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RWCap: A Floating Random Walk Solver for 3-D
Capacitance Extraction of Very-Large-Scale

Integration Interconnects
Wenjian Yu, Senior Member, IEEE, Hao Zhuang, Chao Zhang, Gang Hu, and Zhi Liu

Abstract—A floating random walk (FRW) solver, called
RWCap, is presented for the capacitance extraction of very-
large-scale integration (VLSI) interconnects. An approach,
including the numerical characterization of the cross-interface
transition probability and weight value, is proposed to accelerate
the extraction of structures with multiple dielectric layers. A
comprehensive variance reduction scheme based on the impor-
tance sampling and stratified sampling is proposed to improve
the convergence rate of the FRW algorithm. Finally, the space
management technique using an octree data structure and the
parallel computing technique are presented to further improve
the efficiency. Numerical experiments are carried out with the test
cases generated under the 180 and 45-nm process technologies.
They demonstrate that the proposed multidielectric FRW
algorithm achieves up to 160× speedup over the FRW algorithm
using spherical transition domains to cross dielectric interface,
with very small memory overhead. The variance reduction
techniques further bring 3× or more speedup without memory
overhead and the loss of accuracy. The RWCap also outperforms
other existing FRW algorithm and fast boundary element method
solvers in terms of computational time or scalability. The
experiments on an 8-core CPU machine show that the parallel
RWCap is over 6× faster than its serial-computing version.

Index Terms—Capacitance extraction, floating random walk
(FRW), interconnect modeling, multidielectric structure, parallel
computing, variance reduction.

I. Introduction

UNDER THE nanometer process technology, accurate
extraction of interconnect capacitance with 3-D field-
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solver algorithm becomes increasingly important for high-
performance integrated circuit (IC) design. The field-solver
algorithm for capacitance extraction can be classified into
two categories: 1) the conventional deterministic algorithms
based on boundary element method (BEM) [1]–[6], finite
element method (FEM) [7], [8], etc., and 2) the floating
random walk (FRW) algorithm with stochastic nature [9]–[20].
The deterministic algorithms are fast and accurate, but not
suitable for large-scale structures due to the large demand of
computational time and the bottleneck of memory usage.

The FRW algorithm for capacitance extraction, presented as
a 2-D version, was proposed in 1992 [9]. Its basic idea is to
convert the calculation of conductor charge to the Monte Carlo
(MC) integration performed with floating random walks. In the
FRW algorithm, each walk starts from a point on a Gaussian
surface enclosing the master conductor and terminates on a
conductor surface after some successive hops. For each hop of
a walk, a conductor-free square (or cube in 3-D problem) cen-
tered at current location is constructed and the hop reaches a
random point on the boundary of square. The spatial transition
of hop obeys a probability distribution (called surface Green’s
function) on the square boundary. In a general 3-D problem, if
the cubic transition domain encloses a homogeneous dielectric,
the surface Green’s function for the hop can be calculated
analytically. The transition probability is usually calculated
and tabulated offline, and then recalled during the actual walk.
Therefore, the FRW procedure can be performed very quickly.
The FRW algorithm does not rely on assembling any linear
equation system, and has several computational advantages
over the deterministic methods [1]–[8]: lower memory usage,
more scalability for large structures, tunable accuracy, and
better parallelism. The 3-D FRW algorithm for capacitance
extraction has been developed and applied to the design and
analysis of very-large-scale integration (VLSI) circuits [10]–
[12]. An academic FRW-based capacitance extractor CAPEM
was also developed [13]. In 2005, Batterywala et al. proposed
several techniques to reduce the variance of MC procedure
in the FRW-based capacitance extraction [14], and further
reduce the total computing time. The FRW algorithm was also
extended to handle the floating dummy fills [15].

In 2008, a technique based on the FRW algorithm was
proposed to enable fast incremental variational capacitance
extraction [16]. A general FRW algorithm was also proposed
in [16] for arbitrary dielectric configuration, where the whole
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problem domain was covered by a set of cubic transition
subdomains for which the transition probability is numerically
calculated online, rather than offline. This technique largely
reduces the number of hops for a FRW walk, with the overhead
of calculating and storing the transition probabilities for a lot
of transition domains. The general FRW algorithm can be very
time-consuming for a large-scale 3-D problem. A hierarchical
FRW (HFRW) algorithm was later proposed for a fabric-aware
extraction problem [17], where the topological variation rather
than the common nontopological variation was considered.
Note that the HFRW is not suitable for the general problem
of capacitance extraction, because an arbitrary structure cannot
be regarded as the composition of predefined motif structures.
Different from most of FRW-based capacitance solvers which
employ the cubic transition domain to suit the Manhattan
geometry of VLSI interconnects, the technique using spherical
transition domains was investigated in [18].

Although the FRW algorithm is able to handle the
interconnect structure embedded in actual VLSI multidielectric
technology [12], [13], there is little literature that reveals
the algorithm details of the 3-D FRW for multidielectric
capacitance extraction. Because the transition probability for
a cubic domain with inhomogeneous dielectric cannot be
derived analytically, extending the single-dielectric algorithm
[9], [11] to the multidielectric structure is not straightforward.
An approach to handle the multidielectric structure is using
the spherical transition domain [19], because the transition
probability for the spherical domain with two hemispheres
having different permittivities is analytically available [21].
However, for nanometer VLSI interconnects embedded in up
to 10 layers of dielectrics, this strategy will largely sacrifice the
efficiency because the walk stops frequently at the dielectric
interface. Another approach is to numerically characterize the
transition probability for the transition domain across dielectric
interface. This was first discussed in [22] for a Dirichlet
problem (not capacitance extraction), where a stochastic
algorithm was used to characterize the spherical transition
domains with arbitrary position of dielectric interface. It
should be pointed out that in most situations the sphere
transition domain does not suit the capacitance extraction of
VLSI interconnects. With the similar finite difference method
(FDM) as presented in [16], an efficient scheme was recently
proposed to characterize both the multidielectric surface
Green’s function and the weight value [20].

The aim of this paper is to present the algorithms em-
ployed in a FRW-based 3-D capacitance solver, called RWCap.
The solver is able to efficiently simulate the structures with
Manhattan geometry and multilayered dielectrics, which is the
major scenario for the capacitance extraction of VLSI inter-
connects. The main contributions of this paper are as follows.

1) An efficient approach is proposed for the capacitance ex-
traction with multilayered dielectrics, which utilizes the
numerically characterized surface Green’s function and
weight value for the cubic transition domain with two
dielectric layers. With the precharacterization procedure
for a given process technology, the proposed approach
accelerates the FRW-based extraction for up to 160×
with very small memory overhead.

2) A comprehensive variance reduction approach is pro-
posed to accelerate the convergence rate of the FRW
algorithm. The approach includes an importance sam-
pling based technique to minimize the variance of weight
value distribution, and a scheme combining it and the
stratified sampling (SS) technique. This approach brings
3× or more speedup to the proposed FRW algorithm for
multidielectric capacitance extraction, without memory
overhead and the loss of accuracy.

3) A parallel FRW algorithm on the multicore/multi-CPU
platform is proposed. A space management technique
and other implementation skills are presented to make
the FRW-based solver efficient while handling struc-
tures with large complexity. Numerical results show the
parallel RWCap achieves more than 6× speedup on a
machine with 8 CPU cores.

The rest of this paper is organized as follows. The basic
FRW algorithm for multidielectric problem [19] and the FDM
for characterizing the surface Green’s function for cubic transi-
tion domain are briefly introduced in Section II. The proposed
approach for multidielectric capacitance extraction is presented
in Section III, while the importance sampling technique and
the comprehensive variance reduction approach is proposed
in Section IV. The space management technique and the
technique for parallelization are presented in Section V. The
numerical results are given in Section VI, which validate the
efficiency of proposed techniques and compare RWCap with
a fast BEM-based solver. Finally, we draw the conclusions.
Some preliminary results of this paper were presented in [20].
We extend it with the second contribution, more numerical
results and comparisons, and more technical details.

II. Basic Floating Random Walk Algorithms

A. FRW Algorithm for Single-Dielectric Problem

The fundamental formula of the FRW algorithm is [9]

φ(r) =
∮

S

P(r, r(1))φ(r(1))dr(1) (1)

where φ(r) is the electric potential at point r, and S is a
closed surface surrounding r. P(r, r(1)) is called the surface
Green’s function. For a fixed r, P(r, r(1)) can be regarded as
the probability density function (PDF) for selecting a random
point r(1) on S. In this sense, φ(r) can be estimated by the
mean value of φ(r(1)), providing sufficient large number of
sample points r(1) on S are evaluated. If S is the surface of a
homogeneous cube centered at r, P(r, r(1)) only depends on
the relative position of r(1), and is not related to the size of
cube [9], [11]. More importantly, this Green’s function can be
derived analytically [11], and precalculated and stored as the
discrete probabilities for jumping to the discretized cells of
the cube surface.

In the situation that φ(r(1)) is unknown, we apply (1)
recursively to obtain the following nested integral formula:

φ(r) =
∮

S(1) P
(1)(r, r(1))

∮
S(2) P

(2)(r(1), r(2)) · · ·∮
S(k+1) P

(k+1)(r(k), r(k+1))φ(r(k+1))dr(k+1) · · · dr(2)dr(1)

(2)
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where S(i),(i =1,. . .,k+1) is the surface of the ith cube centered
at r(i−1). P (i)(r(i−1), r(i)), (i=1,. . .,k+1), are the surface Green’s
functions relating the potentials at r(i−1) to r(i). This can be
interpreted as a floating random walk procedure; for the ith hop
of a walk, the maximum conductor-free cube centered at r(i−1)

is constructed and then a point r(i) is randomly selected on the
cube surface according to the discrete probabilities obtained
with P (i)(r(i−1), r(i)). Note that, to obtain the probabilities, we
only need to consider the normalized unit-size cube for the ith
cube, and the corresponding positions of r(i−1) and r(i) in the
unit-size cube. The walk terminates after k hops if the potential
at point r(k) is known, e.g., it is on a conductor surface in the
problem of capacitance extraction. With the surface Green’s
function and derived sampling probabilities for a unit-size cube
calculated in advance [11], the major cost of random walk is
for geometric operations. After performing many walks, the
mean value of these estimates approximates φ(r) very well.

For extracting capacitances among conductors, the relation-
ship between conductor charge and potential is needed. So, a
Gaussian surface Gj is constructed to enclose conductor j (the
master conductor), and according to the Gauss theorem

Qj =
∮

Gj

�D(r) • n̂(r)dr =
∮

Gj

F (r)(−∇φ(r)) • n̂(r)dr (3)

where Qj is the charge on conductor j, F(r) is the dielectric
permittivity at point r, and n̂(r) is the normal direction of Gj

at r. With (1) substituted to (3), the following formula can be
derived

Qj =
∮

Gj

F (r)g
∮

S(1)
ω(r, r(1))P (1)(r, r(1))φ(r(1))dr(1)dr (4)

where the weight value

ω(r, r(1)) = −∇rP
(1)(r, r(1)) • n̂(r)

gP (1)(r, r(1))
(5)

where ∇r is the gradient operator with respect to r, and the
constant g satisfies

∮
Gj

F (r)gdr = 1. Now the first integral
in (4) can be interpreted as a stochastic sampling procedure
on Gj , and the second integral can be calculated with the
above FRW procedure based on (2). The only difference is
the weight value (5), which contributes to the estimated value
of Qj , and relates Qj to the conductor potentials (voltages)
through the FRW procedure. Thus, averaging the weight values
from many walks produces the self- and coupling-capacitances
of conductor j. Note that the calculation of weight value can
also be accelerated with a precharacterization process as that
for the transition probability.

The above deduction derives the FRW algorithm for capaci-
tance extraction (see Algorithm 1 in the next subsection). Note
that the total computing time of FRW algorithm is roughly

Ttotal = Nwalk · Nhop · Thop (6)

where Nwalk is the number of random walks/paths, Nhop is the
average number of hops in a walk, and Thop is the average
computing time for a hop. The techniques proposed in this
paper reduce Nwalk, Nhop and Thop so that they produce an
efficient FRW algorithm for capacitance extraction.

Algorithm 1 Basic FRW for multidielectric problem
1: Load the precomputed probabilities and weight values for single-

dielectric cubic transition domain;
2: Construct the Gaussian surface enclosing

master conductor j;
3: Cji := 0, ∀i; npath := 0;
4: Repeat
5: npath: = npath+1;
6: Pick a point r(0) on Gaussian surface, and then generate a single-dielectric

cubic transition domain T centered at it; pick a point r(1) on the
surface of T according to the precomputed probabilities, and then
calculate the weight value ω with the help of the precomputed

weight values;
7: While the current point is not on a conductor do
8: If the current point is on dielectric interface, construct

a sphere transition domain, otherwise construct a single-
dielectric cubic domain;

9: Pick a point on the domain surface, according to the
probabilities of cubic domain or sphere domain;

10: End
11: Cji := Cji + ω; // the current point is on conductor i
12: Until the convergence criterion is met
13: Cji := Cji/npath, ∀i;

Fig. 1. Shortest random walk in the multidielectric structure with the usage
of spherical transition domain.

B. Basic FRW Algorithm for Multidielectric Problem

The analytical surface Green’s function for the spheri-
cal transition domain with different hemispheres can help
the FRW to handle the situation with multiple dielectrics
[19], [21]. Since the single-dielectric FRW relies on that
the transition cube is within a single dielectric, the sphere
transition domain is used to continue the walk stopping at
dielectric interface. The resulting FRW algorithm is described
as Algorithm 1.

However, while extracting the actual interconnect structure
with multiple dielectrics, Algorithm 1 would induce many
hops in a walk, and thus is not efficient. Fig. 1 illustrates
an example of walk in the basic FRW algorithm.

C. Numerical Technique to Calculate Multidielectric Surface
Green’s Function

With the FDM, the transition probabilities can be calculated
for a transition cube with multiple dielectrics [16]. Suppose
there is a cubic domain with multiple dielectric layers, as
shown in Fig. 2. After discretization, the cube surface is
dissected into small panels. The transition probability we want
is the relationship of the potentials at the center point and a
surface panel.

In each homogeneous subdomain, the Laplace equation
holds

∇2φ =
∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2
= 0. (7)
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Fig. 2. Transition cube with multiple dielectrics.

At the dielectric interface, there is the continuity condition

ε+ ∂φ

∂z+
= ε− ∂φ

∂z− (8)

where ε+ and ε− are the permittivities of up and down
dielectrics, respectively. Using the FDM, the following matrix
equation is derived from (7) and (8):[

E11 E12 E13
O I2 O

E31 O D33

] [
φI

φB

φF

]
=

[
0

fB

0

]
(9)

where φI , φB, and φF are the potential unknowns on inner grid
points, the surface panels, and dielectric interfaces, respec-
tively. fB is the boundary potentials, which may be regarded
as the Dirichlet boundary condition. The E matrices are sparse
finite difference matrices discretizing the Laplace operator.
The third block row of (9) is derived from (8), and therefore
D33 is a diagonal matrix. And, I2 is an identity matrix. We
then have

φI = −(E11 − E13D
−1
33 E31)−1E12fB. (10)

It expresses the relationship between the inner points and the
boundary points. Suppose the center of the cube is the kth
inner grid points. Then, the potential of center point is

φk = eT
k φI = −((E11 − E13D

−1
33 E31)−T ek)T E12fB (11)

where ek denotes a column vector where the kth element is 1
and otherwise 0. From (11), we can see that the row vector

Pk = −((E11 − E13D
−1
33 E31)−T ek)T E12 (12)

represents the discrete probabilities for transition from the
center point to the boundary panels, and is what we want.

The numerical technique can be generalized to consider
different boundary conditions, such as the Neumann boundary,
floating potential boundary, etc. [16]. However, it is impracti-
cal to precompute and tabulate the transition probabilities for
the maximum conductor-free transition cubes with all possible
dielectric configurations. The question is how many transition
domains should be precharacterized to well balance the mem-
ory usage and computational efficiency of the multidielectric
capacitance extraction.

III. Multidielectric FRW Algorithm With

the Precharacterized Probabilities and

Weight Values

In this section, we first propose an approach to precharac-
terize the transition cubes with two dielectric layers. Then, the
details of the FDM techniques for the precharacterization are
presented. The multidielectric FRW algorithm is finally given.

Fig. 3. Shortest random walk in the multidielectric structure with the usage
of multidielectric transition probability and weight value.

Fig. 4. Cubic transition domain for precharacterizing the multidielectric
process technology (2-D cross-section view).

A. Basic Idea

Modern VLSI process technology involves multiple layers
of metal wires and dielectrics. The coupling capacitance
mainly exists between the wires at the same layer or at two
adjacent layers, due to the densely routed wires. If the hop in
FRW walk is able to cross one dielectric interface, the number
of hops in a walk may not increase much as compared with
that for single-dielectric circumstance. Therefore, numerically
characterizing the surface Green’s function for the cubic tran-
sition domain with two dielectric layers may bring sufficient
benefit to the extraction of multidielectric VLSI structures.
Fig. 3 shows an example of walk under the assumption that
the hop is able to cross one dielectric interface. Comparing
Figs. 1 and 3, we can see that the number of hops is largely
reduced. On the other hand, for a specified technology with
nd dielectric layers (adjacent layers with same permittivity are
regarded as one layer), there are no more than nd adjacent
dielectric pairs with distinct pair of permittivities. For each
pair of permittivities, the surface Green’s function is prechar-
acterized as Green’s function tables (GFTs), and the weight
value is precharacterized as weight value tables (WVTs). The
computing time for the precharacterization procedure and the
memory usage for recalling the GFTs and WVTs should be
moderate for a given process technology.

In the precharacterization procedure, we only consider the
unit-size cubic transition domain, which is discretized with
FDM grids. The cube includes two dielectric layers, and the
position of dielectric interface is set to conform to the FDM
grid (see Fig. 4 for a cross-section view). For each dielectric
configuration (permittivity pair and interface position), the
FDM technique based on Section II-C is employed to derive
the corresponding GFT and WVT.

B. Details of the Precharacterization Procedure

For precharacterizing the surface Green’s function accu-
rately, some details of FDM should be considered. First, to
avoid the potential unknown setting on the edge or corner of
the cube, each surface unknown is set at the center of the
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Fig. 5. Illustration of finite difference schemes for (a) inner grid point,
(b) grid point near boundary, and (c) point on interface.

boundary panel. Also note that there is an unknown at the
center of cube. To connect these unknowns with a FDM grid,
we first divide the cube into N ×N ×N equal-sized cells and
then attach one unknown to each cell’s center. Here N should
be an odd number (see Fig. 4). These N3 unknowns form
the φI in (9) for inner grid points. The boundary unknowns
attached to panel’s center point form φB. Because the height of
interface ZI has the value of 1/N, 2/N, . . . , (N − 1)/N, extra
unknowns φF are defined on the interface surface to connect
inner points upward and downward.

Different finite difference (FD) schemes are used to generate
the coefficient matrix blocks in (9). For the uniform inner
grid point [see Fig. 5(a)], the standard seven-point differential
scheme with second-order accuracy is used. Fig. 5(b) shows
the grid points near the boundary, where the grid step varies
(we assume the inner grid size is 2h). For this nonuniform grid,
the Lagrange interpolation is used to derive the differential
scheme with second-order accuracy. For example, the z-
direction derivative for the point in Fig. 5(b) is approximated
with

∂2φ

∂z2
≈ 2u0

3h2
− u1

h2
+

u2

3h2
. (13)

Here u denotes the potential on grid point. For the point on
interface, in order to be consistent with the standard seven-
point differential scheme for inner point, the formula with
second-order accuracy is derived to approximate (8). As shown
in Fig. 5(c), on each side of interface the potentials of two
points are used to approximate ∂φ

/
∂z+ or ∂φ

/
∂z−. For this

example, the derived difference equation for (8) is

ε+ −8u0 + 9u1 − u2

6h
= ε− −8u0 − 9u−1 + u−2

6h
. (14)

It should be pointed out that, if using the first-order difference
equation for (8), we find out that the obtained surface Green’s
function would include some obvious error.

In the FDM solution, the height of interface ZI cannot be
1/2, which omits an important situation when the walk stops at
a dielectric interface. A special treatment should be taken. As
shown in Fig. 6(a), which is a side view, the cube edge should
be divided into even segments, so that there is no boundary
panel across the interface. Therefore, the center point is not
an inner grid point. As shown in Fig. 6(b), the potential at the
center point can be approximated by its eight neighbors, that is

uc =
ε+u9 + ε−u10

ε+ + ε−

=
ε+(u1 + u2 + u3 + u4) + ε−(u5 + u6 + u7 + u8)

4(ε+ + ε−)
(15)

where uc denotes the potential of the center point. In practice,
a vector e′

k is constructed to record the positions of nodes

Fig. 6. Situation where the height of interface ZI=1/2. (a) Side view of the
unit-size cube. (b) FDM grids at the center of cube.

Fig. 7. GFT distributions on cube boundaries when ε− = 2.6 and ε+ = 5
(a) on the top face, (b) on the side wall, for ZI = 1/5, and (c) on the side
wall, for ZI = 1/2.

from 1 to 8 in the vector φI and the their contributions to uc,
according to (15). A similar formula to (12) can be used to
efficiently calculate the discrete probabilities for the transition
cube whose dielectric interface is at height 1/2

P ′
k = −((E11 − E13D

−1
33 E31)−T e′

k)T E12. (16)

Fig. 7 shows the distributions of the precharacterized GFT
for the configuration: ε− = 2.6, ε+ = 5. Note that the plot in
Fig. 7(a) is similar to that of single-dielectric surface Green’s
function in [11], and the plots in Fig. 7(b) and (c) demon-
strate that there is much larger probability to hop toward the
dielectric region with larger permittivity. By setting ε− = ε+,
we have used the single-dielectric Green’s function to validate
the accuracy of the numerical GFTs obtained with FDM.

To calculate the weight value in (5), we first derive

ω(r, r(1)) = − 1

g · L
·

∂P(r,r(1))
∂x

nx+
∂P(r, r(1))

∂y
ny+

∂P(r, r(1))

∂z
nz

P(r, r(1))
(17)

where L is the edge length of the first cube, and we assume
n̂(r)= [nx, ny, nz]T . Here P(r, r(1)) denotes the surface
Green’s function for the unit-size cube, and r and r(1) is the
corresponding points in the unit-size cube. Since we have
obtained the GFT representing P(r, r(1)), the finite difference
formula for partial derivative should be employed to calculate
the weigh value. For example, ∂P/∂ x stands for the sensitivity
of the probabilites with respect to the x-axis coordinate of the
center point of cube. Since Pk in (11) is the GFT associated
with the center point, we denote the GFTs associated with its
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six neighbor points to be Pk+1, Pk−1, Pk+N , Pk−N , Pk+N2 , and
Pk−N2 . Then, with the centered difference formula we have

∂Pk

∂x
≈ Pk+1 − Pk−1

4h
= −((E11 − E13D

−1
33 E31)−T ẽ1)T E12 (18)

∂Pk

∂y
≈ Pk+N − Pk−N

4h
= −((E11 − E13D

−1
33 E31)−T ẽN )T E12 (19)

∂Pk

∂z
≈ P

k+N2 − P
k−N2

4h
= −((E11 − E13D

−1
33 E31)−T ẽ

N2 )T E12. (20)

Here the vector ẽi, (i = 1, N, N2) is defined as

ẽi(j) =

⎧⎨
⎩

1/4h, j = k + i

−1/4h, j = k − i

0, otherwise
. (21)

Equations (18)–(20) are the formulas for calculating the
partial derivatives in (17). With a small value of h, they
have sufficient accuracy. In practice, the values of ∂P/∂x

P
, ∂P/∂y

P
,

and ∂P/∂z

P
for each boundary panel (the position of r(1)) are

precomputed and stored as the WVTs. With the WVTs, the
weight value (17) in actual walk can be calculated quickly.

It should be pointed out that precharacterizing the WVT for
the multidielectric cube enlarges the size of the first transition
domain, and is very important for improving the computational
efficiency. Since ω is inversely proportional to the size of the
first cube L, and without the multidielectric WVT the first
cube is bounded by the nearest dielectric interface, the value
of ω would be very large if there is a thin dielectric layer near
the Gaussian surface. This large sample value would further
slow down the convergence of MC procedure. Therefore, the
multidielectric WVT can enlarge the size of first transition
cube and thus prominently reduces the number of walks to
attain a certain accuracy goal [20].

For a predefined value of N (segment number along cube
edge), N positions of dielectric interface are considered.
Totally, 4N times of equation solution with the coefficient
matrix of (E11 − E13D

−1
33 E31)T (N for GFTs and 3N for

WVTs) are involved for a pair of permittivities. As for the
memory usage, 6N2 real numbers are needed to present a
single GFT. For the 4N GFTs and WVTs which characterize
a dielectric pair, the memory space is needed to store 24N3

about numbers. If N = 31 and the double-precision number is
used, the storage is about 5.5 MB. If three dielectric layers are
allowed in the precharacterized transition cube, the memory
storing the three-layer GFTs and WVTs would be about N /2
times of that for two-layer GFTs and WVTs, due to the two
dielectric interfaces. This will make the extra memory for the
two-layer, three-layer GFTs and WVTs approach 1 GB, if a
process technology, including 10 three-consecutive-dielectric
configurations. Besides, allowing three dielectric layers in the
precharacterized transition domain will increase the complex-
ity of implementation, such as matching the interface heights
in actual transition cube and those in the precharacterized.
Therefore, in this paper we only precharacterize the domain
with two dielectric layers to well balance the memory usage
and computational efficiency.

C. FRW Algorithm with Multidielectric GFTs and WVTs

Algorithm 2 describes the FRW algorithm utilizing the
multidielectric GFTs and WVTs.

Algorithm 2 FRW using multidielectric GFTs and WVTs
1: 1) Load the precomputed transition probabilities, weight

values for single-dielectric cubic transition domain;
2) Load the precomputed multidielectric GFTs and WVTs;

2: Construct the Gaussian surface enclosing master conductor j;
3: Cji := 0, ∀i; npath := 0;
4: Repeat
5: npath: = npath+1;
6: Pick a point r(0) on Gaussian surface, and then generate a

cubic transition domain (may contain two dielectrics) T
centered at it; pick a point r(1) on the surface of T accord-
ing to the precomputed probabilities, and then calculate

the weight value ω with the help of the WVTs;
7: While the current point is not on a conductor do
8: Construct the largest conductor-free cubic domain con-

taining at most two dielectrics;
9: Pick a point on the domain surface, according to the

transition probabilities of cubic domain;
10: End
11: Cji := Cji + ω ; // the current point is on conductor i
12: Until the stopping criterion is met
13: Cji := Cji/npath, ∀i;

In Algorithm 2, a shrinking operation for the cube may
be performed after generating the transition cube (in step
6 and step 8). Its aim is to adjust the size of the transi-
tion cube to make the height of dielectric interface to be
i/N(i = 1, 2, . . . , N − 1), or 1/2 of the cube size. Therefore,
the precharacterized GFTs and WVTs can be used without
loss of accuracy.

IV. Techniques for Variance Reduction

In this section, we first review the basic ideas of impor-
tance sampling and SS, followed by the variance reduction
techniques proposed in [14]. Then, we propose the technique
to minimize the variance of weight value distribution in the
FRW, and a comprehensive variance reduction scheme.

A. Background

The MC method can be used to calculate a multidimensional
integral

I =
∫

�

f (x)dx. (22)

If we pick n random samples xi uniformly distributed in �

In = A ·
∑n

i=1 f (xi)

n
(23)

becomes an estimate for I, where A =
∫

�
dx. Note that In

is the mean value of A·f (xi), and is also a random quantity
due to the randomness of xi. The variance of function A·f (x)
can be approximated by the variance of the discrete estimates
A·f (xi)

Varn =
A2 ∑n

i=1(f (xi))2 − n · I2
n

n
. (24)

Due to the central limit theorem [23], In obeys the normal
probability distribution, and its standard deviation (Std) can
be estimated with

errn ≈
√

Var(A · f (x))√
n

≈
√

Varn√
n

(25)
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Fig. 8. Values in WVT for r(1) on top and side faces of the cube for the
(a) ω of the standard FRW, (b) ωc of the variant FRW, and (c) ω̃ using the
importance sampling.

where Var(A·f (x)) denotes the variance of function A·f (x).
errn in (25) is also called the 1−σ error of In. With (25), it can
be observed that the error of In is inversely proportional to the
square root of the number of samples. Since In conforms to the
normal distribution, the 1−σ error errn means the error bound
at the confidence level of 68%. And, it has the confidence level
of 99.7% that the result is within the error of 3· errn.

According to the above discussion, reducing the variance
of the integrand f (x) brings smaller errn, and therefore In

with higher accuracy, for a given number of sample points.
The idea of importance sampling (IS) is to find a positive
valued function q(x) such that

∫
�

q(x)dx = 1 and q(x) is nearly
proportional to the function f (x). Then, (22) is converted to

I =
∫

�

f (x)

q(x)
q(x)dx. (26)

We can use q(x) as a probability density function for the
sampling of �, and evaluate f (xi)/q(xi) as the estimate in
the MC procedure. This means that f (x)/q(x) is regarded as
the integrand function in the MC integration. Since q(x) is
nearly proportional to f (x), the variance of the new integrand
is much less than that of f (x). Therefore, the MC procedure
corresponding to (26) will converge much faster for a given
error threshold.

Another variance reduction technique is the SS, whose
idea is to divide the original integral to several integrals on
its subdomains (also called strata), and then calculate them
separately. For example, dividing the � in (22) into two equal-
sized subdomains �a and �b, we have

I = Ia + Ib =
∫

�a

f (x)dx +
∫

�b

f (x)dx. (27)

If the MC method is used to calculate Ia and Ib separately,
the formula (23) can be substituted with

I ′
n = I(a)

na + I
(b)
nb =

A

2
·
∑na

i=1 f (xa,i)

na

+
A

2
·
∑nb

i=1 f (xb,i)

nb

(28)

where na and nb are the sampling numbers in �a and �b,
respectively (na+nb=n). Due to the stochastic independence of
I(a)
na and I

(b)
nb , the variance of I ′

n is the sum of the variances of
I(a)
na and I

(b)
nb . It is proved that [23]

Var(I ′
n) < Var(In) (29)

if f (x) has different mean value in subdomains �a and �b.
Furthermore, Var(I ′

n) achieves its minimum value if (na/nb)2

equals to the ratio of variances of function f (x) in �a and �b.
Because the Var(In) is the square of the Std in (25), calculating
(28) with the idea of SS produces the estimation to the original
integral with less 1−σ standard error. Thus, we need fewer MC
samples to achieve a specified accuracy criterion.

The above theory of statistics is applicable to the FRW
algorithm, because (4) is an integral. With the formula for the
variance of capacitance estimates, similar to (24), the 1-σ error
of capacitance result is predictable [9]–[11]. So, usually the
accuracy criterion is set as the termination condition of FRW
algorithm. In practice, the algorithm checks the error after
every certain number of walks. Once the 1 − σ error is below
the specified accuracy goal, the algorithm will terminate.

In [14], the variance reduction techniques were proposed for
the FRW-based capacitance extraction. First, the capacitance
was regarded as the integral of normal electric field intensity
on the Gaussian surface. Based on that the electric field
diminishes with the inverse of distance, the function q(x) for
IS was simply defined to be proportional to 1/D(r), where
D(r) was the distance of point r to the conductor inside the
Gaussian surface. The SS was also applied, which decomposed
the first transition cube’s surface into 16 pieces (strata), and the
FRW calculations were performed for each strata separately. It
should be pointed out that a variant FRW formula, instead of
(4) (referred to as the standard FRW formula), was used in [14]

Qj =
∮

Gj

F (r)g
∮

S(1)
ωc(r, r

(1))φ(r(1))dr(1)dr. (30)

The variant weight value is

ωc(r, r
(1)) = −∇rP

(1)(r, r(1)) • n̂(r)

g
. (31)

Accordingly, the sampling scheme in S(1) obeys the uniform
probabilities, rather than the probabilities derived by the
surface Green’s function. In the next two subsections, we
will show that the variant FRW formula (30) causes worse
convergence behavior than the standard FRW (4), and the
variance reduction techniques were not fully exploited in [14].

B. Importance Sampling with the Weight Values Averaged

In the FRW algorithm, the weight value (5) or (17), is the
estimate of capacitance in the MC procedure. From another
viewpoint, it is the estimation to the integrand function (the
normal electric field intensity) of the integral (4). Although
the integrand is unknown, we can instead reduce the variance
of weight values by transforming the FRW formula with
the IS technique. It is noticed that with the help of WVT,
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we actually know the possible values of the weight value.
Suppose r is on the top surface of the Gaussian surface,
which means n̂(r) is along the z-direction. In Fig. 8, we draw
the distributions of the opposite of weight value for the r(1)

on top and side faces of the cube. Fig. 8(a) corresponds to
the ω in the standard FRW, while Fig. 8(b) corresponds to
the ωc in the variant FRW formula (31).

With Fig. 8(a), (b) and (17), we know that ω and ωc are
nonpositive for r(1) on the top face, while they may approach
to zero for r(1) on the side face (outlined with bold lines). This
kind of value distribution demonstrates that the weight value
has a certain degree of variance. And, the variance of ωc seems
larger than that of ω, which is verified by the numerical exper-
iments showing a slower convergence rate of the variant FRW.

We now seek a function q(x) to modify the integral formula
(4) so as to reduce the variance of resulting weight value, based
on the precomputed WVTs and GFTs. For the transition cube
with a specific dielectric configuration, we first calculate

K =
∮

S

∣∣∇rP(r, r(1)) • n̂(r)
∣∣ dr(1) (32)

where S and P(r, r(1)) are the surface and the surface Green’s
function of the unit-size cube, respectively. Since r is the
center of cube, K is a positive constant. We transform (4) to

Qj =
∮

Gj

F (r)g
∮

S

−∇rP(r, r(1)) • n̂(r)

L · g
φ(r(1))dr(1)dr

=
∮

Gj

F (r)g
∮

S

−K · ∇rP(r, r(1)) • n̂(r)

L · g
∣∣∇rP(r, r(1)) • n̂(r)

∣∣ ·∣∣∇rP(r, r(1)) • n̂(r)
∣∣

K
φ(r(1))dr(1)dr (33)

where L is the size of the first cube, with which the integral
domain is converted from S(1) to the unit-size cube S.

We define function q(x) to be

q(r, r(1)) =

∣∣∇rP(r, r(1)) • n̂(r)
∣∣

K
=

∣∣ω(r, r(1))
∣∣ P(r, r(1))

K
.

(34)
Here ω(r, r(1)) denotes the weigh value for the unit-size cube,
which is a little bit different from (5). According to (32), q(r,
r(1)) can serve as the PDF for sampling S. Then

Qj =

∮
Gj

F (r)g

∮
S

−K · ∇rP(r, r(1)) • n̂(r)

L · g
∣∣∇rP(r, r(1)) • n̂(r)

∣∣ · q(r, r(1))φ(r(1))dr(1)dr. (35)

This suggests a new sampling scheme, where the weight value
is

ω̃(r, r(1))=

{ −K/(L · g), if ∇rP(r, r(1)) • n̂(r)>0
K/(L · g), if ∇rP(r, r(1)) • n̂(r) < 0.

(36)

Note that it is impossible that r(1) has a value such that
∇rP(r, r(1)) • n̂(r)=0, according to the sampling probability
function (34). In Fig. 8(c), we draw the distribution of the
opposite of the new weight value (36). It is almost constant,
for cubes with same size and dielectric configuration. Thus,
the new FRW scheme may exhibit much less variance.

Now, the point sampling on the first cube obeys the new
probabilities obtained from q(r, r(1)), which can be generated

Fig. 9. 2-D view illustrating the ng faces of a Gaussian surface, and the two
half surfaces of the first transition cube.

by multiplying the original GFT and WVT, element by ele-
ment. Similar to the derivation of (17), the new probabilities
q(r, r(1)) differ with the different direction of n̂(r). We tabulate
it with tables called GFT ISs, which have the same storage
size as the original WVTs. The new weight values (36) are
also precomputed and tabulated, but require much less storage.

C. Comprehensive Variance Reduction Scheme

Although the weight values are averaged with formula (35),
they still fluctuate when the first cube varies with different po-
sitions of r. This kind of variance can be further handled with
the SS technique. Since for a given cube the weight value has
only two nonzero values of (36), decomposing the cube’s sur-
face into 16 stratas as in [14] is unnecessary. We just divide the
cube’s surface into two stratas, one with positive weight value
and the other with negative weight value. Instead, the Gaussian
surface is decomposed to capture the different variances of
weight values on its different faces. Suppose the Gaussian sur-
face has ng faces (see Fig. 9). The original (4) is converted to

Qj =

ng∑
k=1

∫
�j,k

F (r)g

∮
S

− ∇rP(r, r(1)) • n̂(r)

L · g
φ(r(1))dr(1)dr

=

ng∑
k=1

∫
�j,k

F (r)g

∫
Sa

− ∇rP(r, r(1)) • n̂(r)

L · g
φ(r(1))dr(1)dr

+

ng∑
k=1

∫
�j,k

F (r)g

∫
Sb

− ∇rP(r, r(1)) • n̂(r)

L · g
φ(r(1))dr(1)dr (37)

where �j,k stands for the kth face of the Gaussian surface Gj .
Sa stands for the surface of the scaled half cube outside Gj ,
and Sb stands for the surface of the scaled half cube inside
Gj . With this partition, we observe that ∇rP(r, r(1)) • �n(r)
always has positive value for r(1) on Sa, and negative value
for r(1) on Sb (see Lemma 1 in the Appendix). Now, Qj

becomes the summation of 2ng integrals. Each integral can
be calculated separately. For example

Ik =

∫
�j,k

F (r)g

∫
Sa

− ∇rP(r, r(1)) • n̂(r)

L · g
φ(r(1))dr(1)dr, (1 ≤ k ≤ ng). (38)

Because ∇rP(r, r(1)) • �n(r) does not change sign on Sa, we
define

Ka =

∫
Sa

∇rP(r, r(1)) • n̂(r)dr(1). (39)

Then

qa(r, r(1)) =
∇rP(r, r(1)) • �n(r)

Ka

(40)

becomes a PDF for the second integral in (38). We derive

Ik = Ak

∫
�j,k

F (r)g

Ak

∫
Sa

− Ka

L · g
qa(r, r(1))φ(r(1))dr(1)dr, (1 ≤ k ≤ ng) (41)
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Algorithm 3 FRW using the variance reduction techniques
1: For each dielectric configuration occurring in the test

case, load the available GFT, GFT−ISs and WVTs.
2: Construct the Gaussian surface enclosing master

conductor j;
3: Cji := 0, ∀i; nk := 0, ∀k;
4: Repeat
5: Pick a point r(0) on Gaussian surface, and then generate

a cubic transition domain (may contain two dielectrics)
T centered at it; pick a point r(1) on the surface of T
according to the precomputed GFT IS, and then calcu
late the weight value ω̃k with (46) considering the posi
tion of r(0) and r(1);

6: While the current point is not on a conductor do
7: Construct the largest conductor-free cubic domain

containing at most two dielectrics;
8: Pick a point on the domain surface, according to the

precomputed GFT of the cubic domain;
9: End
10: Register ω̃k to strata k for Cji; //the current point is on

conductor i
11: nk : = nk+1;
12 Calculate the standard error with formula similar to

(45);
13:Until the stopping criterion is met
14: Calculate Cji, ∀i with formula similar to (44).

where Ak =
∫

�j,k
F (r)gdr. This can be interpreted by a FRW

procedure, where the sampling on Sa obeys the PDF of qa(r,
r(1)) and the corresponding weight value is

ω̃k(r, r(1)) =
−Ka

L · g
, (1 ≤ k ≤ ng). (42)

Similar derivation can be applied to

Ik=

∫
�j,k−ng

F (r)g

∫
Sb

− ∇rP(r, r(1))•n̂(r)

L · g
φ(r(1))dr(1)dr, (k>ng) (43)

provided that Kb and qb(r, r(1)) are defined similarly to Ka

and qa(r, r(1)), respectively. And for k > ng, we let Ak equal
to Ak−ng

. Suppose nk walks are used to calculate Ik, (k =
1, . . . , 2ng), and the weight values returned are ω̃k,1, . . . , ω̃k,nk

.
The estimation for (37) with the SS technique is computed as

Q̄j =

2ng∑
k=1

θk =

2ng∑
k=1

(
Ak

nk

nk∑
i=1

ω̃k,i

)
. (44)

And, the corresponding variance is computed piecewise as

Var(Q̄j) =

2ng∑
k=1

(
A2

k

n2
k

nk∑
i=1

ω̃2
k,i − θ2

k

nk

)
. (45)

It should be pointed out that (44) and (45) need to be
explained for calculating the capacitances and variance of
capacitance estimates. Comparing (39), (40) with (32), (34),
we conclude that the new sampling scheme is compatible
with the scheme in the last subsection. Thus, the precomputed
GFT−ISs can still be used. Because Ka equals the half of K

in (32) (see Theorem 2 in the Appendix), we have

ω̃k(r, r(1)) =

{ −K

2L · g
, 1 ≤ k ≤ ng

K

2L · g
, ng < k ≤ 2ng.

(46)

So, the weight value tabulated in last subsection is still valid.
In our implementation, the values of nk, (k = 1, . . . , 2ng)

are not predefined. Instead, the FRW procedure corresponding
to the IS technique in last subsection is performed. The
actual walks are registered to the 2ng stratas, followed by
calculating the capacitance value and error estimation with
formulas similar to (44) and (45). Finally, the IS technique in
[14] can also be applied to handle the first integral. All these

Algorithm 4 Insert to octree (conductor B, node T)
1: If T is a leaf node then
2: For each b in the candidate list of T do
3: If b dominate B then return;
4: Elseif B dominate b then
5: Remove b from the candidate list of T;
6: Endif
7: Endfor
8: Add B to the candidate list of T;
9: If the size of T’s candidate list is larger than

threshold then
10: Divide T into 8 child nodes: T1, . . . , T8;
11: For each b in the candidate list of T do
12: For i = 1 to 8, InsertToOctree(b, Ti); EndFor
13: EndFor
14: Endif
15: Else
16: For each child c of T do
17: InsertToOctree(B, c);
18: Endfor
19: Endif

consist of a comprehensive variance reduction scheme, and the
resulting FRW algorithm is described as Algorithm 3.

V. Space Management Technique and Parallel

Implementation

In this section, the space management technique is first
presented to reduce the computing time for structures with
a large amount of conductors. Then, the parallel technique
is presented to boost the computational speed of FRW-based
capacitance extraction on the multicore/multi-CPU platform.

A. Space Management Technique

For each FRW hop, the distance from the current point
to conductors should be measured to construct the maximum
conductor-free transition cube. Its computing time should be
reduced as short as possible because millions of hops are
involved in the FRW algorithm. In [27], several data structures
were discussed to speed up the distance queries in the FRW
algorithm. Here we present a space management technique
based on the octree spatial data structure [24] to organize the
conductors in the problem such that the distance is calculated
for only a few of conductors for each hop. This technique
is required for the case involving many conductors. Each
octree node represents a cubic spatial domain, which may be
decomposed into eight subdomains and each one corresponds
to a child node in the tree. For each node of octree, we want to
have a number of possible nearest conductors (candidate list)
for the spatial points it represents. To build such an octree, we
first define the dominant relationship.

Definition 1: T is a cubic domain, B1 and B2 are
conductors. B1 dominate B2 regarding T, iff. ∀P∈T, d(P, B1)
≤ d(P, B2), where d(,) is the function of the ∞-norm distance
in 3-D space.

The octree is constructed through a procedure of inserting
conductors. First, the octree only has one node (root node),
representing the whole problem space. Then, all conductors
in the problem are inserted to this node, one by one, with
Algorithm 4.

Note that a threshold is predefined as the maximum size of
the candidate list. In step 12 and step 17 of Algorithm 4, there
are recursive calls. The dominant relationship of conductor
blocks can be judged with their distances to the cubic domain
of current node.
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Fig. 10. Flowchart of the parallel FRW on multicore platform.

Once the octree is established for the extracted structure, in
each hop only the conductors in the candidate list of the leaf
node that the current point belongs to are enquired to calculate
distance. So, the time complexity of each hop is about O(ho +
to), where ho is the height of octree and to is the threshold. We
have tested two structures with 201 and 402 wires respectively.
Numerical results show the running time of FRW algorithm is
reduced by 72% or 88%, with negligible memory overhead.

B. Parallel Implementation

The FRW algorithm is very suitable for parallelization, since
the walks are independent to each other. Fig. 10 shows the
flowchart of the parallel FRW algorithm on a multicore/ multi-
CPU platform. Multiple threads are allocated to execute the
random walk procedure (steps 5–9 in Algorithm 3; denoted
by FRW core in Fig. 10). In order to reduce the expense
of communication, a unique random number generator [25] is
kept for each thread. The lock operation only happens when
updating the value of capacitance and checking the program
termination criteria with total number of walks or estimated
error. This check is performed for every m walks (m = 1000).
The work of loading GFTs, WVTs, and GFT−ISs is also
parallelized without difficulty. The pthread APIs are used in
our implementation.

For large structure including thousands of conductor blocks,
serially building the octree (step 2 in Fig. 10) may cost a lot
of time. To reduce this expense, the construction of octree can
also be parallelized. The basic idea is that, in the insertion
operation every conductor is independent to each other and the
operation on every tree node is also independent to each other.

VI. Numerical Results

We have developed a C++ program RWCap with the
proposed techniques. To evaluate the efficiency of different
techniques, four subversions of RWCap are defined.

Fig. 11. Cross section of process technology used in the test cases.
(a) 180-nm technology, where layers 2, 4, 6, 8 are thin dielectrics with
thickness of 200-nm, and the thickness of layers 3, 5, 7 is 1180-nm. (b) 45-
nm technology, where layers 2, 4, 6, 8 are thin dielectrics with thickness of
40-nm, and the thickness of layers 3, 5, 7 is 220-nm.

1) RWCap(O): The basic multidielectric FRW
(Algorithm 1).

2) RWCap(M): The FRW using the multidielectric GFTs
and WVTs (Algorithm 2).

3) RWCap(IS): The FRW using the IS technique proposed
in Section IV-B.

4) RWCap(R): The FRW using all variance reduction tech-
niques (Algorithm 3).

The termination criteria of RWCap is that the 1−σ error of
self-capacitance becomes smaller than 1% of the mean value.
This means that the relative error is within 3% (in a 99.7%
confidence level). The FDM-based method to generate the
multidielectric GFTs and WVTs is implemented in MATLAB,
using the functions for sparse matrix. Unless otherwise stated,
the value of N (segment number along cube edge) is set to 31.

As revealed in [14], the placement of Gaussian surface
has an impact on the performance of FRW algorithm. In
that work, the Gaussian surface was constructed to enclose
the master conductor in such a way that points on it are
equi-distant from the conductor and from other adjacent
conductors. However, this strategy is not valid for the
case with rare conductors, where along some direction the
equidistant position becomes very far away from the master
conductor. This worsens the convergence behavior of the
FRW procedure. So, we adopt a different strategy which first
finds the six axis-direction equidistant positions from the
master, and then use their minimum to construct the Gaussian
surface enclosing the master conductor.

The experiments are carried out on a Linux server with
Intel Xeon E5620 8-core CPU of 2.40 GHz. The computational
time listed does not include that for loading the multidielectric
GFTs, WVTs, and GFT ISs, because this can be performed
only once for a process technology. We store these data with
binary format files, and the time for loading them is less than
0.2 s for each tested process technology.

A. Test Cases

The typical 180- and 45-nm technology described in [26]
are considered. The cross sections of the test structures with
three metal layers are shown in Fig. 11, where the relative
permittivity of each dielectric layer is labeled. For the 180-nm
technology, the width and height of each wire are 300 and 530-
nm. While in the 45-nm technology, the width and height are
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Fig. 12. 3-D views of the test cases. (a) Case 2. (b) Case 5.

TABLE I

Description of Six Test Cases

Technology Description

Case 1
Three parallel wires. Wire length is 10 000-nm, and
the spacing is 300-nm to the left and 500-nm to the
right.

Case 2
180-nm
technology

41 wires in three metal layers. Wire width is 300-
nm.

Case 3
5 × 5 bus structure. Wire length is 3000-nm, and
the spacing is 300-nm.

Case 4
Three parallel wires. Wire length is 2000-nm, and
the wire spacing is 70-nm.

Case 5
45-nm tech-
nology

41 wires in 3 metal layers. Wire width is 70-nm.

Case 6
5×5 bus structure. Wire length is 700-nm, and the
spacing is 70-nm.

70 and 140-nm, respectively. The first test structure includes
three parallel wires in M2 layer. For the second structure, two
sets of 19 wires are added to M1 and M3 layers, respectively,
with random width and spacing (see Fig. 12). The third struc-
ture is a 5 × 5 bus structure distributed in M2 and M3 layers.
Combining with the two process technologies, we obtain six
test cases as listed in Table I. For each case, the conductor in
the middle is set as the master conductor, and the self- and
coupling capacitances of the master conductor are extracted.

We first validate the proposed techniques with experiments
of serial computing. Then, the efficiency of the parallel RW-
Cap is demonstrated.

B. Validating the Multidielectric FRW Algorithm

The six test cases are extracted with RWCap(O) and RW-
Cap(M), whose results are compared in Table II. Besides the
self-capacitance Cself , we also list a major coupling capac-
itance as Cc1 which is between the master and its right-side
neighbor wire. Std(Cc1) in Table II is the ratio of this coupling
capacitance’s Std to its mean value. Note that the Std of Cself

equals 1% of its mean value, which is the termination criterion.
The capacitance values in Table II validate the accuracy of

RWCap(M), i.e. Algorithm 2. For several cases, the Std of the
coupling capacitance is even reduced with the RWCap(M).
The values of Std(Cc1) less than 2% also demonstrate that
the FRW algorithm is able to calculate the major coupling
capacitance accurately. The data of CPU time suggest that
the technique of utilizing the multidielectric GFTs and WVTs
speeds up the original FRW algorithm by several tens times
to more than one hundred times. And, the memory overhead
is only 12 MB, which is negligible. The benefit brought by
the multidielectric WVTs is actually larger than that of GFTs,
because the former avoids the first transition domain with
very small size, and therefore largely reduces the number of
walks for convergence. This is more prominent for the 45-nm

TABLE II

Computational Results of RWCap(O) and RWCap(M)

(Capacitance in Unit of 10−16
F, Memory in Unit of MB)

Case RWCap Cself Cc1 Std(Cc1) (%) No. of walks Memory Time (s) Speedup

1 O 18.90 6.42 1.6 6098k 1.6 1468.55 –

M 18.61 6.32 1.5 206k 13.4 17.46 84

2 O 19.50 5.22 1.9 5512k 1.7 368.88 –

M 19.40 5.33 1.7 179k 13.6 5.13 72

3 O 7.25 2.61 2.0 4180k 1.6 533.88 –

M 7.34 2.64 1.7 132k 13.5 6.13 87

4 O 3.60 1.62 1.5 8075k 1.5 2554.09 –

M 3.64 1.61 1.5 160k 13.4 15.93 160

5 O 3.95 1.36 1.9 6195k 1.6 516.48 –

M 3.94 1.35 1.8 122k 13.5 4.12 125

6 O 1.43 0.525 1.7 7417k 1.6 1261.99 –

M 1.42 0.504 1.7 150k 13.5 9.59 132

technology, because there is a 40-nm thickness thin dielectric
layer just above the master conductor. We find out with the
experiments that the speedup brought by the multidielectric
GFTs solely is from 2× to 3×.

We have also solved case 4 with FastCap [1] and CAPEM
[13]. CAPEM is a binary-code program, whose technical
details are not published yet. Fastcap’s result is 3.55 × 10−16

F, with time of 34.7 s and 1.8 GB memory. It validates the
accuracy of RWCap (with discrepancy of 2.5%), and shows
that FastCap is inferior even for this smaller case due to a lot
of panels caused by the discretization of dielectric interfaces.
With 100 000 walks, CAPEM’s result is 3.62 ± 0.18 (5%),
while consuming 773 s. To compare fairly, we also run RW-
Cap(M) for 100k walks, which produces Cself of 3.49 ± 0.045
(1.3%) after 9.5 s. This means RWCap(M) is 81× faster than
CAPEM and has better convergence rate.

CAPEM also has the function of precharacterizing the
transition cube with multilayered dielectrics. While setting dif-
ferent values of N (segment number along cube edge), we have
compared the computational times of generating the GFTs and
WVTs for a dielectric configuration of cube with CAPEM
and our program in Fig. 13. The figure demonstrates that the
precharacterization procedure with the presented techniques is
faster than that of CAPEM. For one tested process technology,
there are two permittivity pairs and the precharacterization
time for RWCap(M) is about 524 s. In the precharacterization,
generating GFTs and generating WVTs cost about 1/4 and 3/4
of the total time, respectively. Also note that while performing
the precharacterization for RWCap(IS) and RWCap(R), the
computational time will not increase, as we have discussed
at the end of Section IV-B.

Comparing the CPU times in Table II, it is revealed that the
time is not scaled with the complexity of structure. This is the
distinct property of the FRW algorithm, as compared with the
conventional algorithms. For example, Case 4 has the most
complex structure including 41 wires [see Fig. 12(b)], but it
costs the least CPU time. The reason is that, for a case with
dense environment conductors the walk will terminate quickly.

C. Validating the Variance Reduction Techniques

To demonstrate the efficiency of the proposed variance re-
duction techniques, RWCap(M) is compared with RWCap(IS)
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TABLE III

Computational Results of RWCap(R) and Its Comparison With Other FRW-Based Algorithms

Case RWCap(M) RWCap(IS) RWCap(R) Variant FRW Variant FRW(R)

No. of Walks Time (s) No. of Walks Time (s) No. of Walks Cself (10−16 F) Cc1(10−16F) Std (Cc1) (%) Time (s) Speedupa Speedupb No. of Walks Time (s) No. of Walks Time (s)

1 206k 17.46 151k 11.80 61k 18.40 6.41 1.9 4.82 3.6 2.7 348k 29.07 145k 12.83

2 179k 5.13 131k 3.72 56k 19.51 5.47 2.1 1.51 3.4 2.4 307k 8.46 128k 3.65

3 132k 6.13 96k 4.22 46k 7.28 2.69 1.8 2.10 2.9 2.4 246k 11.54 110k 5.04

4 160k 15.93 114k 10.75 51k 3.65 1.63 1.6 4.93 3.3 2.8 292k 30.01 130k 13.95

5 122k 4.12 90k 2.89 44k 3.91 1.36 1.9 1.47 2.8 2.4 232k 7.77 100k 3.52

6 150k 9.59 104k 6.13 51k 1.44 0.517 1.9 3.13 3.1 2.6 267k 16.65 131k 8.21

aThe speedup ratio to RWCap(M).
bThe speedup ratio to the variance reduction accelerated variant FRW algorithm in [14], i.e. Variant FRW(R).

Fig. 13. Computing time for generating the multidielectric GFTs and WVTs
with various segment numbers along the cube’s edge. The results are obtained
on a Linux server with Intel Xeon 3.0 GHz CPU.

and RWCap(R). The results are listed in Table III. From
this table we can see that the importance sampling and
SS technique largely reduce the number of walks for the
same accuracy criterion. For the six cases, they bring the
speedup ratios from 2.8× to 3.6× (3.2× on average). We
have also implemented the variant FRW formula (30), and the
corresponding variance reduction technique in [14] with our
program, which is referred to as Variant FRW and Variant
FRW(R) in Table III. Compared with them, our technique
also shows more than 2× speedup, and RWCap(IS) using the
technique of importance sampling is comparable or superior to
the Variant FRW(R). Note that the SS in [14] only considers
the distribution of single-dielectric weight value, which makes
its speedup not prominent for the multidielectric cases.

The capacitance values in Table III partially validate the
accuracy of RWCap(R). For the complete validation, we run
RWCap(R) for 3000 times, and then plot the distribution of
the extracted Cself . Fig. 14 shows this distribution for case 1,
accompanied by the distribution obtained with RWCap(M).
Both plots approximate to the normal distribution, and
the calculated Std (<1% of mean value) suggests that the
accuracy of extracted Cself is not degraded with the variance
reduction. Besides, we compare the Std(Cc1) in Tables II and
III, and find out that RWCap(R) also preserves the accuracy
of coupling capacitance.

D. Comparing with the Fast Boundary Element Method

Experiments are carried out to compare RWCap(R) with
a fast boundary method utilizing the quasi-multiple medium
(QMM) technique [2]. The QMM accelerated BEM (called
QBEM)1 is suitable for multidielectric cases, and has exhibited

1The program QBEM is shared on the website of the first author:http://
learn.tsinghua.edu.cn:8080/2003990088/software.htm

Fig. 14. Distribution of the Cself extracted with (a) RWCap(M), and
(b) RWCap(R), for 3000 runs.

TABLE IV

Comparison of RWCap(R) and QBEM for the 45-nm-Technology

Cases (Capacitance in Unit of 10−16
F,

Time in Unit of Second)

Case QBEM RWCap(R)

No. of panels Cself Cc1 Time Cself Dis. (%) Cc1 Dis. (%) Time Speedup

4 9334 3.63 1.61 2.79 3.65 0.6 1.67 3.7 4.93 0.57

5 12 211 3.81 1.32 2.44 3.95 3.7 1.36 3.0 1.47 1.7

6 13 883 1.38 0.504 4.09 1.44 4.3 0.517 2.6 3.13 1.3

7a 54 980 50.4 20.7 180 52.1 3.4 18.5 −10.6 4.96 36
aA 3-layer structure with totally 403 wires, under the 45-nm technology.

TABLE V

Computational Time of the Parallel RWCap(R) for Case 1

No. of Thread Time (s) Speedup
1 8.05 –

Walk-number 2 4.06 1.98
criterion (100k) 4 2.03 3.97

8 1.16 6.94
Accuracy 1 4.79 –

criterion (1%) 8 0.70 6.82

about 10× speedup over the FastCap. The 45-nm-technology
cases are tested, and the computational results are listed
in Table IV. To compare their performance for large-scale
structure, the 7th test case is constructed, which includes 403
wires in the three metal layers (with similar structure to case
5, but has 200 crossing wires in each neighbor layer).

For the extraction with QBEM, the Neumann boundary is
needed to surround the extracted structure, while the FRW al-
gorithm assumes the Dirichlet boundary far from the structure.
So, the self-capacitance in the problem for FRW is always
larger than that in the problem for QBEM. Based on this
analysis, we find out that the discrepancy of QBEM and
RWCap(R) on Cself (see Table IV) is fairly small. As for the
coupling capacitance, the discrepancy of the both solvers on
Cc1 is no more than 10%. From the table, we also see that
QBEM is faster than RWCap(R) for the smallest case, but
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Fig. 15. 2-D view illustrating the unit-size cube and its two half parts of
surface.

this advantage is lost for more complex cases. For the largest
403-wire case, RWCap(R) becomes 36× faster than QBEM.

E. Validating the Efficiency of Parallel Computing

On the 8-core machine, experiments are carried out to
validate the parallel implementation of RWCap(R). We first set
100 000 walks to be the termination criterion of RWCap, and
run it with different number of threads. The computing time
for Case 1 is listed in Table V, which shows the high efficiency
of the parallelization. For all cases, nearly 7× speedup can be
achieved on the 8-core machine. While setting the standard
error of 1% as the termination criterion, the parallel speedup
of RWCap decreases a little because more walks than required
are assigned to balance the workload. However, it still achieves
over 6× speedup on the 8-core machine, as shown in Table V.
The experiment is also performed for the 7th test case with
403 wires, whose result show the parallel RWCap costs about
0.81 s with the 1% termination criterion. Comparing with the
serial-computing time in Table IV, this means a 6.1× speedup.

VII. Conclusion

By numerically precharacterizing the surface Green’s func-
tion and the weight value for cubic transition domain with two
dielectric layers, an efficient FRW algorithm was proposed
for multidielectric capacitance extraction. The algorithm was
further accelerated with a new variance reduction scheme
based on the importance sampling and the stratified sampling.
Along with a space management technique to reduce the
computing time for each hop in the FRW algorithm and the
parallel computing technique, an efficient FRW solver called
RWCap was developed.

Numerical results on test structures with nine dielectric
layers under the 180 and 45-nm process technologies validated
the efficiency of the proposed techniques. While comparing
with other existing FRW algorithms, RWCap showed several
tens times speedup over CAPEM [13], and more than 2×
speedup over the technique proposed in [14]. The comparisons
with FastCap and QBEM showed that the proposed FRW
algorithm has comparable computing speed as the fast BEM
solvers for small cases, but for large case was several tens
times more efficient in CPU time and memory usage.

It should be pointed out that the proposed variance reduction
technique is also applicable to the extraction problem with
a single dielectric. Numerical experiments have been carried
out on the single-dielectric cases, which validate the similar
efficiency as on the multidielectric cases, but are omitted due
to the limit of space. In the future, the RWCap will be extended
for the chip-level capacitance extraction tasks. The RWCap
program has been shared on the website of the first author.

APPENDIX

In the Appendix, we prove the properties about the weight
value and its integral on the transition cube to validate the
variance reduction scheme, as proposed in Section IV-C.

Lemma 1: {
∇rP(r, r(1)) • �n(r)>0, if r(1) ∈ Sa

∇rP(r, r(1)) • �n(r)<0, if r(1) ∈ Sb.
(A.1)

Here, P(r, r(1)) is the surface Green’s function of the unit-
size cube centered at point r. n̂(r) is a normal direction. Sa is
the half of the cube’s surface complying with n̂(r), while Sb is
the other half complying with the negative direction of n̂(r).

Proof: Fig. 15 illustrates the meaning of related symbols.
Since only the Manhattan geometry is considered in this paper,
we assume n̂(r) is along the z-axis direction without loss of
generality. Then

∇rP(r, r(1)) • �n(r) =
∂P(r, r(1))

∂z
(A.2)

where r has coordinates [x, y, z]T . Assuming a small perturba-
tion of 
z=[0, 0, 
z]T along the n̂(r) direction, we consider


P = P(r + 
z, r(1)) − P(r, r(1)).

Because P(r, r(1)) means the correlation (or contribution)
coefficient of the potential at point r(1) to the potential at point
r, a movement of r toward r(1) makes this correlation stronger.
Thus, 
P is positive for r(1) on Sa, which suggests the limit
of 
P/
z, i.e. ∇r P(r, r(1)) • �n(r)>0

2 On the contrary, for r(1) on Sb, ∇rP(r, r(1)) • �n(r) < 0.
Considering the formula of weight value (5), (17), and that

the surface Green’s function P(r, r(1)) is always positive, we
conclude Theorem 1 about the weight value.

Theorem 1: The weight value in the standard FRW algo-
rithm is negative if r(1) falls onto the surface of half cube
outside Gj , and is positive if r(1) falls onto the surface of half
cube inside Gj . Here Gj is the Gaussian surface surrounding
the master conductor j.

Lemma 2: ∮
S

∇rP(r, r(1)) • n̂(r)dr(1) = 0 (A.3)

where P(r, r(1)) is the surface Green’s function of the unit-size
cube centered at point r, S is the surface of cube, and n̂(r) is
a normal direction.

Proof: The surface Green’s function has the following
property:

F (r) =

∮
S

P(r, r(1))dr(1) = 1 (A.4)

for any point r in the space surrounded by S. This can be
derived from (1), if we consider a conductor shell whose
surface potential φ(r(1)) = 1. Then, the potential at anywhere
in the shell should be 1. This proves (A.4). Because∮

S

∇rP(r, r(1)) • n̂(r)dr(1) = ∇rF (r) • n̂(r) (A.5)

which is the normal partial derivative of (r), it must be zero
based on the fact that (r) is a constant. This proves (A.3).

2Because the sampling probability function for r(1)is|∇rP(r, r(1)) • n̂(r)|/K
(34), it is impossible that r(1) has a value such that ∇rP(r, r(1)) • n̂(r) = 0.
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With (A.3), and the definition of Ka and Kb in Section IV-C∮
S

∇rP(r, r(1)) • n̂(r)dr(1) = Ka + Kb = 0. (A.6)

(A.1) suggests that Ka > 0 and Kb < 0. So,

K =
∮

S

∣∣∇rP(r, r(1)) • n̂(r)
∣∣ dr(1)

=
∮

Sa

∣∣∇rP(r, r(1)) • n̂(r)
∣∣ dr(1) +

∮
Sb

∣∣∇rP(r, r(1)) • n̂(r)
∣∣ dr(1)

= Ka − Kb

= 2Ka.

(A.7)

This proves Theorem 2.
Theorem 2: Ka equals the half of K, where K is defined by

(32) and Ka defined by (39), in Section IV.
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