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Abstract—An efficient algorithm for extraction of three-dimen-
sional (3-D) capacitance on multilayered and lossy substrates is
presented. The new algorithm presents a major improvement over
the quasi-3-D approach used in a Green’s function-based solver
and takes into consideration the sidewalls of 3-D conductors. To im-
prove the efficiency of the computation and the transformation of
the Green’s function, a nonuniform grid is adopted. The most com-
putationally intensive part in the transformation of the Green’s
function is computed separately as technology-independent ma-
trices foremost. Once computed, can be stored and used
for any technology, thus the storage requirement and computa-
tional complexity are reduced from ( 2) and ( 2 log 2), re-
spectively, to just [(log max)

2]. Extensive tests have been per-
formed to verify the new algorithm, and its accuracy has been es-
tablished by comparing with other programs.

Index Terms—Capacitance extraction, Green’s function,
nonuniform grid, substrate coupling.

I. INTRODUCTION

I T BECOMES more critical that three-dimensional (3-D)
effects should be considered accurately in modeling ca-

pacitance on radio-frequency (RF) CMOS integrated circuits
(ICs) because of shrunken feature size and increased operation
frequency. The boundary element method (BEM) is an efficient
method for this problem, since only conductor surfaces and
interfaces between different material regions need to be dis-
cretized, and thus the computational expense is greatly reduced,
compared with finite-difference or finite-element schemes, e.g.,
Raphael [1] and HFSS [2].

Great efforts have been made in the BEM-based 3-D capaci-
tance extraction, such as the fast multi-pole method (FMM) [3],
the singular value decomposition (SVD) method [4], the hier-
archical method [5], and the quasi-multiple medium (QMM)
method [6]. Other methods, not confined to BEM, such as sparse
matrix canonical grid (SMCG) [7] and adaptive integral method
(AIM) [8] are also presented. All of these methods, however,
focus mainly on the fast solving of the resulted linear system,
i.e., the so-called problem.

In this paper, we study the efficient computation of potential
coefficient matrix for multilayered and lossy substrate based
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on Green’s function [9], [10]. In this method, the Green’s func-
tion is calculated and stored based on the process technology
only, thus the dielectric interfaces do not need to be discretized.
As a result, the size of the linear system is greatly reduced.
Furthermore, the algorithm in this paper can be combined with
some of the aforementioned numerical methods to improve the
efficiency.

In [9], the chip structure is assumed to be confined by rec-
tangle electric and magnetic walls. Considering the Neumann
boundary condition at the magnetic walls, the Green’s function
can be expanded in cosine series, and thus the fast Fourier trans-
form (FFT) can be applied to accelerate the summation of cosine
series. By introducing the concept of complex permittivity [11],
this method can handle lossy substrate with little extra effort.
The original algorithm was implemented in software ASITIC
[12].

However, in ASITIC, only analytical integration over hori-
zontal panels is conducted, such that the conductors are treated
as two-dimensional (2-D) sheets, preventing its use in 3-D
capacitance extraction. Mathematically, the Green’s function in
[10] can be integrated analytically in the -direction, thus the
sidewall capacitance can be computed. In practice, however,
there are some difficulties, because, to preserve the numerical
stability, the Green’s function in the -direction is obtained
through a complicated recursive procedure [10]. The resulted
expression is a continual multiplication, which cannot be inte-
grated analytically. Although measures have been taken in [13]
by considering both the bottom and the top plates of conductors,
the sidewall capacitance still cannot be handled accurately.
In [14], conductors are cut horizontally into slices in order to
include 3-D effects, but this amounts to volume discretization,
leading to an enormous increase in variable number.

Another major disadvantage arises from the FFT-accelerated
discrete cosine transform (DCT). Although it dramatically re-
duces the computational cost for the doubly infinite series, it
requires meshing of the whole chip uniformly, since the mesh
size is related to the ratio of the chip dimension to the minimum
panel size. With the feature size shrunk to the deep-submicrom-
eter regime while the chip size stays on the order of millime-
ters, this uniform meshing results in an unacceptable amount of
memory and time to perform the transformation and store the
transformed matrix.

In this paper, we derived a new formula for the recursive com-
putation of Green’s function, which can be integrated stably
over the sidewalls of the conductor to accomplish true 3-D ex-
traction. The efficiency for computing and storing the Green’s
function is also improved by using a nonuniform grid.

In Section II, the Green’s function approach for capacitance
extraction is reviewed, and the derivation of the recursive com-
putation of Green’s function is redone in a simpler and more
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Fig. 1. Geometry and boundary condition of the multilayer substrate.

stable form. In Section III, the Green’s function in the -direc-
tion is rederived, and the numerical stability is studied. In Sec-
tion IV, the surfaces of conductors are classified to four types,
and analytical integral of the coefficients of potential for each
type is derived. In Section V, an efficient method for computing
the Green’s function is presented. Experiment results are shown
in Section VI, and conclusions are given in Section VII.

II. BACKGROUND

The substrate is characterized in [9] as a multilayered struc-
ture, as shown in Fig. 1. Each layer has a thickness and a uniform
permittivity and conductivity. Conductors are embedded in the
layers. The objective of the parasitics extraction is to compute
the capacitance matrix for a multiconductor geometry.

To determine the th column of , we need only to solve for
the surface charges on each conductor produced by raising con-
ductor to unit potential while grounding the rest of the con-
ductors. Then, is numerically equal to the charge on con-
ductor . The charge is obtained by solving the linear system

(1)

where is the vector of panel charges, is the vector of panel
potentials which are supposedly known, and is the poten-
tial coefficient matrix. Each entry of , i.e., , is the average
potential over panel due to the unit charge uniformly dis-
tributed on panel . Using the Galerkin method and assuming a
piece-wise constant charge distribution, can be computed by
convolving the charge distribution with the Green’s function as

(2)

The Green’s function can be computed by solving the
Poisson’s equation

(3)

where

(4)

is the complex medium permittivity [11]. By the use of instead
of , both ohmic and displacement currents are accounted for,
and thus the frequency-dependent effects for conductive sub-
strate are included.

The use of the Green’s function greatly simplifies the
problem by implicitly taking into account the boundary con-
ditions, making it unnecessary to discretize the boundaries. In
this case, only the actual conductors require discretization. The
Green’s function has been previously computed in analytical
form and shown to be [9]

(5)

where and are the lateral dimen-
sions of the substrate in the - and -directions, respectively.

is obtained by solving the Poisson’s equation in the -di-
rection along with the boundary conditions in this dimension,
and it is shown in [9] that

(6)

where , and is the complex
permittivity of the source layer. The subscript “ ” is the index
for each layer. The superscripts “ ” and “ ” are for upper and
lower cases, respectively.

Direct computation of (6) is numerically instable. To over-
come this, [10] presents a numerical stable algorithm, and [15]
further improves the stability. In both methods, following [9],

is derived using hyperbolic functions as in (6). Accord-
ingly, to solve the numerical stability, the resulting formulas,
i.e., [10, eqs. (51a), (51b) ], behave as continuing multiplica-
tions, for which there exists no closed-form integration in the

-direction, and the capacitance regarding sidewalls can not be
computed. Such that (6) should be rederived, and the numerical
stability issue should be addressed.

III. ROBUST COMPUTATION OF GREEN’S FUNCTION

USING EXPONENTIAL FUNCTIONS

To rederive the formula for Green’s function in the -direc-
tion, we start from [10, eq. (14)], shown as

(7)
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where . should satisfy the fol-
lowing boundary conditions at the source point, the interfaces of
adjacent layers, and the top and bottom of the whole structure,
respectively:

(8)

(9)

(10)

(11)

(12)

(13)

The most general solution for (7), considering the boundary
conditions (8) and (9) at point , is

(14)

where the subscript denotes the source layer, and the subscript
denotes the field layer. The above formula and (6) are equal

mathematically, while they are different numerically from each
other, especially when the stability problem is involved.

The boundary conditions on the interface of each adjacent
layer, i.e., (10) and (11), lead to recursive relations that the co-
efficients must satisfy as follows:

(15)

(16)

respectively for the cases that the field point is above and below
the source point. In the above two equations, the matrices
and are defined as

(17)

(18)

where .
The boundary conditions (12) and (13) determine the initial

values of the recursive relations (15) and (16) as

(19)

(20)
Thus, with (15)–(20), all of the coefficients in (14) can be evalu-
ated. The remaining work is to preserve the stability of the eval-
uation.

As mentioned in [10], there exists a numerical instability
problem during the evaluation of (6) that arose from large

values of . When grows, and rapidly converge
to 1 and 1, respectively. In the meantime, has an
asymptote of 1, resulting in divided-by-zero, and
exceeds the maximum double precision very quickly.

In our evaluation of , the possible instability may lie in
two aspects. The first is the recursive procedure (15) and (16),
where the coefficients and are computed. When
increases, may exceed the maximum double precision.
We resolve this by defining a new data structure (actually, a C++
class) to handle super-large complex numbers, i.e., to express a
general complex number by

The evaluation of (14)–(16) contains only five fundamental op-
erations, i.e. “ ,” “ ,” “ ,” “/,” and (exponentiation). More-
over, the integration

(21)

also contains these operations only. Thus, if the five operations
are overloaded, the equations (14)–(16), as well as (21), can be
computed using . The overload is straightforward. As an
example, the multiplication operator “ ” is replaced by algo-
rithm 1, where and are computed individually, and, if
the norm of the resulting is larger than 10 or smaller than
10 , then it is absorbed by . With all five operators being
overloaded, the recursive evaluation of the coefficients in (14)
can be performed stably.

Algorithm 1 Calculate for ‘ ’

if or then

end if

Another potential instability may be caused by the denomi-
nator of (14). If and are both large and they are very
close to each other, the denominator may be-
come zero due to finite precision, resulting in a divided-by-zero.
Fortunately, this problem is nonexistent. To examine this, the de-
nominator can be written as , where
and . Supposing approaches , it can be
easily found from (15) and (16) that has an asymptote of a
constant , while approaches

, i.e., they will not be close to each other.
The stability of the proposed approach can be testified by

Fig. 2, where is plotted against for both lightly
and heavily doped substrates described in Section VI-B. It can
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Fig. 2. f as a function ofm(= n) in both low- and high-resistivity profiles.

be seen from the figure that, when , goes extremely large
(up to a million), converges stably to a constant.

IV. DERIVATION OF THE PANEL INTEGRATIONS

FOR 3-D EXTRACTION

Suppose the coordinates of two conductors are as shown in
Fig. 1. Each facet of the conductor is discretized to independent
panels. To find with assigned a unit value, (5) is
integrated over the area of panel and . If one substitutes (5)
into (2) and interchanges the order of the symbols, the integral
can be computed analytically, resulting in a 2-D infinite sum-
mation.

To compute 3-D capacitance, the panels of a cuboid con-
ductor can be grouped into three classes: horizontal (in the – )
plane, vertical I (in the – plane), and vertical II (in the –
plane). The positional combinations of each pair of panels can
be classified into four types, as shown in Fig. 3. In type A, two
panels are both bottom or top surfaces of the conductors. In type
B, one panel is horizontal, and the other is vertical. In types C
and D, both panels are vertical. They are parallel to each other
in type C and perpendicular to each other in type D. In the fol-
lowing subsections, each type of panel pairs is discussed in turn.

A. Horizontal–Horizontal (Type A)

To compute the coefficient of two panels in the – plane,
the Green’s function is integrated over the panels. Excluding
the cases of and , the integration can be written as

(22)

where is the upper bound of the truncated infinite series. The
integration in (22) can be evaluated analytically, resulting in sine
functions, and it can be cast into a sum of 64 terms in the form

(23)

Fig. 3. Positional relations of two panels.

Thus, for a specific technology, the matrix of DCT, i.e.,

(24)

can be computed beforehand and stored in a database. When the
layout information, i.e., the coordinates , and and
the areas and are given, the potential coefficients can be
obtained by simply addressing in matrix and summating the
64 terms.

B. Horizontal–Vertical (Type B)

For the case of type B, since a vertical panel is involved, the
computation of potential coefficients consists of three integra-
tions in the - and -directions and one integration in the -di-
rection. The integration of in the -direction is shown
as

(25)

The closed-form solution of the above definite integration can
be derived from (21).

The remaining three integrations in the – plane are the
same as in type A. Supposing that the vertical panel is a field
panel and it is in the – plane with the -coordinate being ,
the integration of potential coefficient can be written as

(26)
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It can be cast into a sum of 32 terms similar to type A and turned
into the form of a discrete cosine-sine transform

(27)

which is very similar to (24).

C. Vertical–Vertical (Types C and D)

For types C and D, the two panels are both vertical. The com-
putation of consists of two integrations in the – plane and
two integrations in the -direction. Since the coefficients are dis-
continuous at the source point, depending on whether the two
panels are in the same layer or not, the closed-form integration
in the -direction

(28)

should be derived individually. For both cases, the resulting ex-
pressions still consist of “ ,” “ ,” “ ,"‘/,” and operations,
such that the data structure can also be used to preserve
the computational stability.

The left derivation of includes two integrations in the –
plane, and the resulting matrix are DCT (for type C) and
discrete sine transform (DST) (for type D), respectively. Due
to space limitations, the details will not be presented here.

V. EFFICIENT GREEN’S FUNCTION COMPUTATION ON

NONUNIFORM GRID

In order to use FFT to compute (24), the chip should be
discretized uniformly to nodes, where depends on

and the minimum panel size . Practically, to limit
the discretization error, should satisfy [15]

(29)

With the shrinking metal width and larger chip size, becomes
larger and larger. In a typical circuit, m and

m, will be at least 4096. If the technology has
six metal layers and the sidewall capacitance is to be taken
into account, about 150 Green’s functions in total should be
computed and saved. Even if FFT is used, the computational
amount is still prohibitive. Moreover, to perform
the FFT and store the results, the required memory size
is unacceptable for most of today’s PCs. In this section, a new
technique is presented to reduce the computational time and
memory. The following algorithm is presented for the case of
type A defined in the previous section. The algorithm for other
types can be derived similarly.

Let and be the normalized coordinates,
thus , , and in (24) is a smooth function of
and . can be computed on some key nodes ,

, and , where is the amount of grid points

Fig. 4. G (x) and @ G =@x , where @ G =@x converges to a constant
rapidly when x increases. x is normalized by x = x=a.

Fig. 5. Normalized nonuniform mesh grid for computing Green’s function.

on both dimensions. The computed is stored in the
Green’s function database, and interpolation can be involved
when computing for arbitrary .

It is easy to find that the potential coefficient is rele-
vant to the second derivative of the transformed Green’s func-
tion . approaches when ap-
proaches (0,0) and attenuates when or increases, as shown
in Fig. 4. Thus, it is efficient to discretize the – plane with
fine mesh when and are small, and with coarse mesh when
they become large, i.e., to adopt nonuniform mesh grid. This is
quite reasonable, since small and are related to near-field
interaction and large and are related to far-field interaction,
and the latter is obviously smoother and less important than the
former.

An available meshing scheme is shown in Fig. 5, where
and can be defined as

(30)

where is a pregiven number. Thus, the minimum nor-
malized mesh size (at ) is . For example,
when , , the minimum mesh size is
of the chip size, which is sufficient for most cases. In case
the minimum metal width decreases or the maximum
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lateral size increases, can be set larger, pro-
portioned to the logarithm of . As (29) holds,
the storage requirement is therefor reduced from to

, where is the potentially
maximum value of .

As a result of the nonuniform meshing, FFT is unavailable
for acceleration. This may lead to complexity if

is computed directly, which is slightly larger than
that using DCT, which is . However, by ex-
ploiting the property of in (14), the computation can be
greatly accelerated. Let

(31)

where is the aspect ratio of the chip. Substituting for
(14), can be written as a function of as

(32)
Note that , , , and are all functions of , thus
is a smooth function. Furthermore, has an asymptote of a
constant when approaches infinity. Hence, can be fitted
by a certain function. In this paper, the following multipole-like
expansion is used:

(33)

where is a pregiven number (such as 64) to avoid the
computation of infinite and preserve the precision of the
approximation. is the expansion order, for example ,
used to control the tradeoff between precision and computa-
tional complexity. When , , the sum of (35) is com-
puted directly. When or , the sum is computed
by approximated .

Define matrix with entries

(34)

Thus, each entry in matrix in (24) can be partitioned into two
parts as

(35)

where the first portion consists of terms with indices and
and is computed directly, while the second portion

Fig. 6. 2 � 2 crossover in dielectrics.

includes the remaining and is computed approximately by (33)
and (34).

The above procedure is summarized as follows.
1) Compute using (34) for a series and . This is a

purely maathematical problem and is independent of the
technology and the layout.

2) Given a technology, compute by (14) for a series of .
3) Fit to obtain coefficients by (33).
4) Compute matrix by (35) and save it to the database.
As long as (34) has been computed, the fitting of and

the computation of (35) are fast and memory-efficient. For
nodes, the computational time is approximately ,
dominated by the first part in (35), and the memory for storing
the matrix is .

Since FFT cannot be used for acceleration, the computation of
(34) is very time consuming, and it may take several hours. For-
tunately, (34) is layout- and technology-independent. Thus, it
can be computed beforehand. Once computed, can be stored
and used for any technology and layout.

Once , , , is computed, for arbitrary coor-
dinate pair , can be computed by means of 2-D
interpolation, such as spline interpolation [16].

VI. NUMERICAL RESULTS

The algorithm described above is implemented in the solver
Substrate Coupling Analyzer for Passive Elements (SCAPE).
Here, several examples will be shown to verify SCAPE and to
compare the accuracy and efficiency with other methods. All
simulations are done on a Sun Blade 2000 with Ultra SPARC III
Cu processors at 900 MHz and 2-GB memory. Before the simu-
lation of all of the following examples, the matrices are com-
puted for and , using about 1 h. Since is
technology-independent, it needs to be computed only once.

A. Test Cases for 3-D Extraction

The test cases are crossing conductors
in five dielectric layers, as shown in Fig. 6. Each conductor in
the example is length cross section (units in
micrometers). The spacing between neighboring conductors in
the same layer is 1 m. The relative permittivity of every layer
is 3.9. The thickness of the bottom four layers is 1 m, and the
thickness of the top layer is 28 m. Each of the structures are
surrounded by a 32 32 32 box. The bottom of the box is a
perfect ground plane, and the other five surfaces of the box are
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TABLE I
COMPARISON FOR k � k BUS PROBLEMS

in Neumann boundary condition, i.e., the normal derivative of
the potential is zero.

The above crossover problems are computed by FastCap with
very fine meshing (which is denoted by FastCap I), FastCap
with relative coarse meshing (which is denoted by FastCap II),
ASITIC, and SCAPE. The expansion order in both FastCap I
and FastCap II is 2, which is the most accurate mode in run-
ning FastCap with a reasonable amount of time. In the input
of FastCap, 0 is assigned to the permittivity of outer space to
handle the boundary condition, and each interface between the
dielectric layers is specified to make the comparison fair.

In ASITIC, since it cannot handle conductors with finite
thickness, to model the thickness effect to the best of its
abilities, the upper and lower surfaces of the conductors are
treated independently as conductors of zero thickness and
are extracted as such. After extraction, the resulting matrix is
reduced by combining together the top and the bottom plates
of the conductors. This is electrically equivalent to shorting the
top and the bottom plates together [13].

Using the capacitance matrix of FastCap I, i.e., FastCap
with very fine meshing, as the standard, the error of capacitance
matrix computed by another program is estimated in a two-
norm manner: . The error of FastCap II is around
3%, which is controlled by adjusting the mesh size.

Table I compares SCAPE with ASITIC and FastCap. It is
shown that, using FastCap I’s result as the criterion, SCAPE is
more accurate than FastCap II, which is within 2.5% and around
3%, respectively. ASITIC does not account for the sidewall ef-
fect, and thus it results in large error ( 20%).

B. Test Cases for Nonuniform Grid Method

This example shows the advantage of using the efficient com-
putation of Green’s function as presented in Section V. Two
experiments using different substrate profiles are conducted to
test the accuracy and efficiency of the extraction algorithm. The
profiles used are taken from [17] and described in Fig. 7. The
high-resistivity substrate is used in various BiCMOS processes,
while the low-resistivity substrate is used in CMOS due to the

Fig. 7. Substrate profiles used in example problem.

Fig. 8. Two contacts over the top of the substrate. This case is used to verify
the nonuniform grid method and compare the accuracy and efficiency with the
DCT method.

TABLE II
SUMMARY OF COMPARISON. ERROR IS WITH RESPECT TO DCT-1024

latch-up suppressing properties. The test example is shown in
Fig. 8, where two conductors lie over a substrate with an oxide
layer. To simplify the comparison, the thickness of the conduc-
tors is set to zero, and thus the sidewall effect is ignored. The
distance between the centers of two conductors is m. The
substrate laterals for both profiles are m.

The Green’s functions for both profiles were computed and
compared in Table II, from which it is seen that: 1) SCAPE
is much more accurate than DCT-512 (i.e., the DCT method
with the FFT size of 512); 2) in the stage for computing the
Green’s function, SCAPE is about 16 faster than DCT-512
and uses 1/24 of the memory used by DCT-512. Compared with
DCT-1024, SCAPE is about 64 faster and uses only 1/95 of
the memory. If the contact size decreases, the required FFT size
and the time and memory usage for the DCT method will be
increase quadratically, while, for the nonuniform grid method,
the required time and memory usage stay constant for a wide
range of contact sizes. Figs. 9 and 10 show the extrapolated
time and memory used for the DCT method and nonuniform
grid method. In the DCT method, the required memory and time
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Fig. 9. Computational cost of Green’s function as a function of the required
FFT size. The circle symbol line shows the variation of the DCT based method,
while the square symbol line shows the nonuniform grid method.

Fig. 10. Memory required for storing the Green’s function as a function of the
required FFT size. The circle symbol line shows the variation of the DCT-based
method, while the square symbol line shows the nonuniform grid method.

usage for DCT-4096 are 269 MB and 198 s, respectively. It
is noticeable that, for a six-layer technology, considering the
sidewall effect and ten frequency points, a factor of 1500 would
be multiplied on them, and the cost is unacceptable.

Three classes of test were done to verify the accuracy of the
nonuniform grid method. In the first test, the two contacts are
both of size 2 m, and the distance between them is 100 m, the
frequency varies from 1 to 20 GHz. In the second test, the size
and the frequency are fixed at 2 m and 1 GHz, and the distance
varies from 2 to 100 m. In the third test, the distance and the
frequency are fixed at 100 m and 1 GHz, and the size of both
contacts varies from 8 to 0.25 m. The results are compared in
Table III, where the impedance obtained by the nonuniform grid
method and DCT method is comparable.

We applied the proposed method to a relatively large-scale
circuit with the layout from a simple mixed-signal circuit.
Fig. 11 shows the layout for an example problem with 67
contacts on a 512 m 512 m substrate. For each of the sub-
strate profiles shown in Fig. 7, extraction was performed, and
the resulted capacitance matrix is converted into an impedance
matrix. The comparison of impedance computed by the DCT
method and the nonuniform grid method is shown in Table IV.
It is seen from the table that the results from both of the methods
are comparable.

TABLE III
COMPARISON OF EXTRACTED IMPEDANCE AS A FUNCTION OF FREQUENCY

USING HIGH-RESISTIVITY PROFILE

Fig. 11. Example layout from a mixed-signal design.

TABLE IV
SELECTED SET OF EXTRACTED IMPEDANCE FOR THE EXAMPLE LAYOUT

C. Interdigital Capacitor (IDC) Over Lossy Substrate

The major advantage of SCAPE over capacitance extrac-
tion programs based on free-space Green’s function, such as
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Fig. 12. Substrate structure for the IDC.

Fig. 13. Structure of the IDC.

Fig. 14. Y of the IDC.

FastCap, is its capability of dealing with multilayered dielectric
and conductive substrate. This capability provides complex
capacitance and its frequency dependency. The example is the
simulation of an IDC (or fractal capacitor), and it demonstrates
the frequency-dependent capacitance extraction.

The hypothetical process used in this example is shown in
Fig. 12. We choose HFSS [2] for comparison. HFSS is a widely
used commercial software based on the finite-element method
(FEM), and it supports full-wave simulation. In order to obtain
a reasonable accuracy in HFSS within acceptable memory and
time, the thickness of the substrate is set to be 32 m.

As shown in Fig. 13, the structure of the IDC is defined by
the finger length , finger width , spacing , and the number
of fingers . The parameters of the simulated IDC are

m, m, m, and .
Figs. 14 and 15 show the - and -parameters, respec-

tively, computed by HFSS, ASITIC, and SCAPE. The results
from HFSS are taken as the reference, where the magnitude and

Fig. 15. Y of the IDC.

phase of -parameters are sensitive to frequency due to the sub-
strate loss. Both the ASITIC and SCAPE curves show the right
trend when the frequency increases. However, since ASITIC
does not compute the sidewall capacitance, the discrepancy be-
tween ASITIC and HFSS is unacceptably large, while the av-
erage error between SCAPE and HFSS is less than 3%. Since
HFSS supports full-wave simulation while SCAPE is a quasi-
static method, this example also indicates that the quasi-static
assumption is still applicable up to 20 GHz without noticeable
error.

VII. CONCLUSION

An improved Green’s function-based algorithm is proposed
for the extraction of 3-D capacitance on the lossy substrate at
RF frequency. A new formula is adopted, and the Green’s func-
tion can be integrated analytically and stably in the -direction,
thus the capacitance of the sidewall surfaces can be evaluated.
In addition, to reduce the computational time and memory re-
quirement in computing, transforming, and storing the Green’s
function, a novel nonuniform grid method is developed and pro-
posed. The memory requirement and the computational com-
plexity reduce from and , respectively, to

for both.
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