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Abstract—The computational time and memory of three-dimen-
sional capacitance extraction have been greatly reduced by using
a quasi-multiple medium (QMM) technology, because it enlarges
the matrix sparsity produced by the direct boundary element
method. In this paper, an approach to automatically determining
the QMM cutting pair number and a preconditioning technique
are proposed to enhance the QMM-based capacitance extraction.
With these two enhancements, the capacitance extraction can
achieve much higher speed and adaptability. Experimental results
examine the efficiency of two enhancements and show over 10 x
speed-up and memory saving over the multipole approach with
comparable accuracy.

Index Terms—Capacitance extraction, direct boundary element
method (BEM), finite domain, multiple dielectrics,
preconditioning, quasi-multiple medium (QMM) method.

1. INTRODUCTION

ITH THE feature size scaled down and work frequency
Wincreased, the parasitic parameters of the interconnects
have become more and more important for the design of
high-performance very large scale integration (VLSI) circuits.
Therefore, efficient computation of three-dimensional (3-D)
capacitance with multilayered dielectrics has become a focus
of current research works.

Many fast capacitance extraction algorithms have been pro-
posed in the literature, such as [1], [2], and [15]. They are based
on the boundary element method (BEM) using a so-called total-
charge Green’s function approach [3], and the matrix solving
time is significantly reduced by using the fast multipole ap-
proach [1], hierarchical approach [2], or the precorrected fast
Fourier transform (FFT) algorithm [15]. Unlike the above BEM,
another kind of BEM, the direct BEM [4], is not well known.
The direct BEM obtains the direct boundary integral equation
(BIE) by adopting Green’s identity and using the free-space
Green’s function as a weighting function [4]. Also, the direct
BEM produces a sparse matrix for a multiregion problem, while
not a dense matrix. In [5], Fukuda et al. apply the direct BEM to
the two-dimensional (2-D) capacitance extraction. In [6], Yuan
and Banerjee present the parallel formulations for the fast mul-
tipole approach and the direct BEM for 3-D capacitance extrac-

Manuscript received April 30, 2003; revised July 15, 2003. This work was
supported in part by the China National Foundation for Key Basic Research
under Grant G1998030404 and by the National 863 Program for Development
of High Technology under Grant 2002AA1Z1460-1.

The authors are with the Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China (e-mail: ywj77 @computer.org).

Digital Object Identifier 10.1109/TMTT.2003.821930

tion. In [14], Bachtold et al. extend the multipole method to
handle the “potential boundary integral” (whose kernel is 1/72)
in the direct BEM.

In [7], a quasi-multiple medium (QMM) method was
proposed to enlarge the matrix sparsity of the direct BEM
by making 3-D domain decomposition. With the technology
of storing sparse blocked matrix and the efficient iterative
equation solver, such as GMRES [11], the QMM-accelerated
direct BEM greatly reduced the CPU time and memory usage.
Furthermore, a semi-analytical method to handle the nearly
singular boundary integrals was proposed to achieve high speed
and accuracy [7].

In the existing QMM method, each dielectric layer is cut into
m X n fictitious medium blocks uniformly. The QMM cutting
pair (m, n) was manually specified or obtained by an empirical
formula [7]. In this paper, two improvements based on [7] are
proposed. The first one is an approach to automatically generate
an optimal cutting pair so as to resolve the remaining problem
in [7]. The number of nonzero matrix entries are calculated for
candidates of (m,n), since it is a good indicator of the overall
computational time. Finally, the selected cutting pair gives al-
most the fastest computational speed. The second improvement
is that two efficient preconditioners for the GMRES solution
are proposed. With the above two modifications, the enhanced
QMM-BEM solver can compute the interconnect capacitance
with multilayered dielectrics more effectively.

It should be pointed out that the QMM technology is mainly
used in a capacitance model of finite domain while not the open-
space model widely analyzed by conventional BEMs [1]-[3].
The open-space model, where the electric field is extended to
infinity, is ideal for simulating isolated structures. However, for
the on-chip application, this condition can hardly be guaran-
teed because of the influence of neighboring conductors. The
finite-domain model has the Neumann boundary surrounding
the simulated structures. This boundary condition is also called
reflective boundary condition and is introduced as the “magnetic
wall” in the dimensional reduction technology [8]. Many pub-
lished methods have utilized this capacitance model to deal with
actual interconnect structures [5], [7]-[10], and the commercial
softwares Raphael and SpiceLink consider it as default setting.

The k x k crossovers embedded in multilayered dielectrics
within the finite domain are calculated in the numerical experi-
ments. The results show over a runtime improvement of over ten
times and memory saving over the multipole approach (FastCap
2.0) with equal accuracy. The result of Raphael with adequate
mesh is considered as a criterion.
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Fig. 1. Typical 3-D interconnect capacitor with five dielectric layers is cut into
a 3 X 2 structure.

The remainder of this paper is organized as follows. In
Section II, the QMM-based capacitance extraction is briefly
reviewed. Sections III and IV present the approach to determine
the cutting pair and the preconditioning technique, respectively.
Experimental results are reported in Section V, and conclusions
are drawn in Section VI.

II. QMM-BASED CAPACITANCE EXTRACTION [7]

In direct BEM, the Laplace’s equation fulfilled by the electric
potential » in each homogenous dielectric region can be trans-
formed into the following direct BIEs [4]-[7]:

cu—l—/ q*udF:/ w*qdll,

i 7

1=1,....M (1)
where c is a constant depending on the boundary geometry, I';
is the boundary of dielectric region ¢, ¢ is the normal electrical
field intensity, and ¢ = 9u/dn. For 3-D space, the fundamental
solution u* is 1/4mr. Employing the collocation scheme and
constant quadrilateral elements, a group of discretized BIEs are
obtained from (1) for each dielectric region. Evaluating two
types of boundary integral, we obtain linear equations [7].

Besides, the u and ¢ fulfill the compatibility equations along
the interface of two adjacent dielectrics a and b as follows:

. Oug . ouy
* on, b ony, (2)
Uqg = Up

where €, and ¢, stand for the permittivities of dielectrics a and
b, respectively. The discretized BIEs (linear equations) for each
dielectric can be coupled utilizing the compatibility equation
(2). Then, substituting the boundary conditions (u is known on
conductor surfaces as the bias voltage, and q is supposed to be
zero on the Neumann boundary as shown in Fig. 1), we get an
overall linear system

Az = f 3)

where x is a vector comprising all discretized unknowns of «
or q. Theoretically, any arrangement of the discretized BIEs in
(3) is correct. But, without careful consideration, the popula-
tion of the coefficient matrix A would be too chaotic to make
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Fig.2. (a)Problem with three dielectrics. (b) Corresponding coefficient matrix
A, where the gray blocks stand for nonzero entries and the type of discretized
variables are signed beside the corresponding matrix columns.

the equation solution efficient. In [7], Yu et al. present an ef-
fective arrangement of the unknowns and collocation points, as
well as the storage scheme for the resulting sparse matrix A. Be-
cause the nonzero matrix blocks are distributed very regularly,
the additional CPU time for the equation solution is saved re-
markably, especially for a problem involving a large number of
subregions [7].

The above process belongs to the conventional direct BEM
for multiregion problem. A localization character is revealed by
(1), where the variables in each BIE are within the same dielec-
tric region. This character of direct BEM results in a blocked
sparse coefficient matrix A for a multidielectric problem. For
example, a typical capacitor with three dielectrics and the corre-
sponding sparse matrix A are shown in Fig. 2 (the efficient equa-
tion arrangement is used; for a more detailed illustration of the
notations, please refer to [7]). In the QMM method, every actual
dielectric is decomposed into some fictitious medium blocks,
whose permittivities are all the same as the original dielectric,
to increase the sparsity of matrix A. With the storage technique
of the sparse blocked matrix and iterative equation solvers such
as the GMRES algorithm [11], the computing time and memory
usage for the original problem will be greatly reduced. In prac-
tice, each layer of an actual multilayered interconnect structure
is decomposed into an m X n fictitious medium blocks, perpen-
dicular to the bottom substrate plane (see Fig. 1). In order to
decrease the additional efforts brought by the QMM decompo-
sition, the cutting planes are also dispersed along the X or Y
axis uniformly. Thus, the QMM cutting pair (/m, n) completely
controls the geometry structure of the multiregion problem fi-
nally handled. Also, it greatly influences the total computing
efficiency of the QMM-based capacitance extraction. Besides,
a strategy of nonuniform density partition is adopted to generate
fewer boundary elements without loss of accuracy [7].

The existing theoretical analysis has indicated that the
number of nonzero entries in matrix A (denoted by %) is very
important to the whole computational efficiency. Generally,
fewer nonzero matrix entries mean less memory usage and
computing time. Although some additional unknowns are
introduced on the additional interfaces between the fictitious
mediums when using the QMM technique, the memory usage
and CPU time for the overall computation are greatly reduced,
since the reduction of Z can overwhelm the disadvantage of
adding few unknowns into the majority of unknowns on the
conductors’ surfaces [7].
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Fig. 3. Flowchart of the SMZ approach to selecting the QMM cutting pair.

III. DETERMINING THE QMM CUTTING PAIR

Based on the importance of Z for the total computational
efficiency, an approach called selection with minimal Z value
(SMZ) is proposed to select the QMM cutting pair. In the SMZ
approach, parameter Z is calculated in advance for a number
of candidates of (m, n), and then an optimal cutting pair is se-
lected. Usually, the minimal Z value means the fastest compu-
tational speed. Calculating the Z values for different QMM cut-
ting pairs prior to implementing the QMM decomposition and
following computations is the basic idea of the SMZ approach.
Fig. 3 shows the flowchart of the SMZ approach.

In the first step of the SMZ approach, a set S containing the
candidates of QMM cutting pair is determined. Some principles
are considered to reduce the candidates of (m,n) in the set S
for the sake of saving time. Without loss of generality, the value
range of m (which stands for the number of fictitious medium
blocks along the X axis) is discussed. First, m should not be
too small; otherwise QMM could not result in great accelera-
tion. Second, too large a value of m is also not advisable be-
cause the great deal of additional elements on fictitious inter-
faces would affect the advantage of QMM cutting and lower the
computational efficiency, both in CPU time and memory usage.
So, a moderate value range should be taken for m, according
to the domain geometry. Besides, further limitation for (m,n)
could work for the simulated domain with large aspect ratio.
With the above considerations, the number of elements in S be-
comes relatively small. This way, the additional CPU time for
the SMZ algorithm does not greatly influence the whole com-
putational efficiency. At the same time, the S is also sufficiently
large enough to find an optimal cutting pair.

Next, we analyze how to calculate the Z-value for a giving
cutting pair. If the region ¢ involves V; discretized boundary
unknowns (u or q), there are Z; = N; - V; nonzero coefficients
in the V; discretized BIEs, which becomes the nonzero entries
of matrix A finally. IV; is the number of the source points in
region ¢ whose quantity equals the number of boundary ele-
ments in region . The boundary elements are classified into
two kinds: the first kind includes those on the Dirichlet or
Neumann boundary, where only one unknown of u or g exists
on each element; the second kind includes those on the region
interface, where two unknowns of « and ¢ exist on each ele-
ment. Thus, we have

N; = (a; + b;) and V; = (a; + 2b;) “)

where a; stands for the number of first kind of boundary el-
ements, b; stands for the number of second kind of boundary
elements, both in dielectric region 7. We then have

Z; = N;-V; = (a; + b;)(a; + 2b;). ©)

Summing up Z; for all dielectric regions, we obtain

Q Q

Z=Y"Zi=Y(a;+b;)(a; + 2b;) (6)

i=1 i=1

where () is the total number of dielectric regions. Without QMM
cutting, @) equals the dielectric number M for the computa-
tion with the QMM cutting pair (m, n), @ equals M X m X n.
Therefore, the numbers of two kinds of boundary elements in
each region are first calculated, and then the Z value is obtained
with (6). The calculation of a; and b; is related to the element
partition method. For a certain partition method, the number of
elements on each boundary surface can be calculated with the
surface geometry dimension and then be counted in a; or b;;
therefore, the m x n structures need not be actually generated.
The algorithm description of the second step in Fig. 3 is shown
as follows:

For (all (m,n) in the set §)

Clear the arrays a[ ] and b[ ], which
record the number of first and second kind
of elements, respectively;

Use arrays CutTrackX| | and CutTrackY| ] to
record the positions of cutting planes;
Process each dielectric layer to compute
the element numbers of each boundary sur-
face and to modify a[ | and b[ |;

Calculate Z[m,n] with (6);

EndFor

After getting the Z values for all cutting pairs in S, some
cutting pairs with nearly minimal Z value are selected. Among
them, the one with the least product of m X n becomes the op-
timal cutting pair, in order to balance the memory usage and
the expected computational speed. Using this optimal QMM
cutting pair, computational accuracy and memory usage of the
QMM method are both preserved while achieving higher com-
putational speed.

IV. EFFICIENT GMRES PRECONDITIONERS

In the organization of matrix A, the order of the source points
is consistent with that of the unknowns, so that the diagonal en-
tries of the matrix are obtained by the singular integral, which
results in a nonzero entry with large absolute value. For this
reason, the Jacobi (or named diagonal) preconditioner can bring
quick convergence to the GMRES iterative solution [7]. In this
section, we will discuss two easily computed preconditioners
which bring a faster convergence rate than the Jacobi precondi-
tioner for the actual 3-D capacitance extraction.
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A. Basic Idea

For (3), a preconditioned solution is equivalent to using
GMRES to solve APy = f for the unknown vector y, from
which the original unknown vector z is computed by z = Py.
This is called the right preconditioning. An ideal preconditioner
should first well approximate to A~! so that it can improve
the condition of the linear system, and it should also be easily
computed and with great sparsity in order not to increase the
computation for constructing and using it in the iterations. To
certain extent, Vavasis proposed a good idea in [12] to construct
preconditioner, which is briefly introduced below.

Each row of the preconditioner P is generated sepa-
rately. Let the ith column of PT be denoted by p;, i.e.,
Pt = (p1, D2, - - -, Py )- Ideally, we would like to have

PA=Ts A"p, =¢; (7

where e; is the sth column of the identity matrix. Note that each
column (or row) of matrix A corresponds to a discretized un-
known (or source point), and further to a boundary element.
Therefore, we use the number of row or column as the index of
its corresponding source point, unknown, and element. By some
strategy we may determine a small list L of indices drawn from
{1,2,..., N}, which denotes the unknowns having the most im-

pact on the current unknown ¢. Then, (7) can be reduced to
A'p =e ®)

where the bars over the variables indicate that all of the rows
and columns except for those in L are deleted. After solving
(8), we expand p; back to the corresponding entries in row % of
P . Repeating the above procedure for all rows, we get the whole
sparse matrix P.

For example, if the L has three indices, and the first one is the
current row 7, then (8) will be

a1, Gy, Ayl D1, 1
a1, AL, Gyl P, | =10 9
Alyly  Alyly  Qlglg Db, 0

where a;; means the entry of A on the ith row and jth column,
and [, = 1.

B. Extended Jacobi (EJ) and MN(n) Preconditioner

Two strategies for selecting the set L are proposed to con-
struct our preconditioners. The first one is called EJ precondi-
tioner. Actually, the Jacobi preconditioner uses the L = {i} for
each row. However it does not consider all effects of the singular
integrals for a multiregion BEM analysis. For the boundary el-
ement I'; on the interface of medium region i and j, the two un-
knowns on it are denoted by u;;(I'1) and ¢;;(T'1). Note that the
source point on element I'; presents twice in the matrix A, for
the discrete BIE of region i and region j, respectively. There-
fore, the singular integral on element I'1 has four positions in
matrix A [shown as the small circles in Fig. 2(b)]. Two of them
are not on the main diagonal. The EJ preconditioner is based on
the above observation and let L contain two indices of the row
itself and the other occurrence of the source point on the same
element, for the row corresponding to an interface element. Oth-
erwise, L only contains the index of the current row. The EJ pre-
conditioner is a little more complex than the Jacobi (for some

rows, a 2 X 2 equation is solved), but it accelerates the conver-
gence remarkably.

In the EJ preconditioner, no “neighbor” boundary element is
considered. To bring faster convergence to the GMRES itera-
tion, a mesh neighbor, i.e., MN(n), preconditioner is proposed,
where n stands for the number of neighbor elements. The ge-
ometry distance of two elements does not need to be calculated,
since the matrix A is stored explicitly and its entry value can
be used to judge the neighborhood. For each pair of elements,
the maximum absolute value of matrix entries (more than one,
if the interface element is involved) representing the interac-
tions between them is called “gravitation” here. Comparing each
nonzero entries on row %, the n elements that have the maximun
“gravitations” to the current element can be selected. These n
elements are then considered as the most neighboring to row 7’s
source element, and the indices of their variables are added to L.
Because the index for the current element must be selected and
one element may contain two variables, the L has the maximum
degree of 2(n + 1) in the MN(n) preconditioner.

The difference between our MN(n) preconditioner and other
MN-like preconditioners (such as that in [1]) is that we use the
explicitly stored matrix entry to judge the neighborhood to avoid
the relative complex calculation of the 3-D distance between
elements. So, our method has less computational consumption
for a little n and is adapted to the 3-D finite-domain capacitance
extraction with multiple dielectrics very well.

Since the GRMES iterations are fewer in 3-D capacitance ex-
traction (the relative error norm of 1072 or 10~ is usually used)
and the coefficient matrix involved is much sparser because of
using the QMM technology, the simplicity of preconditioning
is very important. Therefore, some traditional preconditioners
such as that using the incomplete LU decomposition (ILUD) and
blocked diagonal preconditioner are forbidden in our considera-
tion. This demonstrates the significance of easily computed pre-
conditioners, such as those proposed above.

More than 100 structures of VLSI interconnects are com-
puted, and we find that the EJ and MN(1) both have high ef-
ficiency. To compare with the GMRES solver using the Jacobi
preconditioner, the new solvers using these two preconditioners
both can reduce the computational time by about 30% or more
on an average. For the problem with larger order (10* or more),
the MN(1) preconditioner seems to yield a better performance.

V. NUMERICAL RESULTS AND DISCUSSION

The enhanced QMM-BEM solver (QBEM) is compared with
FastCap 2.0 and Raphael (version 2000.2). All computations are
done on a SUN Ultra Enterprise 450 with UltraSparc II pro-
cessors at 248 MHz. FastCap with default expansion order 2
is denoted by FastCap(2), and a faster program FastCap(1) has
the expansion order 1. Raphael is a widely used commercial
software, with a finite difference solver (RC3) with advanced
nonuniform meshing scheme. The result of Raphael under very
dense mesh is often used as a criterion by the industry.

The test examples are & X k bus crossing conductors em-
bedded in five layered dielectrics (k = 2-5). The 2 x 2 bus
example is shown in Fig. 4. Each bus in the & X k example is
scaled to 1 x 1 x(2k + 5) (unit in micrometers). The distance
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Fig. 4. 2 x 2 crossover embedded in five dielectric layers.

between the conductors in the same layer is 1, and the distance
between the Neumann boundary and its neighboring conductor
is 3. The thickness and relative permittivity of every layer is 1
and 3.9, respectively. All crossovers have a ground plane at the
very bottom. The conductors are numbered from one side to the
otherside 1,2, ...,k (bottom layer) and then £+ 1, . .., 2k (top
layer). The total capacitance of conductor 1 and its couplings
with the other conductors are computed; they form a column of
the whole capacitance matrix, which is denoted by vector C
here. These finite-domain and multidielectric problems can be
easily handled by Raphael and QBEM. In the input of FastCap,
0 is assigned to the permittivity of outer space to handle the fi-
nite-domain model, and each interface between the dielectric
layers is specified to make the comparisons equitable. Also, to
make FastCap only compute the capacitances related with con-
ductor 1, the “-rs” option is used to remove other conductors
from solving [13].

The above crossover problems are computed by Raphael
with 0.25 x10° grid points and 10° grid points, FastCap(1),
FastCap(2), and QBEM. Our GMRES solver reduces the
two-norm of the residual to 1% of the initial residual, which
is the same condition used in FastCap. The number of panels
per edge for each conductor is specified individually, so as
to make FastCap compute a similar system of nonuniform
panels like that in QBEM. Using the result C'; of Raphael with
IM grids as the standard, the error of capacitance vector C
computed by another program is estimated in the two-norm:
€1 = Ci|/I1C]l.

Table I compares the QMM-BEM solver, FastCap, and
Raphael. The following is a summary of the comparison.

1) Using the Raphael’s result under 1M grids as criterion,
the errors of FastCap(1), FastCap(2), and QBEM are all
within 3%. The error of FastCap(1) seems larger, while
our method has less error.

2) FastCap uses almost the same (even fewer) number of
panels as our QBEM and uses the nonuniform partition
(dense near the master). So, under the same-scale dis-
cretization, the speed-up of QBEM to FastCap(2) is from
12 to 16 and 6 to 9 to FastCap(1).

3) The QBEM uses 1/18 to 1/11 of the memory used by
FastCap(2). Compared with FastCap(1l), the QBEM’s
memory usage is 1/11 to 1/7 that of FastCap (1).

4) Compared with Raphael of 0.25M grids, QBEM has over
a runtime improvement of over 55 X and 17 X memory
saving.

In the above computations with the enhanced QMM-BEM
solver, the EJ preconditioner is used, and the optimal QMM
cutting pairs generated by the SMZ approach are (4, 4), (5, 5),
(3, 3), and (3, 3), respectively, for the four crossover problems.
The detailed results for the 4 x 4 crossover are shown in

TABLE 1
COMPARISONS OF FASTCAP, RAPHAEL, AND QBEM
FOR THE CROSSOVER PROBLEM

Test problems
2x2 3x3 4x4 5x5
FastCap(1)
Time(s) 7.9 9.2 10.0 12.5
Memory(MB) 17.9 17.9 19.1 23.7
Panel 1080 1284 1487 1804
Error 1.6% 2.1% 3.4% 2.9%
FastCap(2)

Time(s) 11.5 15.1 17.5 24.3
Memory(MB) 26.4 28.4 30.7 38.5
Panel 1080 1284 1487 1804
Error 2.1% 2.3% 2.6% 3.0%

Raphael (0.25M grids)

Time(s) 78.8 67.1 88.9 81.9

Memory(MB) 47 45 48 48
Error 0.3% 0.4% 0.5% 0.8%

QBEM

Time(s) 1.0 1.3 1.6 1.5

Memory(MB) 1.7 2.7 2.1 2.1
Panel 1184 1431 1502 1558
Error 2.7% 2.5% 1.0% 1.2%

Sp. to FC1° 8 9 6 8

Mem_R to FC1° 11 7 9 11

Sp. to FC2° 12 12 11 16

Mem R to FC2° 16 11 15 18

? The panels on the interface between the fictitious medium
blocks are not counted.

®Sp. to FC1/2 means the speed-up ratio to FastCap(1/2);
Mem_R to FC1/2 means the memory reduction compared with
FastCap(1/2).

Table II. To demonstrate the validity of the SMZ approach,
we use the QMM-BEM solver to compute the 4 x 4 crossover
problem with manually specifying the cutting pairs from set
S ={(m,n)|2 <m,n <5,|m — n| < 2}. The corresponding
Z values and total CPU times are depicted in Fig. 5. The nearly
linear relationship between the computing time and the Z value
is demonstrated, which is the base of the SMZ approach. From
Fig. 5, we can see that (3, 3) corresponds to nearly minimal Z
value and has a little product of m X n. So, it is selected to be
the optimal cutting pair and results in very short computational
time (Note that the time in Table II is about 0.1 s longer than
that in Fig. 5, because the SMZ approach costs some CPU
time). Compared with the (4, 4) generated by an empirical
formula, the optimal cutting pair makes the QMM-based
capacitance extraction about 20% faster.

For the 4 x 4 crossover problem, different preconditioners
discussed in Section IV are used for comparison. Related data
are listed in Table III. From it we can see that MN(1) and MN(2)
consume a great deal of time in constructing and using the pre-
conditioner for the problem (with 2435 variables), so the reduc-
tion of the iterative number does not efectively speed up solu-
tion of the equation. The EJ preconditioner is a little more com-
plex than the Jacobi, but has six fewer steps in iteration, and
therefore it achieves the least computational time for solving
the equation, which is about 30% less than that using the Jacobi
preconditioner. More experiments have also shown that the it-
eration number decreases gradually for preconditioners in this
order: Jacobi, EJ, MN(1), and MN(2). Also, the EJ or MN(1)
has the best overall performance, achieving much faster equa-
tion solution than the Jacobi.
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TABLE 1I
COMPARISON OF 4 X 4 CROSSOVER PROBLEM (CAPACITANCE IN PICOFARADS)

Cll C12 Cl3 CN CIS C16 Cl7 C18

Cut pair Panel Ele N Var N Z-val Iter

Mem(MB) Tgen(s) Tsol(s) Time(s)

QBEM 2422 -620 -8.7 -2.0 -224 -143 -143 -224 (3,3) 1502 1896 2435 0.24M 11 2.1 102 0.29 1.6
FastCap(2) 2352 -573 4.1 -3.2 -214 -143 -143 -214 - 1487 1487 1487 - 9 30.7 134 40 17.5
FastCap(1) 2345 -547 56 23 -220 -142 -145 -219 - 1487 1487 1487 - 13 19.1 6.9 29 10.0
Raphael(IM) 2408 -601 -9.2 -1.9 -224 -150 -150 -224 - - - - - - - - - -

Panel means the number of “true” elements not including that on the fictitious interfaces; Ele_N means the number of all elements including those on the
fictitious interfaces; Var_N means the number of unknowns; Z-val means the number of non-zero matrix entries in QMM-BEM solver (Z value); Iter is the
number of iterative steps; Tgen is the time for forming the linear equation system; Tsol is the time for equation solution; Time is the total time of

capacitance extraction.

Time(s)

2 4,4
1.9 / 3
18 =, OMM cutting:
1.7 PR * *22,3,4)
1.6 = # 3x(2,3,4,5)

X g

15 A 4x(2,3,4,5)
1.4 &i\ X 5x(3,4,5)
1.3
12 (.3
1 (3,5)

1 ' ' ' Z value
200000 250000 300000 350000

Fig. 5. Time of QMM-based capacitance extraction versus the Z value for
different QMM cutting pairs imposed on the 4 X 4 crossover.

TABLE III
COMPARISON OF FOUR PRECONDITIONERS FOR THE 4 X 4
CROSSOVER PROBLEM

Jacobi EJ MN(1) MN(Q2)
Iter  Tsol(s) Iter Tsol(s) Iter Tsol(s) Iter Tsol(s)
17 0.42 11 0.29 11 0.44 10 0.52

The enhanced QMM-BEM solver and FastCap are all of
the boundary integral method. So, for the same finite-domain
multidielectric problem, N boundary elements not including
that on the fictitious medium interfaces will guarantee the
same accuracy for both methods. The FastCap utilizes the
BEM of the total-charge Green’s function, which produces
a dense matrix with N2 nonzero entries. With the multipole
approach, not all matrix entries need to be computed, and the
matrix-vector multiplication is accelerated. The direct BEM
used in the QMM-BEM solver has the character of resulting
in a sparse matrix for a multiregion problem. With the QMM
method, the degree of the matrix is a little more than N (adding
elements on the fictitious interfaces), but the sparsity is greatly
enlarged. So, the nonzero matrix entries are much less than NV 2
and the matrix-vector multiplication is also accelerated. Since
both methods have almost the same number of iterative steps,
the QMM method has shown the same or better efficiency than
the multipole approach on matrix sparsification. Furthermore,
the careful processing of the integrals and the characters of
direct BEM make the equation forming fast and matrix-vector
multiplication more convenient than FastCap, which has a large
auxiliary cost on the cube partition and multipole expansion
(see Table II). With the above analysis and experiment results,

we can see that the QMM-BEM solver is superior to the multi-
pole accelerated BEM for the actual finite-domain capacitance
extraction.

VI. CONCLUSION

Two improvements are added in the QMM-based capacitance
extraction: one selects an optimal cutting pair to bring the fastest
computational speed, and the other proposes the EJ and MN(1)
preconditioners to solve the equation 30% faster than the orig-
inal Jacobi prconditioner. The numerical results show the en-
hanced QMM-BEM solver has a speed-up of over 10 x and
memory saving over FastCap with comparable accuracy.
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