1556

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 18, NO. 11, NOVEMBER 2010

Variational Capacitance Extraction and Modeling
Based on Orthogonal Polynomial Method

Ruijing Shen, Student Member, IEEE, Sheldon X.-D. Tan, Senior Member, IEEE, Jian Cui,
Wenjian Yu, Member, IEEE, Yici Cai, Member, IEEE, and Geng-Sheng Chen

Abstract—In this paper, we propose a novel statistical capaci-
tance extraction method for interconnect conductors considering
process variations. The new method is called statCap, where or-
thogonal polynomials are used to represent the statistical processes
in a deterministic way. We first show how the variational potential
coefficient matrix is represented in a first-order form using Taylor
expansion and orthogonal decomposition. Then, an augmented
potential coefficient matrix, which consists of the coefficients of
the polynomials, is derived. After this, corresponding augmented
system is solved to obtain the variational capacitance values in
the orthogonal polynomial form. Finally, we present a method to
extend statCap to the second-order form to give more accurate
results without loss of efficiency compared to the linear models.
We show the derivation of the analytic second-order orthogonal
polynomials for the variational capacitance integral equations.
Experimental results show that statCap is two orders of magnitude
faster than the recently proposed statistical capacitance extraction
method based on the spectral stochastic collocation approach and
many orders of magnitude faster than the Monte Carlo method
for several practical conductor structures.

Index Terms—Capacitance extraction, orthogonal decomposi-
tion, orthogonal polynomial, process variations.

1. INTRODUCTION

T IS WELL ACCEPTED that the process-induced vari-
I ability has huge impacts on the circuit performance in
the sub-100 nm VLSI technologies [14], [15]. The variational
consideration of the process has to be assessed in various VLSI
design steps to ensure robust circuit design. Process variations
consist of both systematic ones, which depend on patterns and
other process parameters, and random ones, which have to be
dealt with using stochastic approaches. Efficient capacitance
extraction approaches by using the boundary element method
(BEM) such as the fastCap [12], HiCap [18], and PHiCap
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[22] have been proposed in the past. To consider the variation
impacts on the interconnects, one has to consider the RLC
extraction processes of the 3-D structures modeling the inter-
connect conductors. In this paper, we investigate the geometry
variational impacts on the extracted capacitance.

Statistical extraction of capacitance considering process
variations has been studied recently, and several approaches
have been proposed [5],[8],[24]-[26] under different vari-
ational models. Method in [8] uses analytical formulae to
consider the variations in capacitance extraction, and it has
only first-order accuracy. The FastSies program considers the
rough surface effects of the interconnect conductors[26]. It as-
sumes only Gaussian distributions and has high computational
costs. Method in [5] combines the hierarchical extraction and
principle factor analysis to solve the capacitance statistical
extraction.

Recently, a spectral stochastic-collocation-based capacitance
extraction method was proposed [23] and [25]. This approach
is based on the Hermite orthogonal polynomial representation
of the variational capacitance. It applies the numerical quadra-
ture (collocation) method to compute the coefficients of the ex-
tracted capacitances in the Hermite polynomial form where the
capacitance extraction processes (by solving the potential coef-
ficient matrices) are performed many times (sampling). One of
the major problems with this method is that many redundant op-
erations are carried out (such as the setup of potential coefficient
matrices for each sampling, which corresponds to solve one par-
ticular extraction problem). For the second-order Hermite poly-
nomials, the number of samplings is O(m?), where m is the
number of variables. Therefore, if m is large, the approach will
lose its efficiency compared to the Monte Carlo (MC) method.

In this paper, instead of using the numerical quadrature
method, we use a different spectral stochastic method, where
the Galerkin scheme is used. Galerkin-based spectral sto-
chastic method has been applied for statistical interconnect
modeling [2], [19] and on-chip power grid analysis consid-
ering process variations in the past [9]-[11]. The new method,
called statCap, first transforms the original stochastic potential
coefficient equations into a deterministic and larger one (via
the Galerkin method), and then, solves it using an iterative
method. It avoids the less-efficient sampling process in the
existing collocation-based extraction approach. As a result,
the potential coefficient equations and the corresponding aug-
mented system need to be set up only once versus many times
in the collocation-based sampling method. This can lead to a
significant saving in CPU time. Also, the augmented potential
coefficient system is sparse, symmetric, and low rank, which is
further exploited by an iterative solver to gain further speedup.
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To consider second-order effects, we derive the closed-form
orthogonal polynomials for the capacitance integral equations
directly in terms of variational variables without the loss of
speed compared with the linear model. Experimental results
show that the proposed method based on the first-order and
second-order effects can deliver two orders of magnitude
speedup over the collocation-based spectral stochastic method
and many orders of magnitude over the MC method.

The main contributions of the this paper are as follows.

1) The Galerkin-based spectral stochastic method is proposed
to solve the statistical capacitance extraction problem
where Galerkin scheme (versus the collocation method) is
used to compute the coefficients of capacitances.

2) The closed-form coefficients hermite polynomial is de-
rived for potential coefficient matrices in both first-order
and second-order forms.

3) The augmented matrix properties are studied, showing that
augmented matrix is still quite sparse, low rank, and sym-
metric.

4) The augmented systems are solved by minimum-residue
conjugate gradient method [16] to take advantage of the
sparsity, low rank, and symmetric properties of the aug-
mented matrices.

5) The method is compared with the existing statistical capac-
itance extraction method based on the spectral stochastic
collocation approach [25] and MC method, showing the
superiority of the proposed method.

We remark that we have put less emphasis on the acceler-
ation techniques during the extraction processes, such as the
multiple-pole scheme [12]and the hierarchical methods [18],
[22], using the more sophisticated iterative solvers such as gen-
eral minimal residue (GMRES) [17], which actually are the
key components of these methods. The reason is that this is
not the focus area where our major contributions are made. We
believe that these existing acceleration techniques can signifi-
cantly speedup the proposed method as they did for the deter-
ministic problem. This is especially the case for the hierarchical
approach [18], where the number of panels (thus, the random
variables) can be considerably reduced and the interaction be-
tween panels are constant. These are the areas for our future
investigations.

The rest of this paper is organized as follows. Section II
presents statistical capacitance extraction problem to be solved.
Section III reviews the orthogonal-polynomial-chaos (PC)
based stochastic simulation methods. Section IV presents
our new statistical capacitance extraction method consid-
ering first-order perturbations. Then, Section V presents the
new method considering the second-order effects. Section VI
presents the experimental results and Section VII concludes
this paper.

II. PROBLEM FORMULATION

For m conductors system, the capacitance extraction problem
based on the BEM formulation is to solve the following integral
equation [12]:

1 7 —
/Smp(xf)d“i = o() (1)
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where p(Z;) is the charge distribution on the surface at con-
ductor j, v(Z;) is the potential at conductor 4, 1/|Z; — &;| is the
free-space Green function,! da; is the surface area on the sur-
face S of conductor j, and Z; and ; are point vectors. To solve
for capacitances from one conductor to the rest of others, we set
the conductor’s potential to be 1 and all other m — 1 conductors’
potential to be 0. The resulting charges that are computed are
capacitances. BEM method divides the surfaces into N small
panels and assume uniform charge distribution on each panel,
which transforms (1) into a linear algebraic equation

Pg=uv 2)

where P € RV is the potential coefficient matrix, ¢ is the
charge on panels, v is the preset potential on each panel. By
solving the aforementioned linear equation, we can obtain all the
panel charges (thus, capacitance values). In potential coefficient
matrix P, each element is defined as

1
PL']' = —/ G(:E’i,fj)daj (3)
Si Js;

where G(Z;,Z;) = 1/|Z; — &;]| is the Green function of point
source at Z;, S; is the surface of panel j, and s; is the area of
panel j.

Process variations introducing conductor geometry variations
are reflected on the fact that the size of the panel and distances
between panels become random variables. Here, we assume that
the panel is still a 2-D surface. These variations will make each
element in capacitance matrix follow some kinds of random dis-
tributions. The problem that we need to solve now is to derive
this random distribution, and then to effectively compute the
mean and variance of involved capacitance given the geometry
randomness parameters.

In this paper, we follow the variational model introduced in
[5], where each point in panel 7 is disturbed by a vector An; that
has the same direction as the normal direction of panel ¢

where the length of the An; follows Gaussian distribution
|An;| ~ N(0,02). If the value is negative, it means that
the direction of the perturbation is reversed. The correlation
between random perturbation on each panel is governed by the
empirical formulation such as the exponential model [26]

y(r) = e/ )

where 7 is the distance between two panel centers and 7 is the
correlation length.

The most straightforward method is to use MC simulation
to obtain distributions, mean values, and variances of all these
capacitances. But the MC method will be extremely time-con-
suming as each sample run requires the formulation of the
changed potential coefficient matrix P.

INote that the scale factor 1/(47e,) can be ignored here to simplify the no-
tation and is used in the implementation to give results in units of farads.
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III. REVIEW OF SPECTRAL STOCHASTIC METHOD

In this section, we briefly review the spectral stochastic or
orthogonal PC-based stochastic analysis methods.

A. Concept of Hermite PC

In the following, a random variable £(f) is expressed as a
function of #, which is the random event. Hermite PC utilizes a
series of orthogonal polynomials (with respect to the Gaussian
distribution) to facilitate stochastic analysis [4], [21]. These
polynomials are used as orthogonal basis to decompose a
random process.

We remark that for the Gaussian and log-normal distribu-
tions, using Hermite polynomials is the best choice as they
lead to exponential convergence rate [4]. For non-Gaussian and
nonlog-normal distributions, there are other orthogonal poly-
nomials such as Legendre for uniform distribution, Charlier
for Poisson distribution, Krawtchouk for Binomial distribution,
etc. [3], [19].

Given a random variable v(¢, &) with variation, where £ =
[£1,-..,&s] denotes a vector of orthonormal Gaussian random
variables with zero mean, the random variable can be approxi-
mated by a truncated Hermite PC expansion as follows [4]:

P
v(t,&) =Y arH}(§) 6)
k=0

where n is the number of independent random variables, H;'(§)
are n-dimensional Hermite polynomials, and a, are the deter-
ministic coefficients. The number of terms P is given by

p

where p is the order of the Hermite PC. For simplification of
explanation, only one random variable is considered, and the
1-D Hermite polynomials are expressed as follows:

H{(§) =€,
Hy(€)=¢&=-3¢....

Hy(¢) =1,
H%(f) 252 - 17

The Hermite polynomials are orthogonal with respect to
Gaussian weighted expectation (the superscript n is dropped
for simple notation)

(Hi(€), H;(€)) = (H(€))bi )

where 6;; is the Kronecker delta and (*,*) denotes an inner
product defined as

e_l/zédef.

(£(£),9(8)) (10)

- ﬁ / £(©)g(6)

Thus, the coefficients aj, are evaluated by the projection opera-
tion onto the Hermite PC basis

(v(t,£), Hr(£))

() = )

Vke{0,...,P}. (1)
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B. Computing Coefficients, the Mean and Variance From
Hermite PCs

In case that ¢(¢) in (2) is unknown random variable vector
(with normal distribution), then potential coefficient equation
become

P(&)q(§) = v (12)
where both P(¢) and ¢(¢) are in Hermite PC form. Then, the
coefficients can be computed by using Galerkin method. The

principle of orthogonality states that the best approximation of
v(€) is obtained when the error A(&) defined as

A(E) = P(§)q(§) —v (13)
is orthogonal to the approximation, i.e.
(A€),Hy(€)) =0,  k=0,1,....P (14)

where Hj(€) are Hermite polynomials. In this way, we have
transformed the stochastic analysis process into a deterministic
form, whereas we only need to compute the corresponding co-
efficients of the Hermite PC.

For the illustration purpose, considering two Gaussian vari-
able £ = [£1, &2, we assume that the charge vector in panels can
be written as a second-order (p = 2) Hermite PC, we have

a(é) = qo+n& + & +a3(§ — 1) +qu(& — 1) + g5(&162)

(15)
which will be solved by using augmented potential coefficient
matrices to be discussed in Section I'V. Once the Hermite PC of
q(&) is known, the mean and variance of ¢(&) can be evaluated
trivially. Given an example, for one random variable, the mean
and variance are calculated as

E(Q(f)) =dqo
Var(q(€)) = qi Var(¢) + ¢3 Var(¢? — 1)
=q¢; + 25 (16)

In consideration of correlations among random variables, we
apply principal component analysis (PCA) to transform the cor-
related variables into a set of independent variables.

IV. NEW ORTHOGONAL-POLYNOMIAL-BASED EXTRACTION
METHOD: statCap

In this section, we present our new spectral stochastic-
method-based method, statCap, which uses the orthogonal
polynomials to represent random variables starting from the
geometry parameters.

In our new method, we first represent the variation potential
matrix P into a first-order form using Taylor expansion. We
then extend our method to handle the second-order variations
in Section V.
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A. Expansion of Potential Coefficient Matrix

Specifically, each element in the potential coefficient matrix
P can be expressed as

Pij =1
sj [s, G(&i, %;)da;

a7

where G(Z,, Z;) is the free-space Green function defined in (3).
Note that if panels 7 and j are far away (their distance is much

larger than the panel area), we can have the following approxi-

mation [5]:

Suppose variation of panel 7 can be written as An; = 6§ii;,

where 7i; is the unit normal vector of panel ¢ and 67 is the scalar

variation. Then, take Taylor expansion on the Green function as

1

G(Zi + An;, &5 + Anj) = 5—— 19
(Z; + An;, Z; + Anj) =7, + Any — Anj] (19)
1 1
==+ V5"
| — & | — &4
. (A’I’Lj - A’I’LZ)
+ O((An; — Anj)?). (20)
From free-space Green function, we have
1 1 'd
VG(Z;,Z;) =Vo—5—=V-5 = —= (21)
! |Z; — % [7 R
rT=1I;—Tj. (22)

Now, we first ignore the second-order terms to make the vari-
ation in the linear form. As a result, the potential coefficient ma-
trix P can be written as (23), which is shown at the bottom of
the page. We can further write P; as (24), which is shown at the
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bottom of the next page, where J; and [N are vector matrices,
and V7 is the diagonal matrix.

To deal with spatial correlation, P, can be further expressed
as a linear combination of the dominate and independent
variables

52[517527"'7517] (25)

through the PCA operation. As a result, V7 can be further ex-
pressed as

P L ané 0
0 P L agé

: (26)
0 Yoy aniki
Finally, we can represent P; as
P = Z Pri&; (27)
where
Py = A;NvJy — J1N1 A (28)
and
a4 0 0
0 ag; 0
A; = . . (29)
0 ... 0 ap

B. Formulation of the Augmented System

Once the potential coefficient matrix is represented in the
affine form, as shown in (27), we are ready to solve for the coef-

G(fl + A’I’Ll,fl + A’I’Ll)
G(Z2 4+ Ang, &1 + Any)

P%PQ-{-Pl:

G(f’n + Annrfl + Anl)

G(fl + Anl,inAnn)
G(fz + An27a':’nAnn)
. (23)

G(Z, + Any,, Z,Any,)

G(71,71) G(ih,42)
G(Zoi) G, Ts)
PO _ 241 2
G(:Z”n,:vl) G(fn7.fg)
0
VG(fg,fl)(Anl — Ang)
P = )

VG(fn, il)(Anl - Ann)

G( 2, n)
G(Zn, Tn)
VG(&1, Tn)(Anm — Any)
VG(Zo, 20) (At — An)
0
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ficients Py; by using the Galerkin method, which will result in
a larger system with augmented matrices and variables.
Specifically, for p-independent Gaussian random variables

& = [&,...,&), there are K = 2p + p(p — 1)/2 first- and
second-order Hermite polynomials. H;(§) ¢ = 1,..., K rep-
resents each Hermite polynomial and Hy = &4,..., Hp, = &,.

Therefore, for the vector of variational potential variables ¢(¢),
it can be written as
K
9(&) =q+ Y aiHi(€) (30)
i=1

where each ¢; is a vector associated with one polynomial. So,
the random linear equation can be written as

P K
Pq = (PO+ZPMHZ-> (qo +Zq@-Hi> =v. (D)
i=1

i=1
Expanding the equation and performing inner product with H;
on both sides, we can derive new linear system equations

P
<W0®PO+ZW1-®PM>Q=V (32)
i=1
where ® is the tensor product and
qo0 v
q1
Q=1|" V= (33)
dK 0

and see (34) at the bottom of the page, where (H; H, H,,,) repre-
sents the inner product of three Hermite polynomial H;, H;, and
H,,,. The matrix (Wy ® Py + Zle W; ® Py;) in (32) is called

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 18, NO. 11, NOVEMBER 2010

the augmented potential coefficient matrix. Since H; are at most
second-order polynomials, we can quickly calculate every el-
ement in W,; with a lookup table for any number of random
variables.

We remark that matrices W; are very sparse due to the nature
of the inner product. As a result, their tensor products with P;;
will also lead to the very sparse augmented matrix in (32). As a
result, we have the following observations regarding the struc-
ture of the W; and the augmented matrix.

1) Observation 1: Wy is a diagonal matrix.

2) Observation 2: For W; matrices, ¢ # 0, all the diagonal
elements are zero.

3) Observation 3: All W, are symmetric and the resulting
augmented matrix Wy ® Py + Zle W; ® Py; is also sym-
metric.

4) Observation 4: If one element at position (I, m) in W is
not zero, i.e., W;(l,m) # 0, then elements at the same
position (I, m) of W}, j # 4, must be zero. In other words

W;(l,m)pW;(l,m) =0, when i # j

Vi,j=1,...,pand Im=1,... K.

Such sparse property can help save the memory significantly
as we do not need to actually perform the tensor product, as
shown in (32). Instead, we can add all W; together and expand
each element in the resulting matrix by some specific Py; during
the solving process, as there is no overlap among W, for any
element position.

As the original potential coefficient matrix is quite sparse and
low rank, the augmented matrix is also low rank. As a result, the
sparsity, low rank, and symmetric properties can be exploited by
iterative solvers to speed up the extraction process, as shown in

P, =ViNiJ, — 1NV}
0 VG(#, i) VG(#, i)
VG(fz,fl) 0 VG(fZ,fn)
J = . .
VG(Z,,71) VG(Z, Tr-1) 0
1 0
0 7y ...
Ny = .
0 Tip,
(5711 0
0 (5112
Vi = 24
0 ... ony,
(HiHoHo)  (HiHoH,) (HiHoH)
(H;H1Ho) (H;Hq.H,) (H;HyH)
W; = ) . 34
(H;HH,,)

(H;HyHy) (H;HyHy)

(HiHr Hrk)
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the experimental results. In our implementation, the minimum
residue conjugate gradient method [16] is used as the solver
since the augmented system is symmetric.

V. SECOND-ORDER Statcap

In this section, we extend StatCap to consider second-order
perturbations. We show the derivation of the coefficient ma-
trix element in second-order orthogonal polynomial from
the geometric variables. As a result, the second-order po-
tential coefficient matrix can be computed very quickly. In
our second-order StatCap, we consider both the far-field and
near-field cases when (17) is approximated.

A. Derivation of Analytic Second-Order Potential Coefficient
Matrix

Each element in the potential coefficient matrix P can be ex-

pressed as
Py = sZsJ / / G(%;, Z;)da;da;

G(z;, Z;)da;

5i Js;
1

~ —
~

S; S;

(35)

G(zi7fj)dai (36)

where G(Z;, Z;) is the free-space Green function defined in (3).

We assume the same definitions for An;, én;, and 7;, as in
Section IV. If we consider both first-order and second-order
terms, we have the following Taylor expansion on P;;

Pij(Ani, Anj)
=P, jo+ VP;jAn; + VP;;An;
+AanV2PijAnj + AniTVQPijAni
+2An; V2 P;jAn; + O((An; — An;)?)
OP;; OP;; 5n,;

Il VOO
920"t 5an,
2P,

82P”
0An; 0An,?

~P; jo +

2
on;

+

Soni® +

32 »
+2 Z] 5n16n] (37)

0An; An;
And to deal with the spatial correlation, An,; can be further ex-
pressed as a linear combination of the dominate and independent
variables in (25) through the PCA operation. As a result

An; = énit; = (ains + -+~ + aipép) il (38)
where a;, is defined in (26). After this, P will be represented
by a linear combination of Hermite polynomials

P P
P =P+ ZplLfL-l- ZPQL@% -1)
L=1 L=1
Li#L>
+3 > Pory b, (39)
L, Lo
where Ps7, is the coefficient corresponding to the first type of
second-order Hermite polynomial, f% — 1, and P, 1, means
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the coefficient corresponding to the second type of second-order
Hermite polynomial, {1, {1, (L1 # Lo).

Therefore, for each element P;; in P, the coefficients of or-
thogonal polynomials can be computed as follows:

OP; OP;

Pijir =aip——— i 4
AL “amﬁ ]LaA (40)
Privp = a2 02 PZ] o2 02 PZ]
17, a;r, 8A JL 8A
0% P;;
2a; i N 41
TR S N Ay )
d? Py 82PLJ
PL],2L1,La —2aLL1a1L2 aA + 2a]L1a]L2 8A
82P

+ 2(a2L1aJLz + aleaJLl) . (42)

0An A
Hence, we need to compute analytic expressions for the partial
derivatives of P;; to obtain the coefficients of Hermite polyno-
mials. The details of the derivations for computing the deriva-
tives used in (40), (42), and (42) can be found in the Appendix
section.

B. Formulation of the Augmented System

Similarly, as in Section IV, once the potential coefficient ma-
trix is represented in the affine form, as shown in (39), we are
ready to solve the coefficients Pz, Por,, and Psyr, 1, by using
the Galerkin method.

In this case, P in (39) is now rewritten as

K

p
P:PO‘f‘ZpliHi‘f‘ Z Py H,
=1 i=p+1

(43)

So, after considering the first-order and second-order Hermite
polynomials in P, the random linear equation can be written as

Pg= PO+ZP11H + Z Py H,
i=p+1

: <QO + Z q'iHv‘,> =v. (44
im1

Expanding the equation and performing inner product with H;
on both sides, we can derive a new linear system as

p K
W0®PO+ZW1‘®PU+ Z Wi@ Py | Q=V
=1 1=p+1

(45)
where ® is the tensor product, () and V' are same as in (33), and
W; has the same definition as in (34).

Again, the matrix in the right-hand side of (45) is the
augmented potential coefficient matrix for the second-order
statCap. Since H; are at most second-order polynomials, we
can still use lookup table to calculate every element in W; for
any number of random variables.

Now, we study the properties of augmented potential coeffi-
cient matrix. We review the features and observations that we
made for the first-order statCap.
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TABLE I
NUMBER OF NONZERO ELEMENT IN W;

1 =0
# non-zero K

1<:<p |[p+1<i<2p
2p+2 p+3

pr1<i<K
2p+4

Fig. 1. 2x 2 bus.

For W;, which is a K x K matrix, where K = p(p+3)/2, the
number of nonzero elements in W; is showed in Table I. From
Table I, we can see that matrices W, forz = 1,..., K are still
very sparse. As a result, their tensor products with Pj; and Ps;
will still give rise to the sparse augmented matrix in (45).

For the four observations in Section IV regarding the struc-
ture of W;, wherei = p+1,. .., K, and the augmented matrix,
we find that all the observations are still valid except for Obser-
vation 2. As aresult, all the efficient implementation and solving
techniques mentioned at the end of Section I'V can be applied to
the second-order method.

VI. EXPERIMENTAL RESULTS

In this section, we compare the results of the proposed
first-order and second-order starCap methods against the MC
method and the SSCM method [25], which is based on the
spectral stochastic collocation method. The proposed statCap
methods have been implemented in MATLAB 7.4.0. We use
minimum residue conjugate gradient method as the iterative
solver. We also implement the SSCM method in MATLAB
using the sparse grid package [6], [7]. We do not use any hier-
archical algorithm to accelerate the calculation of the potential
coefficient matrix for both starCap and SSCM. Instead, we use
analytic formula in [20] to compute the potential coefficient
matrices.

All the experimental results are carried out in a Linux system
with Intel Quadcore Xeon CPUs with 2.99 GHz and 16 GB
memory.

We test our algorithm on six testing cases. The more spe-
cific running parameters for each testing cases are summarized
in Table II. In Table II, p is the number of dominate and inde-
pendent random variables that we get through PCA operation,
and M C# means the times we run MC method. The 2 x 2 bus

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 18, NO. 11, NOVEMBER 2010

0.2
0.2
00

Fig. 2. Three-layer metal planes.

TABLE II
TEST CASES AND THE PARAMETERS SETTING

Ix1 bus 2x2 bus 3-layer [3x3 bus 4x4 bus [5x5 bus
Panel # 28 352 75 720 1216 4140
p 10 15 8 21 28 35
MC # |[10000 | 6000 6000 6000 6000 6000
TABLE III

CPU RUNTIME (IN SECONDS) COMPARISON AMONG MC, SSCM, AND
statCap (First/Second)

1 x 1 bus, MC(10000)
MC SSCM statCap(1st) [statCap(2nd) |SP(MC) [SP(SSCM)
2764s 49.35s 1.55s 3.59s 1783 32
2 X 2 bus, MC(6000)
MC SSCM  [statCap(Ist) {statCap(2nd) |SP(MC) [SP(SSCM)
63059s 2315s 122s 190s 517 19
3-layer metal plane, MC(6000)
MC SSCM statCap(1st) |statCap(2nd) |SP(MC) [SP(SSCM)
16437s 387s 4.11s 6.67s 3999 94
3 x 3 bus, MC(6000)
MC SSCM tatCap(1st) |statCap(2nd) |SP(MC) [SP(SSCM)
2.2 x 10°§ 7860s 408s 857s 534 19
4 x 4 bus, MC(6000)
MC SSCM tatCap(1st) statCap(2nd) [SP(MC) [SP(SSCM)
—* 3.62 x 10% 1573s 6855s 260 23
5 x 5 bus, MC(6000)
MC SSCM tatCap(1st) statCap(2nd) [SP(MC) [SP(SSCM)
—* - 1.7 x 107 6.0 x 10%s - -

* — out of memory

is shown in Fig. 1, and three-layer metal plane capacitance is
shown in Fig. 2. In all the experiments, we set standard devia-
tion as 10% of the wire width and the 7, the correlation length,
as 200% of the wire width.

First, we compare the CPU times of the four methods. The
results are shown in Table III. In the table, statCap(first/second)
refer to the proposed first- and second-order methods, respec-
tively. SP(X) means the speed up of the first-order StarCap
comparing with MC or SSCM. All the capacitances are in
picofarads.

It can be seen that both the first- and second-order statCap
are much faster than both SSCM and the MC method. And for
large testing cases, such as the 5 x 5 bus case, MC and SSCM
will run out of memory, but starCap still work well. For all
the cases, statCap can deliver about two orders of magnitude
speedup over the SSCM and three orders of magnitude speedup
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TABLE IV
CAPACITANCE MEAN VALUE COMPARISON FOR THE 1 X 1 BUS
MC SSCM | statCap(lst) | statCap(2nd)
C11 | 13592 | 135.90 136.58 136.21
C12 | -57.11 | -57.01 -57.49 -57.27
C21 | -57.11 | -57.02 -57.49 -57.27
C22 | 13594 | 135.69 136.58 136.21
TABLE V
CAPACITANCE STANDARD DEVIATION COMPARISON FOR THE 1 X 1 BUS
MC | SSCM | statCap(Ist) | statCap(2nd)
Cl1 | 242 2.49 3.13 2.63
C12 | 1.71 1.74 2.02 1.86
C21 | 1.72 1.71 2.02 1.86
C22 | 251 2.52 3.19 2.63
TABLE VI

ERROR COMPARISON OF CAPACITANCE MEAN VALUES AMONG SSCM AND
statC'ap (FIRST AND SECOND ORDER)

1 x 1 bus, MC(10000) as standard
SSCM | statCap(Ist) | statCap(2nd)
Max err | 0.19% 0.67% 0.28%
Avgerr | 0.14% 0.57% 0.24%
2 x 2 bus, MC(6000) as standard
SSCM | statCap(lst) | statCap(2nd)
Max err | 0.32% 0.49% 1.19%
Avg err | 0.15% 0.24% 0.89%
3-layer metal plane, MC(6000) as standard
SSCM | statCap(lst) | statCap(2nd)
Max err | 0.30% 1.84% 0.81%
Avgerr | 0.14% 0.90% 0.58%
3 X 3 bus, MC(6000) as standard
SSCM | statCap(lst) | statCap(2nd)
Max err | 0.33% 0.81% 0.43%
Avgerr | 0.11% 0.58% 0.11%
4 x 4 bus, SSCM as standard
SSCM | statCap(lst) | statCap(2nd)
Max err 0 0.76% 0.35%
Avg err 0 0.40% 0.09%
5 X 5 bus, StatCap(2nd) as standard
SSCM | statCap(Ist) | statCap(2nd)
Max err — 0.59% 0
Avg err — 0.28% 0

over MC method. Note that both SSCM and statCap use the
same random variables after PCA reduction.

‘We note that both MC and SSCM need to compute the poten-
tial coefficient matrices each time the geometry changes. This
computation can be significant compared to the CPU time of
solving potential coefficient equations. This is one of the reasons
that SSCM and MC are much slower than statCap, in which the
augmented system only needs to be setup once.

Also, SSCM uses the sparse grid scheme to reduce the col-
location points in order to derive the orthogonal polynomial
coefficients. But the number of collocation points are still in
the order of O(m?) for the second-order Hermit polynomials,
where m is the number of variables. Thus, it requires O(m?)
solutions for the different geometries. In our algorithm, we also
consider the second-order Hermit polynomials. But we only
need to solve the augmented system once. The solving process
can be further improved by using some advanced solver or ac-
celeration techniques.

Next, we perform the accuracy comparison. The statistics
for 1 x 1 bus case from the four algorithms are summarized in
Tables IV and V for the mean value and standard deviation,
respectively. The parameter settings for each case is listed in

TABLE VII
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ERROR COMPARISON OF CAPACITANCE STANDARD DEVIATIONS AMONG

SSCM, AND statCap (FIRST ANDSECOND ORDER)

1 X 1 bus, MC(10000) as standard

SSCM | statCap(lst) | statCap(2nd)
Max err | 2.48% 29.34% 8.77%
Avgerr | 2.29% 23.38% 7.91%

2 x 2 bus, MC(6000) as standard

SSCM | statCap(lst) | statCap(2nd)
Max err | 14.28% 12.98% 25.99%
Avgerr | 6.11% 8.51% 6.04%

3-layer metal plane, MC(6000) as standard

SSCM | statCap(lst) | statCap(2nd)
Max err | 8.35% 16.26% 2.38%
Avgerr | 3.37% 5.06% 0.86%

3 x 3 bus, MC(6000) as standard

SSCM | statCap(lst) | statCap(2nd)
Max err | 23.32% 21.39% 11.75%
Avgerr | 3.33% 10.35% 4.38%

4 X 4 bus, SSCM as standard

SSCM | statCap(lst) | statCap(2nd)
Max err 0 25.7% 6.68%
Avg err 0 16.1% 3.89%

5 x 5 bus, StatCap(2nd) as standard

SSCM | statCap(lst) | statCap(2nd)
Max err - 17.5% 0
Avg err - 7.92% 0

Table II. We make sure that SSCM, the first-order statCap, and
the second-order statCap use the same number of random vari-
ables after the PCA operations.

From these two tables, we can see that first-order starCap,
second-order statCap, and SSCM give the similar results for
both mean value and standard deviation compared with the MC
method. For all the other cases, the times we carry out MC sim-
ulations are as shown in Table III, and the similar experimental
results can be obtained. The maximum errors and average errors
of mean value and standard deviation for all the testing cases are
shown in Tables VI and VII. Compare to the MC method, the ac-
curacy of the second-order statCap is better than the first-order
statCap method, while from Table III, the speed of second-order
statCap keeps in the same order as first-order statCap, and is
still much faster than SSCM and MC.

VII. CONCLUSION

In this paper, we have proposed a novel statistical capacitance
extraction method, called statCap, for three-3-D interconnects
considering process variations. The new method is based on the
orthogonal polynomial method to represent the variational ge-
ometrical parameters in a deterministic way. We consider both
first-order and second-order variational effects. The new method
avoids the sampling operations in the existing collocation-based
spectral stochastic method. The new method solves an enlarged
potential coefficient system to obtain the coefficients of orthog-
onal polynomials for capacitances. starCap only needs to set up
the augmented equation once, and can exploit the sparsity and
low-rank property to speedup the extraction process. The new
statCap method can consider second-order perturbation effects
to generate more accurate quadratic variational capacitances.
Experimental results show that our method is two orders of
magnitude faster than the recently proposed statistical capaci-
tance extraction method based on the spectral stochastic collo-
cation method and many orders of magnitude faster than the MC
method for several practical interconnect structures.
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APPENDIX

In this appendix section, we detail the derivations for com-
puting derivatives in (40), (42), and (42).

First, we consider the scenario where panel ¢ and panel j are
far away (their distance is much larger than the panel area). In
this case, the approximations in (18) and (19) are still valid.
From free-space Green function, we have (21) and (22) for the
first-order Hermite polynomails, and we have the following for
the second-order Hermite polynomails:

1
Pijo=75—57 (46)
| — ]
or; 7o
= — 47
0An,; |r|3 “7)
8Pij Fn_;
— = 48
9An, ~ P @9
2P7" = —‘L 2 1
0Py _3(-m)” 1 49)
R
2p. . 2. )2
0hy A m) L (50)
An? = T [P
Py _ 3w m) -
0An;An; |7]°

Second, we consider the scenario where panel ¢ and panel j
are near each other (their distance is comparable with the panel
area). In this case, the approximation in (18) is no longer accu-
rate, and we must consider the general form in (35) and (36).

Since panel i panel j are perpendicular to An,;/An;, for
OP;;/0An; and 82 P;;/0An;?, with (35), we have

9(1/s;) fs (Z;,%;)da;
0An;

_90/s)) Js, (11

OPij
BAnj

— & + An; —
8Anj
0(1/|%; — T, + An; —
aATL]‘

An]-|)daj

Anj)

daj
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Similarly, with (36), we can further obtain

oP; A(1/si) [s, G(&i, 5)da;
0An; 3AnZ
il
= 4
S; / 77‘]3 (5)
0P, 0%(1/s;) fsl_ (Z:,7;)da;
aAniQ 3An12
_3(7- i) [ dap 1 daz

While for 82P,L-j JOAn;An;, we need to further consider two

cases. First, when panel 7 and panel j are in parallel, we have

0*P;; B 0?P;; B 0 P;; (56)
8A’I’Li2 n aA’n]’Q - aAnJAnL
Second, we consider panel ¢ and panel j are not in parallel. Then,
we arrive
82P,L-j - 8(6P”/6An1)
8AnjAni n 8ATLJ
O(=(-7ii/si) [5, (1/|7°)das)
o 8ATL]
P 0 1/)7®)da;
e O
S; aATL]

Assume the conductors are rectangular geometries. Then two
panels should be either in parallel or perpendicular. Since
panel 7 and panel j are not parallel, these two panels will be
perpendicular.

Without loss of generality, we assume that panel ¢ is in par-
allel with xz-plane and panel 7 is in parallel with yz-plane.
Then, it is easy to see, 7i; = (0,1,0) and 7#; = (1,0,0). Let
ugi, where k, 1 € {0, 1}, denote the four corners of panel i, with
(ik, yi, zi) being the Cartesian cooridinates of corner u;, and
the center of gravity is (z;, yi, z;). Let tx, k,l € {0,1}, de-
note the four corners of panel j, with (z;, y,x, ;) being the
Cartesian cooridinates of corner ¢, and the center of gravity is

(xjv Y5 Zj)'
After this, (57) can be further deduced to
9P,
aATL]’ATLi
— g 0[, Jo (dedz/|7?)
>
Si O0x;
gy =i Oeos, (Jog (d2/1r)de
S =
Si 8.1‘]
_Yi Y odz U dy
> = 5. / -3 / =3
* Zi0 |’I" | Zi0 | |
11
M (e
e AN “TJ 2+ (yi —9i)?)

1
58
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> X
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where
FZ\/(w—x1)2+(yi—yj)2+(2—21)2
7= @ + =)+ (2 = )
F*:\/(flfu—xj)2+(yi—yj)2+(2_zj)2
r :\/(xio_xj) + (i —y)* + (2 — 2)?
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