
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 10, OCTOBER 2013 1633

Efficient Space Management Techniques for Large-Scale
Interconnect Capacitance Extraction With Floating

Random Walks

Chao Zhang and Wenjian Yu, Senior Member, IEEE

Abstract—In the capacitance extraction with the floating random
walk (FRW) algorithm, the space management approach is required to
facilitate finding the nearest conductor. The Octree and grid-based spatial
structures have been used to decompose the whole domain into cells and
to store information of local conductors. In this letter, the techniques with
the distance limit of cell and only searching in cell’s neighbor region are
proposed to accelerate the construction of the spatial structures. A fast
inquiry technique is proposed to fasten the nearest conductor query. We
also propose a grid–Octree hybrid structure, which has advantages over
existing structures. Experiments on large very large scale integration
structures with up to 484 441 conductors have validated the efficiency of
the proposed techniques. The improved FRW algorithm is faster than
RWCap for thousands times while extracting a single net, and several to
tens times while extracting 100 nets.

Index Terms—Capacitance extraction, floating random walk (FRW),
space management, spatial data structure, very large scale integration
(VLSI) circuit.

I. Introduction

The floating random walk (FRW) algorithm [1]–[6] is a ma-
jor field-solver method for capacitance extraction. Compared
with the deterministic algorithms (e.g., boundary element
method [7]), the FRW algorithm has the advantages of lower
memory usage, better scalability, and tunable accuracy.

Today, the FRW algorithm has become the kernel of com-
mercial capacitance solvers (such as QuickCap). With parallel
computing techniques, they have been applied to the block- or
chip-level extraction task in the sign-off verification of very
large scale integration (VLSI) circuits. Recently, a general
FRW algorithm [3] and a hierarchical FRW algorithm [4] were
proposed to deal with arbitrary dielectric configuration and for
a fabric-aware extraction problem, respectively. In 2013, an
FRW algorithm [5] was proposed for the interconnect struc-
ture with multilayered dielectrics, where the cross-interface
transition probability and weight value are precharacterized
for a given process technology. The algorithm was further
accelerated with a comprehensive variance reduction scheme,
and has been developed to a program called RWCap [5].
Although employing an Octree-based space management ap-
proach, RWCap is not efficient for handling the large-scale
structures with thousands of conductors. Another approach
based on an array data structure has been used, and achieved
remarkable speedup over the K-D tree based technique [6].
However, it is not well compared with other techniques, and
its details are not published. In [8], several data structures
were discussed to speed up the distance queries in the FRW

Manuscript received January 19, 2013; revised April 3, 2013; accepted
July 15, 2013. Date of current version September 16, 2013. This work was
supported in part by NSFC under Grant 61076034, the Beijing Natural
Science Foundation under Grant 4132047, the Opening Foundation of
ASIC and System State Key Laboratory (Fudan University), and the
Tsinghua University Initiative Scientific Research Program. This paper was
recommended by Associate Editor A. Elfadel.

The authors are with the Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China (e-mail: eric.3zc@gmail.com;
yu-wj@tsinghua.edu.cn). (Corresponding author: W. Yu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2013.2273985

Fig. 1. Two random walks in the FRW algorithm.

algorithm. But, they either have large space complexity, or
lack actual implementation.

Below, preliminaries of FRW based capacitance extraction
and the space management are reviewed in Section II. Three
accelerating techniques for the construction and inquiry of
space management structure are proposed in Section III. After
that, the improved Octree-based approach and a grid-Octree
hybrid structure are proposed. Numerical results are given in
Section V to validate the efficiency of proposed techniques.

II. Background

The FRW algorithm originates from

φ(r) =
∮

S

P(r, r(1))φ(r(1))dr(1) (1)

where φ(r) is the electric potential at point r, S is the boundary
of a domain enclosing point r, and P(r, r(1)) is called surface
Green’s function. The domain is called the transition domain,
because (1) expresses the transition of a calculated quantity
from the point inside the domain to its boundary. P(r, r(1))
is of nonnegative value for any point r(1) on S, and can
be regarded as the probability density function for random
sampling. To compute the capacitances related to conductor
i, a Gaussian surface Gi is constructed to enclose it (Fig. 1).
With the Gauss theorem, charge Qi of conductor i becomes [5]

Qi =
∮

Gi

F (r)g
∮

S(1)
ω(r, r(1))P (1)(r, r(1))φ(r(1))dr(1)dr (2)

where F(r) is the dielectric permittivity at point r, g is a
constant, and function ω(r, r(1)) is called the weight value
[1], [5]. Here, P(1) denotes the surface Green function for
S(1) enclosing r. With the Monte Carlo (MC) method, Qi

can be estimated as the statistical mean of sampled values
on Gi, which is further the mean of sampled values on S(1)

multiplying the weight value. With (1) substituted into (2)
recursively, the above sampling procedure repeats until the
potential of the sample point is known. This ends a walk,
which may include several hops as shown in Fig. 1. With
sufficient walks starting from the Gaussian surface, Qi can be
calculated accurately. It is revealed that the statistical mean
of the weight values for the walks terminating at conductor
j approximates the coupling capacitance Cij (j �=i) between
conductors i and j.

Although the surface Green function for a spherical tran-
sition domain has a simple analytical expression, we only
consider the cubic transition domain that is well suited to the
Manhattan-shaped interconnects in a VLSI circuit. The surface
Green function only depends on the relative position of r(1).
So, we can precalculate and tabulate the sampling probability
and weigh value on a unit-size cube.

It should be pointed out that the major error of the FRW al-
gorithm is the statistical error. The capacitance result obtained
with n walks approximately obeys the normal probability
distribution. Its standard deviation (Std) can be estimated with
the variance of the sample values according to the central limit
theorem. This Std is also called 1-σ error, which reflects the

0278-0070 c© 2013 IEEE

1634 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 10, OCTOBER 2013

Fig. 2. Point in cell, cell’s neighbor region, and calculating the nearest
distance.

accuracy of the capacitance result. In the FRW algorithm, the
1-σ error is checked after every certain number of walks.
Once it is below the specified accuracy goal, the algorithm
terminates.

A major step in each FRW hop is constructing a conductor-
free transition cube (Fig. 1). To be efficient, the cube should
be as large as possible. This asks for finding the nearest
conductor (Fig. 2). Since millions of hops are performed,
the distance to the nearest conductor should be calculated as
fast as possible. An Octree-based space management approach
was presented in [5] for this aim. It divides the whole 3-D
domain into organized small subdomains. Here, we call the
subdomain spatial cell. Each cell is attached with a candidate
list of conductors such that for any point in the cell its nearest
conductor is in the list. With this approach, the inquiry of
nearest conductor can be executed very quickly.

A primary operation for constructing the space management
structure is generating the candidate list for a cell. We shall
check the conductors one by one to see if they should be added
to the list. To be rigorous, we give the following definitions,
where xmin(·) and xmax(·) denote the minimum and maximum
x-coordinates of a cuboid, respectively.

Definition 4: The x-distance between a cuboid A and a
point P (x, y, z) is the larger one of xmin(A)−x and x−xmax(A).
The y-distance and z-distance between A and P are defined
similarly.

Definition 5: The distance between a cuboid A and a point
P is the maximum of their x-, y-, and z-distances.

Definition 6: The x-distance between two cuboids A and B
is the larger one of xmin(A) − xmax(B) and xmin(B) − xmax(A).
The y-distance and z-distance between A and B are defined
similarly.

Definition 7: The distance between two cuboids is defined
as the maximum of their x-, y-, and z-distances.

Note in our problem, there are only Manhattan geometries.
It is assumed that each spatial cell or conductor is a cuboid,
and can be described by its two opposite vertices. We empha-
size that the distances defined above can be a negative value,
which is different from the ∞-norm. Below, d(,) denotes the
distance between two cuboids or a cuboid and a point.

Definition 8: T is a spatial cell, and B1, B2 are two con-
ductors. If for any point P∈T, and P/∈B1∪B2, d(P, B1) ≤ d
(P, B2), we say B1 dominates B2 regarding T.

The domination relationship is the key to generate the
candidate list. If B1 dominates B2 regarding cell T, and B1 is
already in T’s candidate list, B2 should not be inserted into the
list. This is because, for any point in cell T, its distance to B1 is
not larger than that to B2. So, B2 can be ignored while finding
the nearest conductor for any point in the cell. In Algorithm 4
in [5], the procedure of candidate checking is described.

III. Three Accelerating Techniques

A. Improving the Candidate Checking With Distance Limit
For a large-scale problem including thousands of con-

ductors, generating a candidate list through checking all
conductors consumes large computing time. After giving two
definitions, we propose a technique to reduce the time for
generating the candidate list.

Fig. 3. Four topological relationships between a cell T and a conductor B.
For the four cases, we have d(T, B) = x3 − x2.

Algorithm 1 CandidateCheck (conductor B, cell T)

1: d: = d(B, T); l is the size of T;
2: If d ≥ L(T) then return;
3: For each b in the candidate list of T do
4: If b dominate B then return;
5: Elseif B dominate b then
6: Remove b from the candidate list of T;
7: Endif
8: Endfor
9: Add B to the candidate list of T;

10: If (d + l) < L(T) then L(T): = d + l;

Definition 9: The size of a cuboid cell is defined as the
maximum of the cell’s length, width, and height.

Definition 10: The distance limit of a cell is the minimum
distance between the cell and a conductor in its candidate list,
plus the cell’s size. L(T) denotes the distance limit of cell T.

In Fig. 3, we show four typical relationships between a
cell and a conductor. In all these cases, d(T, B) = x3 – x2,
which may be negative. If a cell is intersected, but not fully
occupied, by a conductor, the absolute value of their distance
will be less than the size of cell [Fig. 3(b) and (c)]. This means
that the distance limit of cell must be positive. Otherwise
[Fig. 3(d)], the cell is not valid because it is impossible that
the random walk would stop in it. So, we shall only consider
the candidate list for the cells as shown in Fig. 3(a)–(c). This
derives Theorem 1.

Theorem 7: For any valid cell T in the space management
structure, its distance limit L(T) > 0. And, if the cell is inter-
sected by a conductor, L(T) ≤ l, where l is the size of T.

Actually, the distance limit L(T) is an upper bound of the
distance to nearest conductor from any point in cell T. While
generating the candidate list, the value of T’s distance limit
dynamically changes. During this course, if the distance of
a conductor B is not less than the distance limit, i.e., d(T,
B) ≥ L(T), B must have been dominated by a conductor B0
in the candidate list, which fulfills d(T, B0) + l = L(T). This is
because, for any point P in the conductor-free space within
T, d(P, B0) ≤ d(T, B0) + l = L(T). Therefore, d(P, B0) ≤ d(T,
B) ≤ d(P, B), and B0 dominates B according to Definition 5.
This results in Algorithm 1, where the candidate checking can
be canceled for some conductors.

B. Incomplete Candidate List
If we do not construct the largest transition cube, more

conductors can be ignored for generating the candidate list.
We may just check the conductors in a cell’s neighbor region
if during the random walk we need not generate the largest
transition cube. This produces an incomplete candidate list for
the cell. In this letter, we define the neighbor region of a cell
by inflating it with the extension size dnb (Fig. 2). During
the random walk, the minimum distance between the current
point and the candidate conductors should be compared with
the distance between the point and the boundary of neighbor

ZHANG AND YU: SPACE MANAGEMENT TECHNIQUES FOR LARGE-SCALE INTERCONNECT CAPACITANCE EXTRACTION 1635

region. The smaller (such as db rather than d3 in Fig. 2) should
be used to guarantee that the transition cube is conductor-free.

Because the distance limit is an upper bound of the distance
to nearest conductor, we can derive in what situations the
incomplete candidate list is actually a complete one.

Theorem 8: After generating the candidate list with cell T’s
neighbor region with extension size dnb, we get T’s distance
limit L(T). If L(T) ≤ dnb, the candidate list is a complete one,
with which we can generate the largest transition cube.

Corollary 1: For a cell T intersected with the conductor, if
dnb ≥ l, where l is T’s size, the candidate list generated with
T’s neighbor region is a complete one.

We still use Algorithm 1 to generate the incomplete can-
didate list by only checking the conductors in the neighbor
region. Alternately, we may check all conductors but set the
initial distance limit to be dnb instead of the infinity. Since
the distance obtained by inquiring the incomplete candidate
list is not the largest, it would increase the number of hops
in a walk. However, as shown in Section V, this drawback is
marginal if setting a suitable value of dnb.

C. Reducing the Time for Inquiring the Candidate List
To find the nearest conductor from the current location of

random walk, we need to find the cell containing the location
and then traverse its candidate list to calculate the minimum
distance. The computing time of traversal is proportional to the
number of visited items. We propose a strategy to terminate
the traversal earlier by sorting the candidate conductors in
the ascending order of their distance to the cell. Suppose
we traverse cell T’s candidate list {Bi} for calculating the
minimum distance from point P in T. If after visiting the
first j items, d(Bj+1, T) ≥ dmin,j = mini≤j{d(P, Bi), we can
derive d(P, Bj+1) ≥ d(Bj+1, T) ≥ dmin,j . This means Bj+1 and
its succeeding items do not affect the value of the minimum
distance since d(Bj+k+1, T) ≥ d(Bj+k, T), k = 1, 2, So,
the traversal can be terminated immediately.

Because the candidate list is usually not long, and we cal-
culate and sort the distances between a cell and its candidates
in the construction stage, the overhead of this fast inquiry
technique is negligible. With this technique, the inquiring time
of the space management structure can be remarkably reduced.

IV. Spatial Structures and Approaches

A. Improved Octree Based Approach
We first consider the construction of the Octree structure.

While inserting each conductor into the Octree, we must
traverse it from the root node to a leaf node. In the following
presentation, we regard the cell’s attributes as the node’s
attributes. With the distance limit defined for each, unnec-
essary judgments of domination relationship can be avoided.
Algorithm 2 describes the procedure of inserting a conductor
to an Octree node. The whole structure is constructed by
inserting all conductors one by one to the root node.

Because the conductors are randomly inserted into the root
node, redundant candidate checking still exists. This can be
further reduced by the approach of incomplete candidate list.

When finding the nearest conductor in the FRW procedure,
the traversal of Octree ends at a leaf node containing the
current point. The left job is to traverse the candidate list of the
leaf node for calculating the minimum distance whose time is
proportional to the length of the candidate list. The fast inquiry
technique in Section III-C is helpful to reduce the time.

B. Two Grid Based Approaches
The first step of inquiring the space management structure

is to locate the cell containing the current point. To reduce

Algorithm 2 InsertToOctree (conductor B, node T)

1: If d(B, T) ≥ L(T), then return;
2: If T is a leaf node then
3: CandidateCheck(B, T); //Algorithm 1
4: If length of T’s candidate list > thres1 and size of

T > thres2 then
5: Divide T equally into 8 child nodes: T1, . . . , T8;
6: For each b in the candidate list of T do
7: For i = 1 to 8 do
8: InsertToOctree(b, Ti);
9: Endfor

10: Endfor
11: Endif
12: Else
13: For each child node c of T do
14: InsertToOctree(B, c);
15: Endfor
16: Endif

its cost, a 3-D array representing the uniform partition of the
whole domain is useful [6]. We call this the grid structure.
Note that the number of conductors in each cell is not uniform,
and so is the length of candidate list. Defining smaller cell size
reduces the maximum length of candidate list, but causes a
large number of cells. If a complete candidate list is generated
for every grid cell, the construction time of the grid will be
very huge.

To reduce the construction time, a strategy different from
the idea of using candidate list can be adopted [6]. Only
the intersected conductors are recorded for each cell without
candidate checking. During the random walk, the conductors
in the current cell and its adjacent cells are inquired to cal-
culate the distance to conductor, similar to the approach with
an incomplete candidate list. Because redundant conductors
are handled, the random walk will perform slower with this
approach.

We can also generate the candidate list for each cell if we
only search in a neighbor region, which includes the cell’s
adjacent cells. For the problem with densely routed VLSI
interconnects, this grid structure actually has the complete
candidate list for many cells (according to Corollary 1). This
largely reduces the construction cost, but does not degrade
the efficiency of performing random walks. For the cell with
too many candidates, it can be divided as a second-level grid.
However, more levels of division should be avoided because
it removes the advantage of grid structure for locating a point.

C. Hybrid Approach Using Grid and Octree
The distance limit is defined with the maximum dimension

of cell. The pruning effect of distance limit can be weakened
if the cell has a large aspect ratio, because with a same size of
cell, the cube-shape cell has the largest volume. This occurs
when the Octree-based approach handles the large-scale VLSI
layout with a much larger lateral dimension. To overcome
this drawback, we propose a hybrid approach using both
the grid and Octree structures. First, the grid-based approach
with a candidate list is used to represent the whole domain,
where each grid cell is a cube. Then, the Octree structure is
constructed for each grid cell.

The size of grid cell should be set as a large value (e.g.,
the height of the whole domain) so that the incomplete
candidate list is almost a complete one and the expense of

1636 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 10, OCTOBER 2013

Algorithm 3 GenerateGridOctree

1: Suppose G is a 3-D array storing nx × ny × nz cells;
2: x0, y0, z0denote the minimum coordinates of the whole

domain;
3: s: = the size of cell; Set the distance limit of each cell in

G to s;
4: For each conductor B do
5: Get B’s extreme coordinates: (xmin,ymin,zmin), (xmax,

ymax,zmax);
6: ix1 := max(
(xmin − x0)/s�, 1); ix2 := min(�(xmax−

x0)s
 + 1, nx);
7: iy1 := max(
(ymin − y0)/s�, 1); iy2 := min(�(ymax −

y0)/s
 + 1ny);
8: iz1 := max(
(zmin − z0)/s�, 1); iz2 := min(�(zmax −

z0)/s
 + 1, nz);
9: For i from ix1 to ix2, j from iy1 to iy2, k from iz1 to

iz2 do
10: CandidateCheck(B, G[i][j][k]); //Algorithm 1
11: Endfor
12: Endfor
13: For each grid cell Ei do
14: Define an Octree root node Ti for the domain of Ei;
15: For each conductor Bi,j in Ei’s candidate list;
16: InsertToOctree(Bi,j, Ti); //Algorithm 2
17: Endfor
18: Endfor

TABLE I

Variable Parameters in the Space Management Approaches

constructing the first-level grid is small. Algorithm 3 describes
the construction procedure of the grid–Octree hybrid structure.

V. Numerical Results

Four large VLSI layouts are tested. The first one is a
1000 × 1000 cross-over structure. Each wire has dimensions
of 14 nm × 28 μm × 14 nm. The distance between two metal
layers is 86 nm. The second case is an actual design, called
FreeCPU, based on the 180-nm technology with the minimum
wire width (wmin) of 200 nm [5]. It includes 37 062 conductor
blocks in five layers, which forms 3036 nets. The dimensions
of whole structure are about 700 μm × 700 μm × 9.4 μm. The
third case is an artificially created layout based on the 45-nm
technology with wmin of 70 nm. It includes 101 595 conductor
blocks in three layers with random dimensions and distribu-
tion. The last case is a larger case, including 484 441 conductor
blocks. Its parameters are similar to FreeCPU. The proposed
space management techniques are implemented in the C++
program RWCap [5]. In Table I, we list the parameters of the
spatial structures.

The experiments are carried out on a Linux server with Intel
Xeon E5-2650 8-core CPU of 2.0 GHz. All results are obtained
from the execution of serial computing. The accuracy criterion
of FRW algorithm is set to 0.5% 1-σ error.

TABLE II

Construction Time of Octree Structure (in Unit of Second)

TABLE III

Efficiency of Fast Inquiry Technique

Fig. 4. The curves of the construction time (a), the average time for a million
walks (b), the average time for a million hops (c), and the average number
of hops per walk (d), with varied dnb in the Octree based approach.

A. Validating the Three Accelerating Techniques
We use the Octree structure to demonstrate the efficiency

of the accelerating techniques. In the experiment, nt = 21,
lt = 40wmin, and dnb = 25wmin. The total runtime of the FRW
algorithm includes two parts: the time for constructing the
space management structure and the time for the random
walk procedure. The original Octree based approach in [5] is
denoted as Octree(O). Octree(DL) and Octree(ICL) denote the
versions using the distance limit and using both distance limit
and incomplete candidate list, respectively. The construction
time of the Octree structure is listed in Table II, where the
number of Octree nodes and the minimum size of cell (lmin)
are also given. From the table, we see that the distance limit
brings huge acceleration. The incomplete candidate list further
reduces the construction time for 4X. For Case 4, Octree(O)
cannot finish the construction in a week, while Octree(ICL)
costs only 17 s.

To validate the proposed techniques on the inquiry of space
management structure, we randomly extract 100 nets for each
case. The distance limit does not affect the inquiry time,
and the incomplete distance list in this experiment affects it
little. The results are listed in Table III, where FRW(O) and
FRW(FastInq) denote the FRW algorithms without and with
the fast inquiry technique in Section III-C, respectively. The
average numbers of walks and hops per walk, and the average
time for performing walks for extracting a net are listed.

ZHANG AND YU: SPACE MANAGEMENT TECHNIQUES FOR LARGE-SCALE INTERCONNECT CAPACITANCE EXTRACTION 1637

Fig. 5. Comparison of four space management approaches for the tradeoff
of memory usage and the time for performing random walks.

TABLE IV

Comparison of RWCap and RWCap2

TABLE V

Comparison of RWCap2 and a Commercial Solver (Capacitance

in Unit of 10−18
F, Time in Unit of Second)

It is demonstrated that the proposed technique gets over 2.1X
speedup for larger cases.

To evaluate the effect of dnb, we plot the curves of the
construction time, the average time of million walks, the
average time of million hops, and the average hop numbers
of a walk in Fig. 4. It shows that if dnb is larger than 25wmin,
there would be no difference in the walking procedure. As dnb

decreases, the number of hops per walk increases quickly. It
makes the time per walk increase. So, 25wmin is chosen as an
optimal dnb to balance the construction time and the time for
random walk.

B. Evaluating Different Space Management Approaches
Among the variable parameters listed in Table I, we set

dnb to 25wmin, and ltt to the height of the simulated domain.
The left two variables are lt and nt . Note that dnb and lt
should be measured in terms of wmin. This makes their effect
changes little for cases under different process technologies.
We have investigated the trends of the construction time, time
of random walk procedure, and memory usage for Case 2,
with different spatial structures. Numerical results reveal that
the construction time always decreases when lt or nt increases.
So does the memory usage. The time for the random walk
procedure usually increases with lt or nt . There is a tradeoff
between the memory usage or construction time and the
random-walk time. We plot the memory usage and time for
performing random walk in Fig. 5 under various parameter
settings. From it we see that with same memory (∼20 MB),
the grid–Octree hybrid approach makes 12% reduction of the
random-walk time over the Octree, and 2.1X reduction over
the grid without candidate list. With the same performance of
random walk (∼5 s), the memory cost of the hybrid structure
is less than half of others.

C. RWCap2 With Hybrid Approach Using Grid and Octree
The RWCap using the grid–Octree hybrid structure is called

RWCap2. We compare it with RWCap [5]. The construction
time and the random-walk time for extracting 1 net and
multiple nets are listed in Table IV. Case 4 is dropped since
it causes unbearable construction time of RWCap. The table
shows, for extracting 1 net RWCap2 is up to 7829X faster
than RWCap, and for extracting 1000 nets the speedup is from
2.8 to 26. Comparing Tables IV and II, III, we can see the
advantages of the grid–Octree hybrid structure over the Octree
structure. Note the former includes fewer nodes, e.g., 35 653
for Case 2.

RWCap2 is also compared with an advance commercial
FRW solver on a Linux Server with AMD 2.4 GHz CPU
with several crossover cases. For each one, the middle wire
in the M2 layer is extracted. The results are listed in Table V.
From the data of time/walk, we see that the space management
approach used in RWCap2 brings 3X speedup over the other
solver. For the total runtime, RWCap2 has larger speedup
because its FRW procedure converges faster [5].

In the above experiments, we have omitted the dielectric
configuration. While for the actual cases with multiple di-
electrics, the technique in [5] can be used. This affects the
space management approaches little, except that the constraint
of dielectric interfaces should be considered while constructing
the transition cube during random walks. We have used
RWCap2 to extract these multidielectric cases. The results
show that the proposed techniques bring 2X speedup to the
random walk procedure. It is similar to the results of single-
dielectric cases (Table III).

VI. Conclusion

Efficient techniques are proposed to largely accelerate the
construction of space management structures, and to facilitate
the fast nearest conductor query in the FRW based capacitance
extraction. A new grid–Octree hybrid structure is proposed to
achieve better tradeoff between the costs of space management
and the efficiency gain on the random walk procedure. Large
single- and multidielectric VLSI interconnect structures have
been used to validate the efficiency of proposed techniques.

References

[1] Y. L. Coz and R. B. Iverson, “A stochastic algorithm for high speed
capacitance extraction in integrated circuits,” Solid State Electron., vol.
35, no. 7, pp. 1005–1012, Jul. 1992.

[2] S. H. Batterywala, R. Ananthakrishna, Y. Luo, and A. Gyure, “A
statistical method for fast and accurate capacitance extraction in the
presence of floating dummy fills,” in Proc. 19th Int. Conf. VLSI Design,
Jan. 2006, pp. 129–134.

[3] T. A. El-Moselhy, I. M. Elfadel, and L. Daniel, “A capacitance solver
for incremental variation-aware extraction,” in Proc. ICCAD, Nov. 2008,
pp. 662–669.

[4] T. A. El-Moselhy, I. M. Elfadel, and L. Daniel, “A hierarchical floating
random walk algorithm for fabric-aware 3-D capacitance extraction,” in
Proc. ICCAD, Nov. 2009, pp. 752–758.

[5] W. Yu, H. Zhuang, C. Zhang, G. Hu, and Z. Liu, “RWCap: A floating
random walk solver for 3-D capacitance extraction of VLSI intercon-
nects,” IEEE Trans. Computer-Aided Design, vol. 32, no. 3, pp. 353–366,
Mar. 2013.

[6] G. Rollins. (2010, Jul.). “Rapid3D 20X performance improvement,”
Online presentation of Synopsys, Inc. [Online]. Available: http://www.
synopsys.com/Community/UniversityProgram/Pages/Presentations.aspx

[7] W. Yu, X. Wang, Z. Ye, and Z. Wang, “Efficient extraction of frequency-
dependent substrate parasitics using direct boundary element method,”
IEEE Trans. Computer-Aided Design, vol. 27, no. 8, pp. 1508–1513,
Aug. 2008.

[8] N. Bansal, “Randomized algorithms for capacitance estimation,” Indian
Instit. Technol. Bombay, Mumbai, India, Tech. Rep., Apr. 1999.

