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Abstract—The non-Manhattan conductor geometry existing in
some capacitance extraction problems brings difficulty to the
floating random walk (FRW) method using cubic transition
domains. In this paper, techniques are proposed to enhance the
FRW method for handling the structures with non-Manhattan
conductors. Based on the aligned-box distances and correspond-
ing calculating approaches, the techniques for generating the
Gaussian surface and constructing axis-aligned transition cubes
are proposed. A practical strategy is then proposed to judge
the domination relationship of non-Manhattan conductor blocks
for building the space management structure with candidate
list. Finally, the strategy using rotated transition cube and
related space management technique are proposed to make fur-
ther acceleration. Experiments on 3-D interconnect structures
including from 8 to 1000 non-Manhattan blocks show that the
proposed method is from 2.9× to 96× faster than a simple
extension of the original FRW method. The proposed method
is also up to 39× faster than a boundary element method-based
solver. Additional experiments are carried out to further val-
idate the accuracy and efficiency of the proposed techniques,
and to demonstrate their suitability for large and multi-dielectric
structures.

Index Terms—Capacitance extraction, domination relation-
ship judgement, floating random walk (FRW) method, non-
Manhattan geometry, nearest neighbors algorithm, space man-
agement.

I. INTRODUCTION

THE CAPACITANCE extraction problem arose in the
design of integrated circuits (ICs) under deep submicron

process technology. With the increase of the devices inte-
grated in a single IC chip, the parasitic effect of interconnects
greatly degrades the circuit performance and leads to signal
integrity and power integrity problems. Although the parasitic
effect can be accurately modeled with comprehensive elec-
tromagnetic simulations, in many scenarios the resistance and
capacitance models are sufficient and practical for reducing the
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computational cost [1]. The capacitance extraction, in which
the capacitance model for the interconnects is built with vari-
ous numerical approaches, has become a key step in IC design.
It is the basis of accurate circuit simulation and physical verifi-
cation for quality IC design. The capacitance extraction is also
required in other electronic design problems, e.g., the design
of flat panel display (FPD) [2]. To verify that the signal delay
to all display pixels has zero skew, the capacitances of FPD
wires should be accurately calculated. The design of touch
panel, a special kind of FPD, also requests accurate capaci-
tance calculation for verifying the performance of capacitive
location sensors.

Having been studied for three decades, the capacitance
extraction is still faced with challenges. A major challenge is
associated with large-scale and complicated structure, which
greatly reduces the accuracy and efficiency of capacitance
extraction. The emerging device and interconnect technologies
in nanometer ICs have made the structure of interconnects
in digital circuits more complex [3]. As for analog/RF IC,
package, and FPD designs, the wire and conductor structures
therein exhibit more complexity in geometry. On the other
hand, with decreased performance margin, more accuracy on
capacitance extraction is demanded in order to keep a reason-
able yield. Therefore, high-precision capacitance extraction for
large-scale and complicated structures is very desirable.

A lot of field-solver techniques, which accurately simulate
the electrostatic field around conductors, have been proposed
for the capacitance extraction. They can be classified into
two categories: 1) the traditional deterministic methods [4]–[9]
and 2) the floating random walk (FRW) method [10]–[20].
Some of them, like FastCap [4], QBEM [5], RedCap [6] and
the FRW-based techniques [10], [17], [20], have become the
engines of commercial tools. The traditional methods require
the volume or surface discretization of the problem domain
and result in a system of linear equations. They include the
fast boundary element methods (BEMs) [4]–[8], the parallel
adaptive finite-element method [9], etc. These methods are
fast, accurate and versatile, but not suitable for large-scale
structures due to the large demand of computational time and
the bottleneck of memory usage. On the contrary, the FRW
method is a kind of Monte Carlo (MC) method. Therefore, it
has the advantages of better scalability for very large struc-
tures, tunable accuracy, better parallelism, and much smaller
memory usage [13]–[15]. A recent work on structures with
large cylindrical through-silicon vias (TSVs) [19] revealed
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that, the accuracy of the BEM-based capacitance solver (espe-
cially on coupling capacitance) is susceptible to the boundary
discretization scheme, and could be much worse than that of
the FRW method. So, the latter can be considered to be more
reliable on accuracy than the BEM solvers.

With the advent of multiprocessor and parallel computing
techniques [21], [22], the FRW method has become popular
and been applied to the block- or chip-level extraction in
the sign-off verification of digital ICs [15], [20]. However,
the FRW method and relevant techniques [10]–[15], [17], [20]
for capacitance extraction, including the employment of
axis-aligned (Manhattan) cubic transition domains and rele-
vant techniques for multi-dielectric per-characterization, space
management, and etc., depend on the assumption that the
handled geometries are all of Manhattan shape. To handle
non-Manhattan geometry, Manhattan geometry approximation
is applied in some commercial tools, which, however, results
in loss of accuracy or even an error [23]. The assumption of
Manhattan geometry is basically true for digital ICs, where the
conductor and dielectric interfaces are either parallel or per-
pendicular to one another. However, it is not true for the struc-
tures in analog/RF circuit, packaging structure, or FPD design,
where there are considerable bevel metal wires and general
nonrectangular conductor shapes. With the increase of device
density, the design of analog, mixed-signal circuit, or packag-
ing structure also requires the FRW-like technique for accurate
capacitance extraction. So, the extension of the FRW method
for general non-Manhattan geometries becomes important.

There is little research devoted to the FRW method for
extracting the capacitances of general geometries. In [16], an
FRW method using spherical transition domains, also known
as the walk on sphere (WOS) method [24], was presented for
the capacitance extraction of general geometries. However,
it was restricted to single-dielectric structures, and did not
include any accelerating technique. Recently, an improvement
of the method in [16] was proposed for 2-D non-Manhattan
geometries, which facilitates the construction of transition
spheres with a distance map [18]. However, generating the
distance map with sufficient resolution needs considerable
computational cost. Therefore, the method is not efficient for
actual 3-D large-scale structures. Fast FRW-based techniques
for handling cylindrical intertier-vias in 3-D IC have been
proposed in [19], where only the non-Manhattan object of
cylinder shape is considered. Thus, the techniques in [19] are
not suitable for the general non-Manhattan structures in analog
circuit, package or FPD.

In this paper, we develop the FRW-based techniques for
capacitance extraction of general non-Manhattan conductor
structures. Because the flattening process, like the chemical-
mechanical polishing, is applied in the manufacture of ICs
and FPD devices, the non-Manhattan conductor considered in
this paper can be regarded as a straight prism with arbitrary
polygon as the bottom. For a structure including both these
non-Manhattan conductors and Manhattan rectangular conduc-
tors, the techniques for generating the Gaussian surface and
efficiently performing FRWs are proposed. They extend the
conventional FRW method only suitable for Manhattan geom-
etry, and enable efficient FRW-based capacitance extraction for

the large-scale non-Manhattan conductor structures. Numerical
experiments with typical 3-D conductor structures in mixed-
signal circuits and packaging components have validated
the accuracy and the efficiency of the proposed techniques.
Compared with a space management approach using an addi-
tional grid structure, the proposed technique makes faster
random walk procedure and consumes much less memory.
The comparison with fast BEM-based capacitance solver also
demonstrates several tens times speedup and huge memory
saving of the proposed FRW method. Further experiments are
carried out to validate the accuracy and efficiency of the pro-
posed techniques, and to demonstrate their suitability for large
and multi-dielectric structures.

The main contributions of this paper are as follows.
1) It is the first random walk method using cubic transition

domains for extracting the capacitances of general non-
Manhattan conductors with polygon cross section.

2) By defining the distances related to the non-Manhattan
conductor geometry and deriving their calculating for-
mulas, we propose the techniques for generating the
Gaussian surface and constructing the axis-aligned
or rotated transition cube. They enable the accurate
FRW algorithm for extracting the capacitances of non-
Manhattan structures.

3) Through utilizing the sufficient conditions for domina-
tion, and the concepts of the domination of a block set
and strong domination, efficient techniques are proposed
for judging the domination of non-Manhattan conduc-
tor and constructing the space management structure
with the candidate list. This space management tech-
nique achieves up to 84× speedup for a structure with
1240 non-Manhattan conductor blocks.

4) Combining the strategy of rotating the transition cube
and the modified space management, the proposed FRW
solver is up to 96× faster than the simply extended FRW
algorithm for the non-Manhattan structures, without loss
of accuracy.

The rest of this paper is organized as follows. The back-
ground of the FRW algorithm for the capacitance extraction
with Manhattan conductors and related space management
technique for large-scale problems are briefly introduced in
Section II. The main contributions of this paper are pre-
sented in Section III, including the technique for generating
the Gaussian surface, the FRW algorithm with axis-aligned
transition cube and related space management techniques, and
the FRW algorithm using rotated transition cube and modi-
fied space management techniques. In Section IV, some test
cases with non-Manhattan conductors from mixed-signal cir-
cuits and packaging structures are extracted with the proposed
FRW method. The numerical results are also compared with
those obtained with a fast BEM solver. Finally, we draw the
conclusions.

II. BACKGROUND

A. FRW Algorithm for 3-D Capacitance Extraction

The FRW method for calculating electrostatic capacitance is
originated from expressing the electric potential of a point r as
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Fig. 1. Two examples of random walk in the FRW method for capacitance
extraction (a 2-D top view).

an integral of the potential on surface S enclosing r [10], [11]

φ(r) =
∮

S
P(r, r(1))φ(r(1))dr(1) (1)

where P(r, r(1)) is called surface Green’s function and can be
regarded as a probability density function with non-negative
value. Therefore, φ(r) is the statistical mean of φ(r(1)), and can
be calculated with an MC procedure sampling S. The domain
enclosed by S is called transition domain, and usually r is the
center of the transition domain.

The problem of capacitance extraction is to calculate the
capacitances related to a specified conductor (called master
conductor). For master conductor i, a Gaussian surface Gi is
constructed to enclose it (see Fig. 1). According to the Gauss
theorem, the charge of conductor i

Qi =
∮

Gi

F(r)g
∫

S(1)

ω(r, r(1))q(r, r(1))φ(r(1))dr(1)dr (2)

where F(r) is the dielectric permittivity at point r, q(r, r(1))
is the probability density function for sampling on S(1), the
surface of a transition domain. g is a constant, which satis-
fies

∮
Gi

F(r)gdr = 1. q(r, r(1)) may be different from P(r,
r(1)), and ω(r, r(1)) is the weight value [11]. Thus, Qi can
be estimated as the statistical mean of sampled values on Gi,
which is further the mean of sampled potentials on S(1) multi-
plying the weight value. If the sampled potential is unknown,
the construction of transition domain and the spatial sampling
procedure will repeat until a point with known potential is
obtained (e.g., on conductor surface). This forms an FRW
including a sequence of hops. Each hop is from the center
of a transition domain to its boundary. With a number of such
walks, the statistical mean of the weight values for the walks
terminating at conductor j approximates the capacitance Cij

between conductors i and j (if j �= i), or the self-capacitance
Cii of master conductor i.

Although the surface Green’s function for a spherical tran-
sition domain has simple analytical expression, the cubic
transition domain is widely adopted because it well fits the
IC layout including mostly Manhattan shapes [10]–[13], [20].
This means larger probability for terminating a walk quickly.
The sampling probability and weigh value for a cubic domain
can be precalculated and tabulated, so as to accelerate the
sampling operation.

The runtime of the FRW method is proportional to the num-
ber of random walks. Several variance reduction techniques
has been proposed to reduce the number of walks [11], [19],

i.e., accelerate the convergence of MC procedure. A walk con-
sists of a couple of hops. For a structure including many con-
ductors, employing an efficient space management technique
is crucial for reducing the time for performing a hop.

B. Space Management Techniques for Manhattan Structure

A major step in each FRW hop is constructing a conductor-
free transition cube (see Fig. 1). To be efficient, the cube
should be as large as possible. This asks for finding the near-
est conductor. Its distance from the current walk position is
half of the transition cube’s size. Since millions of hops are
performed, this distance should be calculated as fast as pos-
sible. The idea of space management is to divide the whole
3-D domain into organized small subdomains (called spatial
cell). By storing the information of neighboring conductors
for a cell, we can quickly calculate the distance to the nearest
conductor for any point in the cell.

The space management techniques have been
investigated for structures including only Manhattan
conductors [11], [12], [17], [20]. Here, “Manhattan” refers to
a shape or shapes with each surface parallel to one of the
xoy, yoz, and zox axis planes. A major idea is to maintain
a candidate list of conductor cuboids for each spatial cell,
such that for any point in the cell its nearest conductor is
in the list. Therefore, the inquiry of nearest conductor only
demands to traverse the candidate list and can be executed
very quickly.

Two steps of the space management are constructing the
spatial structure and inquiring the nearest conductor with it.
The former has some runtime and memory cost, while the
latter reduces the runtime of random walk. The octree and grid
are two widely-used spatial structures to organize the spatial
cells. In [12], a grid-octree hybrid structure was proposed, and
shown to be superior to other structures in terms of the time
for performing random walks and the memory overhead.

In constructing the spatial structure, a primary operation is
generating the candidate list for a cell. We shall check the con-
ductor cuboids one by one to see if they should be added to the
list. During this course, the domination relationship between
two conductor cuboids is considered.

Definition 1: T is a spatial cell, and B1, B2 are two conductor
cuboids. If for any point P ∈ T, and P /∈ B1 ∪ B2, d(P, B1) ≤
d(P, B2), we say B1 dominates B2 regarding T.

If B1 dominates B2 regarding cell T, and B1 is already in T’s
candidate list, B2 should not be inserted to the list. Here d(,)
denotes the distance between a point and a cuboid, which is
actually the half size of the Manhattan (axis-aligned) cube
centered at the point and touching the cuboid. This distance
is very similar to the ∞-norm distance, but allows negative
value. We call it the aligned-box distance. Similar distance
was defined between two Manhattan cuboids [12].

With a distance limit L(T), the upper bound of the distance
to nearest block from points in cell T , a pruning technique
was proposed in [12] to largely reduce the time for generating
the candidate lists and the space management structure. The
procedure checking if conductor B should be added to the
candidate list of T is described as Algorithm 1.
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Algorithm 1 CandidateCheck (conductor B, cell T)
1: d := d(B, T); l is the size of T;
2: If d ≥ L(T) then return false;
3: For each b in the candidate list of T do
4: If b dominates B then return false;
5: Elseif B dominates b then
6: Remove b from the candidate list of T;
7: Endif
8: Endfor
9: Add B to the candidate list of T;

10: If (d + l) < L(T) then L(T) := d + l;
11: return true.

Fig. 2. Manhattan conductor (A) and a non-Manhattan conductor (B) in IC
layout. (a) Side view (on the zox plane). (b) Top view (on the xoy plane).

It should be pointed out that judging the domination rela-
tionship is not difficult for two Manhattan cuboids. However,
if one of the conductor is of non-Manhattan shape, it becomes
difficult.

III. EFFICIENT TECHNIQUES FOR HANDLING

NON-MANHATTAN CONDUCTORS

In this section, we first introduce the assumptions for
the considered capacitance extraction problem and establish
the basic distance calculation technique. Then, the technique
for generating the Gaussian surface is proposed. In the last
two sections, the FRW algorithms using Manhattan transition
cube and rotated transition cubes are proposed, respectively,
with the focus on efficient space management techniques for
handling a considerable number of non-Manhattan conductors.

A. Basic Considerations and Distance Calculation

In this paper, we refer to the non-Manhattan conductors as
the bevel metal wires/conductors in IC layout or FPD layout.
The 3-D geometry of this kind of conductor has top and bottom
faces parallel to the xoy-axis plane. However, its projection on
the xoy plane (i.e., the top view) is an arbitrary 2-D polygon,
instead of an axis-aligned rectangle. Without loss of generality,
we assume that this 2-D polygon is always convex. Actually,
a preprocess step is often employed before capacitance extrac-
tion to decompose complex conductor geometry into convex
triangles and quadrangles (see Fig. 2).

Now, the problem includes a number of 3-D conductor
blocks. Each block is either a Manhattan cuboid or a convex
straight prism with side faces perpendicular to the xoy plane.
The master conductor may include a couple of connected con-
ductor blocks. While running capacitance extraction with the

Fig. 3. Illustration of the 2-D aligned-box distance between a point and
a polygon. (a) Aligned-box distances between A and three nearby points.
(b) Illustration for the calculation of dista(P, A).

FRW algorithm, we only consider the cubic transition domain,
since it well touches the surface of the conductor and brings
faster termination of a random walk.

In the FRW algorithm, the distance calculation between
a point and a block or between two blocks is required. If
the block is of non-Manhattan shape, the calculation becomes
complicated, bringing difficulty to the following parts of FRW
algorithm.

1) The generation of the Gaussian surface, which must
enclose the master conductor and not intersect any
conductor.

2) The construction of the transition cube for each hop,
which requests finding the nearest conductor for a point.

3) The space management which accelerates finding the
nearest conductor for constructing the transition cube,
especially useful for handling structure with a large
number of blocks.

The aligned-box distance for Manhattan geometry should
be extended for non-Manhattan geometry. For the problem
considered in this paper, we define some basic distances.

Definition 2: The 2-D aligned-box distance between a 2-D
point P and a convex polygon A: dista(P, A), is the half size of
the axis-aligned square which is centered at P and touches A.

In Fig. 3(a), we show some typical positions of a point
around polygon A. The Manhattan transition squares and the
corresponding aligned-box distances are depicted. In Fig. 3(b),
we show the basic idea for calculating dista(P, A). We first find
the visible edges of A regarding to point P. If the Manhattan
square centered at P touches A’s edge, the edge must be a vis-
ible edge. For each edge

−−−−→
AiAi+1 of A, we calculate the cross

product of
−→
AiP and

−−−−→
AiAi+1. If the result is a positive value,

edge
−−−−→
AiAi+1 is visible, and we get the area of triangle PAiAi+1.

As shown in Fig. 3(b), the area is useful for calculating the
size of the transition square. Triangle PAiAi+1 can be regarded
as the combination of four triangles: 1) PAiR; 2) PRAi+1;
3) RAiS; and 4) RSAi+1, where S is the touching point and
R is a midpoint of transition square’s edge. The four trian-
gles all have the half size of the transition square as a bottom
edge, while the corresponding heights form the x-distance and
y-distance between points Ai and Ai+1. So, the cross product of−→
AiP and

−−−−→
AiAi+1 over the sum of the x-distance and y-distance

equals the half edge length. dista(P, A) is the maximum of such
half edge length got from all visible edges, or corresponds to
the situation where the Manhattan square touches A’s vertex
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Fig. 4. Top view of a non-Manhattan conductor structure. (a) Master’s
bounding box. (b) Valid generation of the Gaussian surface.

[see P3’s square in Fig. 3(a)]. In the latter situation the dis-
tance can be obtained with the Manhattan bounding box of A,
using existing technique. This analysis derives Theorem 1.

Theorem 1: Suppose polygon A has vertices A1, A2, . . . , An,
in the anti-clockwise order. Ai has coordinates (xi, yi), i =
1, 2, . . . , n. Suppose point P has coordinates (x, y). Then

dista(P, A)

= max

{
max

1≤i≤n

(x − xi)(yi+1 − yi) − (y − yi)(xi+1 − xi)

|xi+1 − xi| + |yi+1 − yi| , dista(P, BA)

}

(3)

where BA is the Manhattan bounding box of polygon A.
The vertical distance between a point and a conductor block

is defined as follows.
Definition 3: The vertical distance between a point P(x, y, z)

and a non-Manhattan conductor block A is

distv(P, A) = max{z − zmax(A), zmin(A) − z} (4)

where zmin(A) and zmax(A) are the minimum and maximum z
coordinates of A, respectively.

B. Generation of Gaussian Surface

We first consider the situation where the master conductor
only contains one block. In Fig. 4, the top view of a typi-
cal non-Manhattan structure is shown (“A” labels the master
conductor). From Fig. 4(a), we see that the bounding box of
the master intersects other conductor. Therefore, the strategy
of generating the Gaussian surface for the Manhattan bound-
ing box, which has been used for the cylindrical TSV [19],
becomes infeasible. We have to consider the actual geometry
of the master conductor.

For two separated polygons, we define their distance.
Definition 4: The aligned-box distance between two con-

vex polygons A and B: dista(A, B), is the edge length of the
minimum axis-aligned square which touches both A and B.

Based on the aligned-box distance between a point and
a polygon, we derive the following formula for calculating
the aligned-box distance of two polygons [see Fig. 4(b)]:

dista(A, B) = min

{
min

1≤i≤n
dista(Ai, B), min

1≤i≤m
dista(Bi, A)

}
(5)

where Ai (i = 1, 2, . . . , n) is the vertices of polygon A and Bi

(i = 1, 2, . . . , m) is the vertices of polygon B. It is obvious
that for any two separated polygons A and B, dista(A, B) > 0.

The vertical distance between two conductor blocks is as
follows.

Definition 5: The vertical distance between two 3-D con-
ductor blocks A and B is

distv(A, B) = max{zmin(A) − zmax(B), zmin(B) − zmax(A)}.
(6)

We set the horizontal distance between two conductor blocks
as the aligned-box distance between their xoy-plane projec-
tions. Then, we have the 3-D distance between them.

Definition 6: The 3-D distance between two conductor
blocks A and B is

dist(A, B) = max{distv(A, B), dista(PA, PB)} (7)

where PA and PB are the xoy-plane projections of A and B,
respectively.

The idea for generating the Gaussian surface GA for the
master conductor A is to calculate the minimum distance dmin
between A and its neighbor conductors and then make GA

about dmin/2 distance away from A. It is guaranteed that such
a Gaussian surface does not intersect any conductor. Based on
the considered conductor geometry, the Gaussian surface sur-
rounding the master conductor also forms a convex straight
prism. In Fig. 4(b), the xoy projection of the Gaussian sur-
face is shown. Each edge of master conductor A’s projection
is inflated outward to obtain an edge where every point’s
aligned-box distance to A is dmin/2. Then, the edges obtained
by inflation is connected by adding edges, resulting in the
xoy projection of Gaussian surface GA. If A’s projection has
n edges, the number of edges of GA’s projection is between
n and 2n. The Gaussian surface can be finally obtained after
raising the xoy projection along the z-axis.

For the situation where the master conductor contains
multiple blocks, the virtual Gaussian surface sampling
technique [14] becomes useful. It allows us to construct and
sample the Gaussian surface for each conductor block individ-
ually, without the necessity of calculating the envelope of the
block Gaussian surfaces to get the whole Gaussian surface. For
the non-Manhattan conductor block, the top or bottom face of
its Gaussian surface is a general 2-D polygon. The sampling
on this polygon can be carried out with the rejection sampling
or other techniques [25].

C. Algorithm Using Manhattan Transition Cube

A natural idea is still using Manhattan (axis-aligned) tran-
sition cubes in the FRW algorithm for the structure with
non-Manhattan conductors. During the random walk proce-
dure, the 2-D aligned-box distance can be used to determine
the Manhattan transition cube touching the side face of a non-
Manhattan conductor. Suppose the current position of walk is
P (x, y, z). What we want is the largest transition cube centered
at P which does not intersect or contain any conductor. This
is equivalent to calculating the minimum distance between
point P and its nearby conductors. For a Manhattan conduc-
tor, calculating its distance to P is trivial. For a non-Manhattan
conductor A, the distance is calculated as

dista(P, A) = max{distv(P, A), dista(P, PA)} (8)
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where PA stands for the xoy projection of A. The mini-
mum of these distances is the half size of the Manhattan
transition cube.

Because millions of hops are usually performed, the min-
imum distance between a point and its nearby conductors
should be calculated as fast as possible. The space manage-
ment technique has been proposed for this aim, which avoids
traversing all conductors during the calculation. However,
the existing technique only considers Manhattan conductors,
and is not suitable for the problem involving non-Manhattan
conductors. There are two strategies to settle this problem.

1) Employ Additional Structure for Non-Manhattan
Objects: Assuming the majority of the conductors are of
Manhattan shape, a simple approach is to first find the
transition cube only taking Manhattan conductor blocks
as obstacles and then shrink the cube by checking non-
Manhattan conductor blocks one by one. The finally obtained
transition cube does not cross any conductor, and is valid
for performing an FRW hop. This approach only utilizes the
space management technique for Manhattan structures [12],
and can be easily implemented. It can be efficient only if
there is very few non-Manhattan conductors.

Another approach is to construct an additional spatial struc-
ture for the non-Manhattan conductors, so that not all of them
needs to be checked for obtaining the valid transition cube.
To avoid the complex judgement of domination relationship
regarding non-Manhattan objects, here we consider the sim-
ple grid structure without candidate list. The grid represents
a 3-D uniform partition of the whole domain. For each grid
cell, only the intersected non-Manhattan conductor blocks are
recorded. During the random walk, after getting the transition
cube restrained by Manhattan objects we only check the non-
Manhattan blocks in the current cell and its neighbor region
(e.g., its adjacent cells). Then, the transition cube is shrunk
to become a conductor-free one. This treatment is similar to
the approach with an incomplete candidate list [12]. With this
approach, we avoid traversing all non-Manhattan objects for
each FRW hop. However, since the domination relationship is
not checked, this approach does not contribute to the optimal
runtime and induces some memory overhead.

2) Modify the Space Management Technique to
Accommodate Non-Manhattan Objects: A comprehen-
sive solution is to extend the space management techniques
to consider the non-Manhattan objects. The difficulty lies in
judging the domination relationship of two conductor blocks.
It cannot be implemented directly through Definition 1,
because it is impossible to enumerate infinite points in cell T .
For two Manhattan cuboids, the domination is actually judged
by only inspecting a small point set within T .

Theorem 2: Suppose conductor blocks A, B and spatial cell
T are all axis-aligned Manhattan shapes. The sufficient and
necessary conditions of “A dominates B regarding T” are as
follows.

1) B ∩ T = ∅.
2) (B∗∩T) ⊆ (A∗∩T), where A∗ and B∗ are the geometries

got by inflating A and B by dist(B, T), respectively.
To explain condition 2) in Theorem 2, we consider the

points belonging to B∗ ∩ T . Because B∗ is got by inflating

Fig. 5. Examples where A does not dominate B regarding T (a 2-D top
view). (a) A is nearer to the points in T ∩ B∗ than B, but P is closer to B.
(b) A is nearer to the four vertices of T than B.

B by d = dist(B, T), B∗ ∩ T is actually a portion of surfaces
of B∗ and T . Noting that the surface of B∗ is the contour
where every point has the constant distance d to B. So, for
∀P ∈ B∗ ∩ T , dista(P, B) = d. As A∗ is got by inflating A
by the same distance d, and P ∈ A∗ ∩ T due to the con-
dition 2), dista(P, A) ≤ d = dista(P, B). Imaging A and B
continue to inflate, which makes the distance contours with
larger distance sweeping the rest of points in T . Because A’s
distance contour marches with the same speed as B’s in all
x, y, z directions, for a point P in T but not belonging to
B∗ ∩ T , dista(P, A) ≤ dista(P, B) will still hold. This means
A dominates B regarding T . Further, we can prove Theorem 2.

Based on Theorem 2, we can only consider the points in
B∗ ∩T (which is a 2-D rectangle) for checking if A dominates
B. This derives an efficient domination judgement algorithm
for Manhattan objects [11], [12].

However, only inspecting the intersection of T and B∗ is not
sufficient for non-Manhattan objects. This is because the swept
region during the march of a block’s distance contour depends
on the block’s shape. For A and B with arbitrary shape, it is
not guaranteed that A is nearer to the rest of points in T than B,
providing A is nearer to the points in B∗∩T than B. In Fig. 5(a),
we show such an example. Similarly, only inspecting the ver-
tices of T is not sufficient either for judging the domination
[see Fig. 5(b)].

Not like the situation for Manhattan conductors, there is
not a feasible way for judging the domination of general
non-Manhattan shapes. However, there are two obvious suf-
ficient conditions for the domination relationship. Based on
them we will develop a technique to judge the domination of
non-Manhattan conductors.

Theorem 3: For two conductor blocks A and B, In(A)
denotes a Manhattan inscribed block of A, and Ex(B) denotes
a Manhattan external block of B.

1) If A dominates Ex(B) regarding spatial cell T , A domi-
nates B regarding T .

2) If In(A) dominates B regarding spatial cell T , A domi-
nates B regarding T .

A corollary of Theorem 3 is that, if In(A) dominates Ex(B),
A dominates B. Therefore, with the domination check of two
Manhattan blocks (using the approach based on Theorem 2)
we can partially detect the domination relationship between
two blocks in arbitrary shape. Fig. 6 shows examples involving
non-Manhattan blocks, where the domination between A and B
can be detected.
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Fig. 6. With the Manhattan inscribed and external blocks and Theorem 3,
we can partially detect the domination relationship of non-Manhattan shapes.
(a) A dominates B because A dominates Ex(B). (b) A dominates B because
In(A) dominates B. It is not easy to detect the domination of A to C.

It should be pointed out, for some non-Manhattan shape
(e.g., long bevel wire) its Manhattan inscribed block and
external block are much different from itself. Therefore, the
approach based on Theorem 3 often fails to detect the dom-
ination relationship. For example, in Fig. 6 it fails to detect
that A dominates C. To improve this situation, we propose
Theorem 4.

Theorem 4: For two conductor blocks A and B, a set
of Manhattan blocks {Bi} fullfils ∪ Bi ⊇ B, and a set of
Manhattan blocks {Ai} fullfils ∪ Ai ⊆ A.

1) If for any i, A dominates Bi regarding spatial cell T ,
A dominates B regarding T .

2) If ∪ Ai dominates B regarding spatial cell T , A dominates
B regarding T .

Theorem 4 is an extended version of Theorem 3, and can
be easily proved. The condition 1) in Theorem 4 can be easily
judged if A is a Manhattan block. For a Manhattan block B,
the condition 2) in Theorem 4 can also been judged based
on Theorem 2, though handling ∪ Ai is more complex than
handling a single Manhattan cuboid.

With Theorem 4 we can improve the algorithm judging the
domination of non-Manhattan conductors. The idea is rep-
resenting a non-Manhattan block with a set of Manhattan
blocks, and then judging the domination of Manhattan block
set with Theorem 4. In Fig. 6(a), with C represented by four
Manhattan blocks (outlined in blue) the algorithm is able to
detect that A dominates C. The choice of the set of Manhattan
blocks affects both success rate of domination check and
computing time. While judging the domination between two
non-Manhattan blocks, the time cost increases a lot if both
blocks are represented by many Manhattan blocks. This usu-
ally overwhelms the benefit got from correctly detecting the
domination relationship. So, we should restrict the size of the
Manhattan block set for representing a non-Manhattan block.

In the algorithm checking if a conductor should be added to
a candidate list (Algorithm 1), the distance between the spatial
cell and conductor B “d(B, T)” is calculated. This distance has
the same meaning as that in Definition 6. To reduce the com-
puting cost, we consider the cell T with 3-D cube shape, which
exists in the grid or grid-octree hybrid spatial structures [12].
Then

dist(B, T) = dista(P, B) − l/2 (9)

Fig. 7. Top view of non-Manhattan conductors and transition cubes.
(a) Manhattan transition cube versus rotated transition cube. (b) Rotated
transition cube can be accepted only if it is within the safe zone.

where l is the size of cell T , and P is the center point of T .
With (9), the distance between the spatial cell and conductor
B can be calculated quickly. Now, Algorithm 1 can be exe-
cuted with input of a non-Manhattan conductor, and the space
management structure with candidate list can be generated.

Because the sufficient conditions are used to judge the dom-
ination relationship of non-Manhattan conductor blocks, the
proposed method might fail to detect the domination relation-
ship, especially for long bevel wires. This weakens the benefit
of the space management technique. To overcome this draw-
back, we perform a preprocess step to cut each long bevel
wire into short segments. This increases the total number of
conductor blocks for simulation, but may improve the effec-
tiveness of the space management involving non-Manhattan
conductors. In practice, we uniformly cut the bevel wire into
segments such that the longest edge of each segment is at most
5× longer than its shortest edge.

D. Algorithm Using Rotated Transition Cube

Instead of always using Manhattan transition cubes in the
FRW algorithm, another idea is using rotated transition cube if
possible. The latter’s potential benefit is larger transition cube
and touching area, as illustrated in Fig. 7(a). This idea has
been adopted for extracting the capacitances of cylindrical
TSV structures, and brings about 2× speedup [19]. To apply
it to our problem, we first give a definition.

Definition 7: The 2-D rotated-box distance between a 2-D
point P (x, y) and a convex polygon A with vertices A1,
A2, . . . , An in anti-clockwise order is

distr(P, A)

= max

{
max

1≤i≤n

(x − xi)(yi+1 − yi) − (y − yi)(xi+1 − xi)√
(xi+1 − xi)2 + (yi+1 − yi)2

, dista(P, BA)

}

(10)

where BA is the Manhattan bounding box of A, and (xi, yi) is
the coordinates of Ai.

The rotation of transition cube is in the xoy plane. So,
the 2-D rotated-box distance (Definition 7) is useful. It cor-
responds to either a transition square adjoining polygon A’s
edge, or a Manhattan square touching A’s vertex. As shown in
Fig. 8(a), this rotated transition cube well fits conductor A’s
side face, or is a larger Manhattan cube (like for point P3).
Similar to the calculation of dista(P, A), for distr(P, A) the
maximum of the perpendicular distances to A’s visible edges
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Fig. 8. Illustration of the 2-D rotated-box distance between a point and
a polygon. (a) Rotated-box distances between A and three nearby points.
(b) Illustration for the calculation of distr(P, A).

is pursued. The formula for this perpendicular distance is
explained in Fig. 8(b). Comparing (3) and (10), we see that
distr(P, A) ≥ dista(P, A).

During the FRW procedure, we inquiry the nearest conduc-
tor for current position P in terms of the aligned-box distance.
If the obtained conductor, say A, is a non-Manhattan block, we
can rotate the transition cube trying to get a larger transition
cube. The rotated-box distance between P and A is calculated

distr(P, A) = max{distv(P, A), distr(P, PA)} (11)

where PA stands for the xoy-plane projection of A. If it is larger
than dista(P, A), the corresponding rotated transition cube is
certainly not a Manhattan one and adjoins A’s side face.

A prerequisite for using the rotated transition cube is that
it does not intersect any other conductor [see Fig. 7(b)]. We
must examine that, as has been done in [19]. We can take the
Manhattan transition cube touching the second nearest conduc-
tor block as a safe zone. The rotated transition cube is accepted
only if it is within the safe zone. Otherwise, we have to use
the smaller Manhattan transition cube for this FRW hop. So,
the remaining question is how to calculate the size of this
safe zone.

If there is no non-Manhattan space management used, i.e.,
we traverse the non-Manhattan blocks to find the nearest con-
ductor, the second nearest block is known. With it we get
the safe zone. If the approach with an additional grid struc-
ture for non-Manhattan conductors is employed, the second
nearest block is also available.

It should be pointed out, that the same problem occurs
in [19]. The solution therein is to additionally treat each TSV’s
neighbor region as a spatial cell and generate the candidate list
for it. Because there are relatively fewer TSVs, and other con-
ductors are all regarded as Manhattan cuboids facilitating the
generation of candidate list, that approach demonstrates good
efficiency. However, the problem considered in this paper may
include a large number of non-Manhattan blocks, and the dom-
ination judgement for generating the candidate list is much
more complicated. The approach in [19] could not be efficient
for the considered non-Manhattan conductor structures.

If the space management employs the candidate list and
treats all conductors as a whole, like the approach proposed
in the last section, only the nearest conductor can be obtained
by inquiring the candidate list. How to efficiently obtain the
second nearest conductor and further the safe zone becomes
a problem. To solve it, we propose to modify the domination

Algorithm 2 CandidateCheck2 (Conductor Block B, Cell T)
1: d := dista(B, T); l is the size of T;
2: If d ≥ L(T) then return false;
3: For each b in the candidate list of T do
4: If b is non-Manhattan and b strongly dominates B or b

is Manhattan and b dominates B, then return false;
5: Elseif B is non-Manhattan and B strongly dominates b

or B is Manhattan and B dominates b then
6: Remove b from the candidate list of T;
7: Endif
8: Endfor
9: Add B to the candidate list of T;
10: If (d + l) < L(T) then L(T) := d + l;
11: return true.

check to reduce the difficulty of finding the second nearest
conductor. We define a strong domination relationship for non-
Manhattan conductor block, with which finding the second
nearest conductor becomes unnecessary.

Definition 8: T is a spatial cell, and B1, B2 are two conductor
blocks, where B1 is a non-Manhattan block. If for any point
P ∈ T , and P /∈ B1 ∪ B2, dista(P, B1) ≤ 0.5 × dista(P, B2), we
say B1 strongly dominates B2 regarding T .

Theorem 5: Suppose a non-Manhattan conductor block A is
the nearest conductor to point P in terms of aligned-box
distance, and B is the second nearest conductor. If dista(P,
A) ≤ 0.5 × dista(P, B), the rotated transition cube for P must
not intersect B and any other conductor.

Proof: According to the definitions of the 2-D aligned-
box distance and rotated-box distance, we see that distr(P,
A) ≤ √

2dista(P, A). This is also evident if we comparing (3)
and (10). Then, if dista(P, A) ≤ 0.5 × dista(P, B)

dista(P, B) ≥ 2dista(P, A) ≥ √
2distr(P, A). (12)

As shown in Fig. 7(b), the rotated transition cube for
P is within an axis-aligned cube whose half size is
(sinθ+cosθ)distr(P, A). This half size is not larger than√

2distr(P, A). It is therefore no larger than dista(P, B), due
to (12). So, the rotated transition cube is within the safe zone
restrained by B. This proves Theorem 5.

Below, we give a corollary of Theorem 5.
Theorem 6: Suppose a non-Manhattan conductor block A is

the nearest conductor to point P in terms of aligned-box dis-
tance. If A strongly dominates another conductor block B
regarding to a spatial cell containing P, the rotated transition
cube for P must not intersect B.

Based on Theorem 6, we can modify the procedure checking
if conductor block B should be added to the candidate list of
T , as described in Algorithm 2.

Now, when we inquire the space management structure and
find a non-Manhattan conductor block as the nearest con-
ductor, we need not worry about finding the second nearest
conductor for checking the validity of the rotated transition
cube. If the second nearest conductor is not in the can-
didate list, it must be strongly dominated by the nearest
non-Manhattan block, so that the rotated transition cube is
within the safe zone. Otherwise, by inquiring the candidate
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Fig. 9. Geometry information of test cases 1–4. (a) Cross section of the
process technology. The thickness of each dielectric layer and the height of
metal are labeled (in unit of μm). (b) and (c) Top view of two examples of
metal layers.

list we can find the second nearest conductor and get the safe
zone. Therefore, by modifying the construction of space man-
agement with the strong domination relationship, we can easily
examine the prerequisite for using the rotated transition cube.

It should be pointed out that Definition 8 itself does not
result in a judgement algorithm. In practice, the strong domi-
nation is judged based on the domination check technique for
non-Manhattan conductor, which utilizes the sufficient condi-
tions in Theorems 3 and 4. The condition of strong domination
is much stricter than that of domination. As compared with
the method using Manhattan transition cube, more conduc-
tors cannot be excluded from inserting into the candidate list.
This brings some negative effect to the efficiency of the space
management technique.

IV. NUMERICAL RESULTS

Based on the C++ program RWCap [11], [13], we have
implemented the proposed FRW algorithms for extracting the
capacitances of non-Manhattan conductor structures. The grid-
octree hybrid space management structure and the fast candi-
date list generation techniques in [12] are employed, as the
basis of the proposed techniques for handling non-Manhattan
conductors. The termination criterion for all FRW-based algo-
rithms is set to 0.5% 1-σ error.

All experiments are carried out on a Linux server with
Intel Xeon E5-2650 2.0 GHz CPU. All results are obtained
from execution of serial computing.

A. Test Cases

The test cases are described as follows.
Cases 1–4: Got from layout of a mixed-signal circuit design

(see Fig. 9). The minimum wire width in each case is about
0.4 μm. For each case, there is from 90 to 516 conductor
blocks in four metal layers. From bottom to top, the dielectric
layers have relative permittivity of 4.0 and 3.5 alternatively. In
Fig. 9(b) and (c), we show two examples of the metal layer’s
layout (the master conductor is in red), where there are some
non-Manhattan conductor blocks.

Cases 5–7: A package interconnect composed of m lossy
conductors embedded in a uniform dielectric [8], as shown
in Fig. 10. The m is chosen as 8, 16, and 32, respectively.
The width and height of each wire are 0.12 and 0.2 μm,

Fig. 10. Top view of the package interconnect structure composed of m-lossy
conductors (cases 5–7) [8].

Fig. 11. Top view of a structure with two metal layers (case 8).

respectively. For each case, the conductor in the middle is
set as the master conductor.

Case 8: A structure with two metal layers, as shown in
Fig. 11. The first layer includes 50 aligned wires parallel to
the x-axis, and the second layer includes 50 40◦-angled bevel
wires. The distance between two layers of wires is 0.36 μm.
The width and height of each wire are 0.12 and 0.2 μm,
respectively. The length of wire is about 35 μm.

Cases 9–12: Formed by duplicating cases 1–4 for
2 × 2 times. The number of conductors in these larger cases
ranges from 360 to 2064.

We first test the algorithms using Manhattan transition cube,
which employ the techniques in Section III-C. The results
are compared with a fast capacitance solver based on BEM,
QBEM [5]. Then, the techniques with the rotated Manhattan
transition cube in Section III-D are tested. After that, more
experiments are carried out to further validate the accuracy,
efficiency and versatility of the proposed techniques.

The tested algorithms are as follows.
Alg. 1: The FRW algorithm based on Manhattan tran-

sition cubes, with the approach traversing non-Manhattan
conductors.

Alg. 2: The FRW algorithm based on Manhattan tran-
sition cubes, with an additional grid spatial structure for
non-Manhattan conductors.

Alg. 3: The FRW algorithm based on Manhattan transition
cubes, with the modified space management technique.

Alg. 4: The FRW algorithm using rotated transition cube,
with the approach traversing non-Manhattan conductors.

Alg. 5: The FRW algorithm using rotated transition cube,
with an additional grid spatial structure for non-Manhattan
conductors.
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TABLE I
COMPARISON OF A FAST BEM SOLVER AND THE PROPOSED FRW METHODS USING MANHATTAN TRANSITION CUBE

Alg. 6: The FRW algorithm using rotated transition cube,
with the modified space management technique.

In Sections IV-B–IV-D, the dielectrics in all test cases
are changed to get a uniform dielectric with relative permit-
tivity of 1. In Section IV-E, the multi-dielectric structures,
i.e., cases 1–4 and 9–12, are extracted.

B. Results of Algorithms Using Manhattan Transition Cube

The 12 test cases are extracted with Algs. 1–3 and QBEM,
whose results are compared in Table I. “Cap.” is the self-
capacitance of the master conductor, while “Mem.” stands
for the memory usage. Because Algs. 1–3 produce almost
same capacitance results (with less than 2% stochastic dis-
crepancy), we only list the capacitance results got from Alg. 3.
QBEM employs an automatic boundary discretization and is
able to extract the capacitances accurately. From Table I,
we see that the discrepancy of QBEM and the FRW algo-
rithms in the capacitance result is fairly small, i.e., within
2.5%. Note that the Neumann boundary is assumed for the
extraction with QBEM [5], such that the self-capacitance
got with the FRW algorithm is always larger than that got
with QBEM. The results validate the correctness of the pro-
posed techniques for extracting the non-Manhattan conductor
structures.

In Table I, the different performance of Algs. 1–3 is also
demonstrated. Utilizing the space management (Algs. 2 and 3)
makes the CPU time dramatically reduced, as compared with
Alg. 1. The speedup ratio increases with the number of non-
Manhattan conductors in the test case, and is up to 84× for the
largest case. While comparing Algs. 2 and 3, we see that the
latter is usually 1.2×–1.9× faster than the former. For case 8,
Alg. 3 becomes even 4× faster than Alg. 2, as it performs each
hop much faster due to shorter candidate lists. More details
of the three algorithms are listed in Table II. From the table,
we see that the average number of hops per walk (#hop) is
almost the same for Algs. 1 and 3. #hop increases a little bit in
Alg. 2, due to the setting of neighbor region and the incomplete
candidate list technique used. Within Alg. 3, the candidate lists
considering the domination of non-Manhattan conductors are
generated. Therefore, Alg. 3 consumes more time (Tsp) for

constructing space management structure but costs much less
memory for the spatial data structure (Memsp), as compared
with Alg. 2. It should be pointed out that the strategies used
in Alg. 1 ∼ 3 do not affect the number of walks (#walk). So,
it is not listed in Table II.

For the comparison of the FRW-based algorithms and
QBEM, let us look at Table I again. We can see that Alg. 3 is
up to 36× faster than QBEM for the first eight cases. For the
last four larger cases, QBEM’s result is not available due to
the excessive demand of memory usage. The speedup ratio
roughly increases with the size of test case. As for the mem-
ory usage, the FRW-based algorithm shows huge advantage.
These results reflect the major difference between the BEM
and FRW method for capacitance extraction problem.

C. Results of Algorithms Using Rotated Transition Cube

Based on the strategy that allows the transition cube to
rotate, we have developed Algs. 4–6. Their computational
results are listed in Table II as well, for better comparison
among Algs. 1–6. We have verified that their capacitance
results are all correct, which are not included in Table II.
Alg. 4 uses the approach based on traversing the non-
Manhattan conductors. Comparing Alg. 4 with Alg. 1, we see
that the idea of rotating the transition cube could bring 1.47×
on average and up to 2.1× speedup. This is mainly caused by
the reduction of the number of hops per walk (#hop). While
comparing the data of Algs. 3 and 6, we can see that utiliz-
ing the rotated transition cube is still advantageous, but with
a reduced speedup ratio (∼1.2× on average and up to 1.6×).
This is due to the negative effect of using the strong domi-
nation check in space management. Similar to the algorithms
using Manhattan transition cube, the modified space manage-
ment handling all conductors as a whole (Alg. 6) excels the
approach using an additional grid structure (Alg. 5), in terms
of overall runtime and the memory cost. The benefit is similar
to that of Algs. 3 to Alg. 2.

If comparing Alg. 6 with Alg. 1, we see that the speedup
ratio ranges from 2.9× to 96×. It is contributed by the idea of
rotating transition cube, and the sophisticated techniques for
domination check and candidate list generation during the
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TABLE II
DETAILED COMPARISON OF DIFFERENT FRW METHODS USING MANHATTAN TRANSITION CUBE AND THE RESULTS OF THE

PROPOSED FRW METHODS USING ROTATED TRANSITION CUBE

TABLE III
COMPUTATIONAL RESULTS FOR TWO CROSSOVERS AND THEIR

TILTED COUNTERPARTS (CAPACITANCE IN UNIT OF AF,
TIME IN UNIT OF SECOND)

space management. The latter essentially would bring larger
acceleration for structures involving a lot of non-Manhattan
conductors. As compared with QBEM’s results in Table I, we
see that Alg. 6 has at most 39× speedup for case 4.

D. Further Accuracy and Efficiency Validation

Two crossover structures are tested to further validate the
accuracy of the proposed algorithms. The first one is derived
from case 8. The only difference between it and case 8 is
that the wires in the second layer are perpendicular to those
in the first layer. This produces a 50 × 50 crossover case.
The other one is the 100 × 100 crossover case in [12].
Since the both crossover structures are of Manhattan struc-
ture, they can be simulated with the existing FRW solvers,
like RWCap2 [12], [13]. We rotate each of them with a 40◦
angle to obtain its non-Manhattan counterpart, and then sim-
ulate it with the proposed algorithms. The results are listed in
Table III. From the table, we see that the capacitance results of
the tilted structures well match those of the original cases. This
validates the accuracy of the proposed techniques. Note that
the result for the 100×100 crossover also matches that in [12].
Because more FRW walks, hops per walk and operations for
performing a hop are needed for handling a non-Manhattan
structure, the proposed algorithms are several times slower
than the FRW algorithm which only deals with Manhattan
geometries. While comparing Algs. 1 and 6, we see that the
proposed techniques bring 11× and 8× speedup respectively,
for the two crossover structures.

In order to see how the proposed techniques perform for
a structure with fewer non-Manhattan geometries, we modify

TABLE IV
COMPUTATIONAL RESULTS FOR A STRUCTURE WITH ONLY 5.5%

NON-MANHATTAN CONDUCTOR BLOCKS (CAPACITANCE

IN UNIT OF AF, TIME IN UNIT OF SECOND)

case 1 to “case 1a” which includes only five non-Manhattan
blocks among the total 90 conductor blocks. The computa-
tional results are listed in Table IV, along with those for case 1
for comparison.

From Table IV, we see that the acceleration brought by
the proposed techniques changes little for the case with fewer
non-Manhattan conductors. Meanwhile, because the fewer
non-Manhattan conductors result in faster computation of the
FRW-based method, the speedup over QBEM increases from
1.6× to 2.2×. We also modify case 1a to obtain a struc-
ture with zero non-Manhattan conductor (case 1b). It can
be simulated with RWCap2 with a runtime of 1.23 s. This
is only slightly less than that of the proposed method for
case 1a (1.26 s). It suggests that, although the proposed
method has to scarify some runtime for the ability of han-
dling non-Manhattan geometry, the runtime overhead is almost
proportional to the ratio of non-Manhattan conductor in the
simulated structure. For a structure including very few non-
Manhattan conductors, like case 1a, the increase of runtime
compared with the conventional FRW method simulating
a similar Manhattan structure can be very little. Note that, in
the preceding experiment with crossover structures, the simu-
lated tiled structure includes 100% non-Manhattan conductors,
and therefore makes the proposed FRW method much slower
than the conventional FRW method.

Because the whole capacitance matrix is sometimes needed,
we add the following experiment. For case 7, which is
a package structure including 32 wires, we extract the whole
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Fig. 12. Capacitance discrepancy (in percentage) between Alg. 6 and QBEM
for the whole capacitance matrix.

TABLE V
RUNTIMES OF THE PROPOSED ALGORITHMS AND QBEM FOR

EXTRACTING THE WHOLE CAPACITANCE MATRIX

(TIME IN UNIT OF SECOND)

capacitance matrix with our algorithms and QBEM. The run-
times are listed in Table V. And, the relative discrepancies of
capacitance items obtained with the both methods are shown
in Fig. 12. The QBEM’s result is regarded as the standard.

The results show that, with Alg. 6 we only need 1.5 min
to extract the whole 32×32 capacitance matrix. It means an
average runtime of 3.04 s for the extraction with a single
master conductor. As for QBEM, it costs 313.6 s, which is
3.2× more than Alg. 6. The speedup (9.9×) achieved with
the proposed techniques is similar to the situation where there
is only one master (see Tables I and II). Because the ter-
mination criterion of FRW-based algorithms is set regarding
the self-capacitance, we cannot expect the coupling capaci-
tances (the off-diagonal matrix entries) has the same accuracy
as the self-capacitance. Take conductor no. 16 in case 7 as
an example. Its self-capacitance is about 590 aF, while only
its neighbor conductors (nos. 12–15 and 17–20) have coupling
capacitance larger than 5.9 aF, i.e., 1% of the self-capacitance.
So, much fewer random walks terminate on the non-neighbor
conductors, which results in large stochastic error on the cor-
responding trivial coupling capacitances. This then causes the
large discrepancy or error on the off-diagonal matrix entries
shown in Fig. 12. In this experiment, we see that for the major
coupling capacitances (between conductors not far from each
other) the proposed FRW method has satisfied accuracy (less
than 10% discrepancy to QBEM’s result). If for some reason
we shall pursue more accuracy of coupling capacitance, we
can modify the termination criterion of FRW algorithm, or
equivalently run more random walks.

It should be pointed out, that the deterministic method may
exhibit performance advantage while extracting the capaci-
tance matrix. It happens when the advanced direct equation
solver [26], instead of iterative equation solver as in QBEM,
is employed. Not only the generation of coefficient matrix but
also the matrix factorization, which is the most time consum-
ing part, needs to be executed only once. Therefore, the large
runtime benefit can be attained. On the contrary, there is less
benefit for the FRW-based method to make the capacitance-
matrix extraction. Only the space management structure can
be built once for a structure. It saves some total runtime of
the FRW-based method.

E. Results of Multi-Dielectric Cases

For the multi-dielectric cases, we have built the surface
Green’s function and weight value tables with the TechGFT
program [11], which are needed by the FRW algorithms. The
results of QBEM and our methods are listed in Table VI. For
the larger cases, the results of QBEM are not available. From
the table, we can see that self-capacitances obtained by both
methods have less than 2.5% discrepancy. And, the speedup
of the proposed algorithm (Alg. 6) to QBEM is up to 29×.
While comparing the different versions of the FRW method,
we see that Alg. 6 has up to 91× speedup over Alg. 1, which
is similar to the situation of single-dielectric cases. The results
demonstrate that the proposed techniques are also suitable for
the extraction of multi-dielectric structures.

F. Summary and Discussion

We first summarize the numerical results with the following
remarks.

Remark 1: The proposed FRW techniques are able to accu-
rately handle the general non-Manhattan conductor structure.
Their capacitance results are validated for accuracy, and well
correlate with those of QBEM [5].

Remark 2: Compared with the approach traversing non-
Manhattan conductors for constructing the transition cubes,
the proposed space management technique with domination
judgement is 2.9×–84× faster. The largest speedup is achieved
for a test case with 1240 non-Manhattan conductor blocks.

Remark 3: The strategy of using rotated transition cubes
could bring at most 2.1× speedup, compared with the
approach only using Manhattan transition cubes. Along with
proposed space management technique based on the domi-
nation judgement of non-Manhattan conductor, the proposed
algorithm is up to 96× faster than the simply extended FRW
algorithm.

Remark 4: Compared with the approach using an additional
grid spatial structure, the modified space management tech-
nique with candidate list brings up to 4× speedup to the FRW
procedure, while consuming much less memory.

Remark 5: For the test cases, the proposed FRW algorithm is
up to 39× faster than QBEM, with several orders of magnitude
less memory usage.

Remark 6: Although the proposed method has to scarify
some runtime for the ability of handling non-Manhattan geom-
etry, its runtime overhead is about proportional to the ratio of
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TABLE VI
COMPARISON OF A FAST BEM SOLVER AND THE PROPOSED FRW METHODS FOR MULTI-DIELECTRIC CASES

non-Manhattan conductor blocks in the simulated structure.
This means we scarify little runtime overhead for the structure
with few non-Manhattan conductors.

From the results we see that the strategy of rotating the
transition cube does not bring large speedup. It actually can
be slightly slower than the algorithm only using Manhattan
transition cube, if the simulated structure includes very few
non-Manhattan conductors. This seems not consistent with the
remarkable increase of touching area as shown in Fig. 7(a).
Noting that in [19] the rotated transition cube could not cause
so large increase of touching area on the cylindrical surface of
TSV, but it brings more speedup to the FRW algorithm. The
reason of this is related to how frequently the rotated transition
cube is used. For the test cases in this paper, only when the
current position of random walk is near a nonaligned side face
of conductor the rotated transition cube can be used. However,
in each test case the sum of area of nonaligned side faces only
counts for a small portion of the total surface area of conduc-
tors. As for the TSV case in [19], there are very large and
tall cylindrical surfaces. It is relatively often that the current
position is near a cylindrical surface. So, the strategy of rotat-
ing the transition cube is more frequently used, resulting in
larger speedup in [19] than what we have seen in this paper.
For a structure with more non-Manhattan conductors and each
with larger nonaligned side faces, the proposed FRW algorithm
using rotated transition cubes would show more speedup to the
FRW algorithm only using Manhattan transition cubes.

It should be pointed out that in the simulation of structures
in analog/RF circuit, package or FPD design, the coupling
capacitances are sometimes needed. Although the FRW-based
methods cost more runtime for calculating a coupling capaci-
tance to the same accuracy as the self-capacitance, it does not
mean that they will lose the advantages over the deterministic
methods. In [11] and [19], we have shown that while attain-
ing good accuracy on some major coupling capacitances the
FRW-based methods are still much faster than the fast BEM
solvers. This advantage of runtime becomes more prominent in
the situation where a large-scale structure is simulated. On the
other hand, it is also not free to make the deterministic method
achieving high accuracy on coupling capacitance. As shown
in [19], the demand of accurate coupling capacitance usu-
ally means denser or more careful panel discretization, which
causes the increase of runtime or is just difficult to achieve.
On the contrary, the FRW-based method is a discretization-free

and embarrassingly parallel method. So, it is more stable and
easier to attain good accuracy of coupling capacitance.

V. CONCLUSION

Efficient techniques are proposed to handle the non-
Manhattan conductors in the FRW-based capacitance extrac-
tion. The proposed techniques enable generating the Gaussian
surface and constructing the transition cubes for the structure
including non-Manhattan conductors. By modifying the dom-
ination judgment, the space management based on candidate
list is extended for the non-Manhattan conductor structure, and
brings large acceleration to the capacitance extraction. The
strategy of using rotated transition cube is also investigated,
with corresponding space management technique proposed.
With these techniques, an FRW method for the capacitance
extraction of non-Manhattan conductor structure has been
developed. The method is advantageous for handling large IC,
package or FPD structures with non-Manhattan conductors.

The proposed techniques and the related test cases will be
added to the future version of RWCap program, which will be
shared on the website of the authors.
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