transfer band-
width as GPU favors computationally intensive algorithms [13].
Hence, how to wisely partition the data between CPU memory (host
side) and GPU memory (device side) to minimize data traffic is cru-
cial for GPU computing. In the sequel, we make some detailed analy-
sis first for GMRES in Algorithm 1. First, we consider about storage
of Krylov subspace vectors. In GMRES with restart mechanism, the
maximum iteration number before the restart is m, m � n, and
the memory cost of subspace Vm is n-by-m, i.e., m column vectors
with n-length. This is still big. Hence, transferring the memory of
the subspace vectors between the CPU and GPU memories is not
an efficient choice. In addition, every newly generated matrix-vector
product needs to be orthogonalized against to all its previous basis
vectors in the Arnoldi processes. To use the data intensive capability

Fig. 5. Proposed GPU-accelerated parallel preconditioned GMRES solver.
We also show the partitioning of the major computing tasks between CPU
and GPU here.

of GPU, we keep all the subspace vectors in GPU global memory,
thus allows GPU to handle operations such as inner-product of basis
vectors (dot) and vector subtraction (axpy), in parallel.

On the other hand, it is better to keep the Hessenberg matrix H̃,
where intermediate results of the orthogonalization are stored, at the
CPU host side. This comes with the following reasons. First, its
size is (m + 1)-by-m at most, rather small if compared with circuit
matrices and Krylov basis vectors. Besides, it is also necessary to
triangularize H̃ and check the residual in each iteration so GMRES
can return the approximate solution as soon as the residual is below a
preset tolerance. Hence, it is preferable to allocate H̃ in host memory.
As shown in Algorithm 1, the memory copy from device to host
is called each time when Arnoldi iteration generates a new vector
and the orthogonalization produces a new vector h, which is the
(j + 1)th column of H̃, and is transferred to the CPU, where a least
squares (LS) minimization (a series of Givens rotations, in fact) is
performed to see if the desired tolerance of residual has been met. Our
observation shows that the data transfer and subsequent CPU-based
computation takes up less than 0.1% of the total run time.

Fig. 5 shows the computation flow, the partitions of the major
computing steps, and the memory accesses between CPU and GPU
during the operations we mentioned above.

B. GPU-Friendly Implementation of Preconditioners

Most of the existing preconditioners can be broadly classified as
being either explicit or implicit [5]. A preconditioner is implicit if its
application within each step of the chosen iterative method requires
to solve a linear system. With implicit preconditioner, we choose
a nonsingular matrix M, where M ≈ A, and M should satisfy the
requirement that solving a system with matrix M is easier than solv-
ing the original system of A. In contrast, for explicit preconditioner,
the approximate inverse (AINV) form of A is calculated first and will
be known to iteration solvers. Hence, the preconditioning operations
become one or more matrix-vector products.

The most common and widely used implicit preconditioner is based
on ILU decomposition. For ILU preconditioner, M = L̃Ũ, where
L̃ and Ũ are the sparse triangular matrices, which approximate the
L and U factors of A, respectively. Applying ILU preconditioner

578 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 3, MARCH 2015

TABLE II
STATISTICS FOR THERMAL CIRCUITS

requires the solving of two sparse triangular systems with forward
and backward substitutions, which is the bottleneck limiting the
performance due to its serial nature. In our work, we use ILU0
with the fewest fill-ins. We let ILU decomposition be performed on
CPU. Then, the two triangular matrices are transferred to GPU. The
preconditioning with ILU0 is to apply GPU parallel triangular solves
on the newly formed basis vector, which is also calculated on GPU.

We also use AINV preconditioners with tolerance dropping in [5]
and [6] as our explicit preconditioner. The AINV preconditioner M is
an approximate to A−1, and ‖I−MA‖ is used to define the similarity
of M and A−1. The approximation to A−1 is attained using three
matrices [26]

A−1 ≈ M = ZD−1WT (4)

where Z and W are the two unit upper triangular matrices, D is
a DIAG matrix. Z and W are similar to U−1 and L−1 triangular
parts in LDU decomposition of A = LDU, respectively. They can
be directly obtained by means of a biconjugation process [6]. If we
define Ml = WT and Mr = ZD−1, the preconditioning operations
are two matrix-vector product of Ml and Mr , respectively, which
is easily to be parallelized. In our work, Ml and Mr are computed
on CPU first, and then transferred to GPU for fast matrix-vector
multiplications used in the preconditioned GPU-GMRES.

V. NUMERICAL RESULTS AND DISCUSSION

The proposed algorithm has been implemented using NVIDIA
CUDA and run on Tesla C2070 GPU, which has 448 cores of
1.15 GHz and 5-GB global memory. The CPU results were tested on
a quad-core Xeon E5620 machine at 2.00 GHz with 28-GB memory.
For a thorough comparison, serial GMRES on CPU, parallel GMRES
on CPU-GPU platform with preconditioners, and a parallel LU solver,
superLU_MT. SuperLU_MT is a commonly preferred and publicly
available parallel LU-based solver [10]. GPU-GMRES with AINV
and ILU0 preconditioners are compared on a number of thermal and
other matrices.

Our test cases consist of two thermal circuit models generated by
our own finite difference thermal analysis tool based on the realistic
package structures, thermal boundary conditions and materials. In
addition, two circuit examples from the University of Florida matrix
collection [9] and four 3-D-ICE testcases with package systems [21]
are also added in our experiments. More detailed information on these
thermal matrices and published matrices can be found in Table II,
where dim is the matrix size, i.e., number of rows and number of
columns, nnz is the number of nonzero elements in the matrix, and
density is the ratio defined as nnz/dim, i.e., the average number of
nonzero elements per row.

The performance of GMRES solver with preconditioners is sum-
marized in Table III. For comparison, the same equation Ax = b is
solved as follows.

1) SuperLU_MT, i.e., multithreaded direct LU method, whose
factorization routine psgstrf runs on our server with four threads
in parallel.

2) GMRES solver using only serial single-thread CPU.
3) The proposed GMRES solver with GPU parallel computation.

The GMRES solvers of both CPU and GPU versions take
the parameters such as restart number, maximum iteration
number, and residual tolerance. In our experiments, these

TABLE III
COMPARISON OF SOLVERS ON Ax = b

three parameters are set as 32, 106, and 10−6, accordingly. We
remark that since the LU-based method employs four threads
and can be viewed as a parallel LU-based solver, its comparison
with our GPU GMRES solver is very relevant. It will show
the parallelization benefits on two different multi/many core
computing platforms.

Note that we also test the three different preconditioners, such as
DIAG, ILU0, and AINV in the two GMRES implementations. The
time spent on preconditioner constructions and GMRES solving with
preconditioners are all recorded in Table III. As can be observed by
the runtime measurements, GMRES performs better with the help
of preconditioner. Especially for large matrices, GMRES with no
preconditioner or with DIAG preconditioner fails to converge within
the given limit of maximum iteration number. In these cases, we
remove them from the table.

In general, as the problem sizes become larger, the GPU-GMRES
will show more speedup over the parallel SuperLU_MT (ranging
from one to two orders of magnitudes). ILU0 preconditioner usually
gives better performance over AINV preconditioner. Compared with
the CPU version of preconditioned GMRES solver, the GPU-GMRES
solver can deliver about 2–4× speedup for large cases. Also with
larger thermal circuits, we expect more speedups as indicated by the
table.

We have further comments on ILU0 and AINV preconditioners.
Both of them show better robustness than the simple DIAG precon-
ditioner, and they succeed on all the demonstrated examples. Their
robustness comes from the better knowledge obtained from matrix A
during the preconditioner construction phase. The AINV precondi-
tioner is more expensive than ILU0, since it better approximates A−1

and tends to have more nonzero elements than ILU0 preconditioner,
which approximates A. This increased cost of AINV is reflected in
both the construction phase and the GMRES iteration phase, as can
be observed from Table III.

It is noteworthy that we use single-precision floating-point repre-
sentation, i.e., 32 bits, for real numbers in all the calculations. This
implementation comes from two reasons. One is because NVIDIAs
current generation GPUs support single-precision better than double
precision, in terms of speed and memory space. The other reason,
which is also from the perspective of our application here, is that
thermal simulation results, such as temperatures, do not require very
high precision. We have compared our single-precision results with
double-precision ones, and the temperature difference between the
two is at most 0.1°, which is acceptable to most of the IC thermal
analyzes.

For even larger circuit matrices, whose data cannot be holded by
the current generation GPUs memory (about 3–6 GBs), some parti-
tioning strategies have to be employed to distribute the computing
tasks and data into different GPUs on the same node or different

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 3, MARCH 2015 579

computing nodes (GPU clusters). In other words, distributed parallel
computing techniques are required to consider such large problems,
which is not the focus of this brief. Note that, traditional CPU-based
computing will also face the similar issue as the memory for any
CPU is always limited. Also from thermal analysis perspective, we
can always trade the accuracy with thermal circuit complexities (thus
simulation efficiency) using different grid sizes.

VI. CONCLUSION

An efficient finite difference-based full-chip simulation algorithm
for 3-D-ICs with liquid cooling based on CPU-GPU platform is
proposed. Unlike existing fast thermal analysis methods, the new
method starts from the basic heat equations to model 3-D-ICs
with intertier liquid cooling microchannels, and directly solves the
resulting Partial Differential Equation using iterative GMRES solver.
To speed up the analysis process, we further developed a precon-
ditioned GPU-accelerated GMRES solver. We also studied different
preconditioners for GPU platforms and compared their performances.
Experimental results showed that the proposed solver can lead to
orders of magnitudes speedup over the parallel LU-based solver and
up to 4× speedup over CPU-GMRES for thermal circuits and other
published problems.

REFERENCES

[1] (2008). IBM Interlyaer Cooling Technology for 3D Packages [Online].
http://www.zurich.ibm.com/st/cooling/integrated.html

[2] J. L. Ayala, A. Sridhar, and D. Cuesta, “Thermal modeling and analysis
of 3D multi-processor chips,” Integr., VLSI J., vol. 43, pp. 327–341,
Sept. 2010.

[3] N. Bell and M. Garland, “Implementing sparse matrix-vector multipli-
cation on throughput-oriented processors,” in Proc. Conf. High Perform.
Comput. Netw., Storage Anal., 2009, pp. 18:1–18:11.

[4] N. Bell and M. Garland. (2010). Cusp: Generic Parallel Algorithms for
Sparse Matrix and Graph Computations [Online]. Available: http://cusp-
library.googlecode.com

[5] M. Benzi, C. D. Meyer, and M. Tuma, “A sparse approximate inverse
preconditioner for the conjugate gradient method,” SIAM J. Sci. Comput.,
vol. 17, pp. 1135–1149, Sep. 1996.

[6] M. Benzi and M. Tuma, “Numerical experiments with two approxi-
mate inverse preconditioners,” BIT Numerical Math., vol. 38, no. 2,
pp. 234–241, 1998.

[7] T. Brunschwiler et al., “Interlayer cooling potential in vertically inte-
grated packages,” Microsyst. Technol., vol. 15, pp. 57–74, Oct. 2008.

[8] A. K. Coskun et al., “Energy-efficient variable-flow liquid cooling in 3D
stacked architectures,” in Proc. Eur. Design Test Conf. (DATE), 2010,
pp. 111–116.

[9] T. Davis. (2012). The University of Florida Sparse Matrix Collection
[Online]. Available: http://www.cise.ufl.edu/research/sparse/

[10] J. W. Demmel, J. R. Gilbert, and X. S. Li, “An asynchronous parallel
supernodal algorithm for sparse gaussian elimination,” SIAM J. Matrix
Anal. Appl., vol. 20, no. 4, pp. 915–952, 1999.

[11] Z. Feng, Z. Zeng, and P. Li, “Parallel on-chip power distribution
network analysis on multi-core-multi-GPU platforms,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 19, no. 10, pp. 1823–1836,
Oct. 2011.

[12] Z. Feng and P. Li, “Fast thermal analysis on GPU for 3D-ICs
with integrated microchannel cooling,” in Proc. ICCAD, Nov. 2010,
pp. 551–555.

[13] D. B. Kirk and W.-M. Hwu, Programming Massively Paral-
lel Processors: A Hands-on Approach. San Francisco, CA, USA:
Morgan Kaufmann, 2010.

[14] R. Li and Y. Saad, “GPU-accelerated preconditioned iterative linear
solvers,” J. Supercomput., vol. 63, no. 2, pp. 443–466, 2010.

[15] X. Liu, H. Wang, and S. X.-D. Tan, “Parallel power grid analysis using
preconditioned gmres solvers on cpu-gpu platforms,” in Proc. ICCAD,
Nov. 2013, pp. 561–568.

[16] (2011). NVIDIA Corporation [Online]. Available: http://www.
nvidia.com

[17] R. Patti, “3D integration: New opportunities for advanced packaging,”
in Proc. EPEPS, Oct. 2011, pp. 1–41.

[18] Y. Saad and M. H. Schultz, “GMRES: A generalized minimal residual
algorithm for solving nonsymmetric linear systems,” SIAM J. Sci. Statist.
Comput., vol. 19, pp. 856–869, Oct. 1986.

[19] Y. Saad, Iterative Methods for Linear Systems. Boston, MA, USA: PWS,
2000.

[20] R. Shah and A. London, Laminar Flow Forced Convection in Ducts.
New York, NY, USA: Academic, 1978.

[21] A. M. Sridhar et al., “3D-ICE: Fast compact transient thermal modeling
for 3D-ICs with inter-tier liquid cooling,” in Proc. ICCAD. 2010,
pp. 463–470.

[22] A. M. Sridhar et al., “Compact transient thermal model for 3D ICs with
liquid cooling via enhanced heat transfer cavity geometries,” in Proc.
16th Int. Workshop Thermal Invest. ICs Syst., Oct. 2010, pp. 1–6.

[23] S. Swarup, S. X.-D. Tan, and Z. Liu, “Thermal characterization of
TSV based 3D stacked ICs,” in Proc. IEEE Conf. EPEPS, Oct. 2012,
pp. 335–338.

[24] M. Wang, H. Klie, M. Parashar, and H. Sudan, “Solving sparse linear
systems on NVIDIA Tesla GPUs,” in Proc. 9th Int. Conf. Comput. Sci.,
2009, pp. 864–873.

[25] X. Wei and Y. Joshi, “Optimization study of stacked micro-chanel heat
sinks for micro-electronic cooling,” IEEE Trans. Components Packag.
Technol., vol. 26, no. 1, pp. 441–448, Mar. 2003.

[26] S. Xu, W. Xue, K. Wang, and H. Lin, “Generating approximate inverse
preconditioners for sparse matrices using CUDA and GPGPU,” J. Algo-
rithm, Comput. Technol., vol. 5, no. 3, pp. 475–500, 2010.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

