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achieved for method B of Section IV-B. The total reduction rate when
method B is applied on top of method A is shown in columns 5, 9,
and 13. The proposed compaction technique is very effective since the
total reduction rates are between 70% and 84% for all circuits. The
last row of Table IV reports the average reduction rates for all listed
circuits. Average time performance (in CPU seconds) of each circuit,
demonstrating the proposed scheme’s efficiency, is given in column 14.

VI. CONCLUSION

This paper presents a novel methodology for efficient generation
of transition-fault test functions for high-quality tests. The obtained
experimental results demonstrate that the examined test functions can
be generated quickly and with reasonable memory requirements. They
also show that in many cases, only a small percentage of the faults for
the examined problem can have high-quality tests. Test-set enhance-
ment techniques that can be applied to produce better quality test sets,
given a set of transition-fault test functions, are also presented. It is
shown how test functions are advantageous for a variety of reasons,
among which are compact test generation and nonenumerative path
sensitization of many critical paths.
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Efficient Direct Boundary Element Method for Resistance
Extraction of Substrate With Arbitrary Doping Profile

Xiren Wang, Wenjian Yu, and Zeyi Wang

Abstract—It is important to model the substrate coupling for mixed-
signal or RF circuit designs. In this paper, a direct boundary element
method (DBEM) and related efficient techniques are presented to calculate
the coupling resistances for three-dimensional substrate structure. First,
a nonuniform meshing scheme is presented to reduce boundary elements
while preserving accuracy. Then, the unknowns on top medium surface
are removed from the discretized linear system of DBEM with a matrix
reduction technique. The third technique is applying the quasi-multiple
medium idea (W. Yu, Z. Wang, and J. Gu, “Fast capacitance extraction of
actual 3-D VLSI interconnects using quasi-multiple medium accelerated
BEM,” IEEE Trans. Microwave Theory Tech., vol. 51, no. 1, pp. 109–199,
Jan. 2003), which greatly reduces the expense of matrix reduction and
makes the final coefficient matrix much sparser. With these proposed tech-
niques, the linear equation system is largely condensed and sparsified and
then solved with a preconditioned generalized minimum residual solver
for multiple right-hand sides to get the whole resistance matrix. Numerical
experiments on typical substrates with various doping profiles show the
high accuracy of the DBEM-based method. The authors also compared
the DBEM method with the Green’s function methods accelerated by
discrete cosine transform or eigendecomposition techniques. The results
show that the DBEM-based method is several times or tens of times faster
than the other two. At the same time, the DBEM method has no difficulty
in handling substrates with more complex than stratified doping profiles,
which is a large advantage over the existing methods.

Index Terms—Direct boundary element methods (DBEMs), efficient
extraction of resistance, substrates with arbitrary doping profiles.

I. INTRODUCTION

There are currently increasing demands for high-integration circuits
[1]. High-speed digital blocks and highly sensitive analog blocks are
often built on a common substrate, which is especially true for system-
on-a-chip, mixed-signal, or RF applications. The high integration
brings some advantages, e.g., low-power dissipation, low cost, etc. [2].
However, the commonly used Si substrate transmits current noises
from digital components to sensitive analog components, which im-
pacts the latter’s performance severely. Therefore, the accurate and fast
modeling of the substrate coupling becomes very important.

At frequency of several gigahertz (GHz), a substrate behaves mainly
resistively [3]. Therefore, the substrate coupling is often modeled with
resistances connecting the contacts on its top surface. The substrate
resistances can be calculated with a device simulator, such as MEDICI.
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Because complex physical effects, such as drift and diffusion, are
involved, the device simulator runs very slowly [2]. A practical method
may be the curve fitting with data obtained from device simulator
or measurement. Although this approach is fast in some sense, their
application is very limited [2]. Other kinds of methods are based on
analytical formulas [4], which are efficient for some special cases, but
hardly suitable for general structures. A lot of numerical methods are
also utilized to calculate the substrate resistance with high accuracy.
They can be classified into the finite-element method (FEM), finite dif-
ference method (FDM) [5], and the method of Green’s function [also
called boundary element method (BEM)] [2], [3], [6]–[10]. The FEM
and FDM, with discretization of the whole three-dimensional (3-D)
substrate volume, produce a large coefficient matrix, which limits
the size of problem that they can handle. The methods based on the
Green’s function, such as those in [2], [3], [6]–[10], only discretize the
contact surfaces, therefore employs the fewest variables. However, for
the multilayered structure, the Green’s function is composed of several
infinite series, which converge very slowly. In [7], a numerically stable
method was proposed to calculate the Green’s function with discrete
cosine transform (DCT) for acceleration. However, it is not actually
stable, and a further remedy was presented in [8]. It should be pointed
out that these Green’s function-based methods are limited to the mul-
tilayer structure where each layer has a uniform resistivity. For more
complex structures such as those containing lateral resistivity varia-
tions, the corresponding Green’s function can hardly be deduced [9],
[11]. One way to deal with the lateral variation is to use a combined
boundary element and FEM [11], where the top part of substrate with
inhomogeneous material is discretized with FEM mesh. Therefore, this
method still requires larger computational resources.

In fact, there are lots of realistic substrates with layout-dependent
doping profiles, such as the oxide wells, trenches, sinkers, buried dif-
fusions, etc. [12]. There are also some special structures like Faraday
shields and junction shields [13] for noise reduction, which are actually
buried components with different resistivity. For these nonstratified
substrates, the derivation of the Green’s function becomes very dif-
ficult or even impossible. On the other hand, neglecting the special
components simply may induce large error for the simulation of the
state-of-the-art technologies, such as RF CMOS [12].

Different from the Green’s function-based method, there is another
kind of boundary integral method called direct BEM (DBEM) [14].
The DBEM obtains the direct boundary integral equation (BIE) by
adopting Green’s identity and using the free-space Green’s function
as weighting function [14]. Therefore, it avoids the difficulties of
deducing the structure-dependent Green’s function and also employs
much fewer variables than the FDM or FEM. Recently, the DBEM has
been successfully applied to capacitance and resistance extraction for
various interconnect structures [15], [16].

In this paper, the DBEM is introduced to substrate resistance ex-
traction, along with several efficient techniques. First, a nonuniform
boundary element partition scheme is presented as a basis of efficient
DBEM simulation. Second, some inessential unknowns are removed
from the discretized linear system of DBEM using a matrix reduction
technique, which produces a smaller order of linear system without
loss of accuracy. Finally, the technique called quasi-multiple medium
(QMM) innovated for capacitance extraction [15] is used to make the
coefficient matrix much sparser, so as to reduce the expense of matrix
reduction and final equation solution greatly. Numerical experiments
are carried out to illustrate the accuracy and efficiency of our method
based on DBEM. Its results are compared with DCT-accelerated
Green’s function method and the eigendecomposition-based method
in [2] and an analytical integration method in [10]. The results of
Raphael [17] and IE3-D [10] are also given for reference. Numerical
results show that our method is superior to the methods in [2] and [10]

Fig. 1. Typical structure of substrate resistance extraction.

in CPU time and has speedup of several hundreds to Raphael and
IE3-D while preserving high accuracy. Especially, our method is
applied to a substrate structure with lateral resistivity variation to
demonstrate its versatility.

II. DBEM FOR SUBSTRATE RESISTANCE EXTRACTION

Fig. 1 shows an example of a substrate, which consists of three
layers of medium regions, denoted by Ω1, Ω2, and Ω3. Usually, these
stratified medium regions have different height and resistivity. There
are contacts on the top surface of the whole structure, which connect
outer circuits. And there is also possibly a grounded plane on the very
bottom. Note that the stratified structure in Fig. 1 is not always true; the
example with more complex topology of medium regions will be given
in Section IV-C.

For substrate resistance extraction, one contact j (called master) is
set with voltage 1 V, and the other contacts 0 V. Then, the resistance
Rjk between contact j and contact k(k �= j) can be obtained as the
reciprocal of the current flowing through contact k [18]

1

Rjk
=

∫
ΓCk

σ · ∂u
∂n
dΓ =

∫
ΓCk

σ · qdΓ (1)

where ΓCk
is the surface of contact k, and σ is the conductivity

(reciprocal of resistivity ρ). u is the electric potential, and q is the
normal electric field intensity on the boundary.

If we can obtain the value of q on the contact surface, the related
substrate resistances can be calculated with (1). This procedure can be
repeated with setting different master contact, one by one. Finally, the
full resistance matrix is obtained. We introduce the DBEM to solve the
q needed in (1).

In a substrate involving multiple medium regions, the electric poten-
tial u of the steady current field fulfills the following Laplace equation
in each homogenous medium region

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
= 0 · in regionΩi. (2)

With Green’s identity and using the free-space Green’s function as
the weighting function, the Laplace (2) can be transformed into a BIE.
After discretizing the region boundary into quadrilateral elements with
constant interpolation, we get the discretized BIE [14]–[16], [18]

csus +

Ni∑
j=1

∫
Γij

q∗(s)udΓ =
Ni∑
j=1

∫
Γij

u∗(s)qdΓ for region Ωi (3)
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where cs is a constant depending on the boundary geometry at the
collocation point s. u∗(s) is the free-space Green’s function related with
point s, and q∗(s) is its normal derivative on the boundary. The entire
boundary of region Ωi is partitioned into Ni elements; Γij represents
the jth element. After calculating the boundary integrals in (3) with the
efficient approach proposed in [15], a linear equation with discretized
unknowns of u and q is obtained. Evaluating (3) at collocation points,
one for an element in the boundary of region Ωi, a linear equation
system is formed [15]

H (i) · u(i) = G(i) · q(i) for region Ωi. (4)

Besides, u and q fulfill the compatibility equations along the inter-
face of two adjacent medium a and b as follows:{

σa · qa = −σb · qb
ua = ub

, on interfaceΓI. (5)

Both u and q on an interface element are unknown. We preserve
ua and qa and represent ub and qb with them, or in reverse,
according to (5).1

The matrix equations (4) for all mediums can be put together
with (5). We then use the known boundary conditions (u on the contact
surface is known and q on the Neumann boundaries is supposed to be
zero, see Fig. 1) and reorganize the equations to form an overall linear
equation system

Ax = b (6)

where unknown vector x consists of discretized unknowns of u and
q, and b is a right-hand side vector corresponding to the specified
voltage setting. To calculate the whole resistance network, the vector
b is assigned with different values and (6) becomes a problem with
multiple right-hand sides presented with

AX = B. (7)

Here, B consists of the right-hand sides and X includes the corre-
sponding unknown vectors. Solving this system, we can directly get q
values, and in turn the resistances with (1).

From (3), we learn that only the elements on the same region’s
boundary have direct interaction among each other. Therefore, the
matrix A in (6) and (7) becomes sparse when the simulated structure is
composed of multiple regions [15]. Even so, solving the linear system
(6) consumes much time, because usually above 1000 unknowns are
involved. Here, we employ an efficient preconditioned generalized
minimum residual (GMRES) solver [19] to solve the sparse linear
equation system. Note that the organization of the sparse coefficient
matrix A can affect the performance of GMRES iterative solver
remarkably. For capacitance extraction with DBEM, an effective
arrangement of the unknowns and collocation points, as well as the
storage scheme for the matrix A has been proposed in [15]. This orga-
nization of coefficient matrix is inherited in our program for substrate
resistance extraction. For more details, please refer to [15] and [20].

III. EFFICIENT TECHNIQUES BASED ON DBEM

Three techniques are developed to improve the efficiency of sub-
strate resistance extraction based on DBEM. First, we present a

1If either σa/σb or u∗
(s)

= 1/(4πr) is not too small, where r is the distance
between the collocation point and the integral point on the interface element,
we will let u = ua, q = qa for region a, and u = ua and q = −(σa/σb)qa in
region b. Otherwise, we will preserve ub and qb and represent ua and qa with
them. With this treatment, the coefficient of qa (or qb) would not be too small.
This avoids a too large condition number for matrix A.

Fig. 2. Three-dimensional view of a three-layered substrate with nonuniform
element mesh.

nonuniform boundary element partition scheme. Then, we propose
a matrix reduction technology to obtain a smaller order of linear
system for solution. Finally, the QMM technique is applied to make
the coefficient matrix sparser and the matrix reduction much easier.

A. Nonuniform Element Partition

In DBEM simulation, the partition of boundary elements affects
both computational speed and accuracy. Compared with uniform el-
ement partition, nonuniform partition involves fewer elements while
preserving desirable accuracy [15]. Similar to the method for 3-D
capacitance extraction [15], the substrate boundaries are partitioned
with a heuristic judgment of current distribution. In this partition
scheme, the current flowing directions are estimated firstly. Then, dif-
ferent kinds of boundary are partitioned separately, considering rele-
vant factors. Some rules for these procedures are described as follows.

1) Forecasting current flowing directions: If there is no back plane,
current will flow between contacts. Otherwise, some current will
flow toward the back plane. However, when the layer just above
the back plane has high resistivity or many contacts are close to
the current injector, there will be less downward current.

2) Dividing Dirichlet boundary: The contact surfaces should be
partitioned into much smaller elements.

3) Dividing sidewalls: When a sidewall surface is near to contacts,
the element size should be smaller. Otherwise, it can be larger.

4) Dividing Neumann boundary on top surface: The element mesh
should be dense where near contacts.

5) Dividing medium interfaces: If the layer containing the contacts
is of higher resistivity than the lower layers, most current may
flow downward to the back plane, and thus the interface portion
just below the contacts should be partitioned into smaller ele-
ments. If the layer containing the contacts is of low resistivity,
most current may flow laterally, and the entire interface between
this layer and the lower layer should be partitioned into smaller
elements.

This scheme is based on experience from experiments and litera-
tures [4], [21], and may be adjusted for some complicated structures.
A simple example of nonuniform element partition is shown in Fig. 2.

B. Condensing the Linear Equation System

The basic idea is to discard some u variables, since only q variables
are needed to calculate the resistance with (1). Based on the unknown
ordering proposed in [15], we first classify and reorder the unknowns
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Fig. 3. Distribution of nonzero matrix entries in A for the substrate structure
in Fig. 1: (a) with detailed unknown ordering and (b) after using matrix
reduction technology.

for the top layer further (note that all contacts are on the top surface).
Taking the structure in Fig. 1 as an example, the unknowns of type ν33
(both q and u unknowns in medium Ω3 excluding those on interface)
include three subtypes and can be ordered as follows:

νo → qC → UT (8)

where qc represents q unknowns on contact surfaces (ΓC in Fig. 1),
uT denotes u unknowns on the Neumann boundary of top surface
(ΓT in Fig. 1), and νo is the other unknowns in ν33 (on the sidewalls).
Combining the subtype permutation in (8) into the unknown ordering
scheme in [15], we get the nonzero-entry distribution of coefficient
matrix A for the substrate in Fig. 1, which is shown in Fig. 3(a).
Only the types of collocation points and unknowns related with Ω3
are labeled there, and they are separated by dashed lines.

Usually, the discretized unknowns related with Ω3 account for a
large part of total unknowns, as depicted in Fig. 3(a). This is because
most boundary elements are located on the contacts and top surface
according to the nonuniform partition. Now, consider the discretized
BIEs related with Ω3, which form the nonzero submatrices A33,
A3T(= A3T1 ∪ A3T2), AT3, and ATT in Fig. 3(a). These discretized
BIEs can be expressed as the following matrix equation:[

A33 A3T

AT ATT

]
·
[

x3
uT

]
=

[
b3
bT

]
(9)

where x3 is the vector consisting of unknowns u23, q32, νO , and qC
[see Fig. 3(a)]. The second row of matrix equation (9) corresponds to
the equations related with the collocation points sT, which are located
on the top surface but not on the contacts. Therefore, coefficient
matrix ATT is a square one. Because uT is useless for calculating
the resistance, we can get rid of it and deduce the following matrix
equation:

A′
33 · x3 = b′

3 (10)

where

A′
33 = A33 − A3TA−1

TTAT3 (11)

and

b′
3 = b3 − A3TA−1

TTbT. (12)

Combining (10) with the matrix equation (4) for other medium
regions, we get a new global linear equation system, whose coefficient

matrix is shown in Fig. 3(b). Suppose the dimensions of matrices A33,
A3T, AT3, and ATT in Fig. 3(a) are m3 × n3, m3 × nT, nT × n3,
and nT × nT, respectively. Here, nT equals to the number of elements
on the Neumann boundary of top surface. m3 equals the number of
other elements in region 3, including those on contacts, sidewalls, and
the interface between regions 2 and 3. n3 is a little larger than m3;
their difference is the number of elements on the region interface.
If nT is large, the effect of matrix reduction in (10) becomes important,
which can greatly reduce the time for solving the final global linear
system.

Generally, the procedure of reduction in (11) has a computational
complexity of O(n3T + n

2
Tn3 + nTm3n3). We give three theorems

with which the cost of above matrix reduction can be analyzed further.
Theorem 1: ATT is a diagonal matrix.
Proof: Consider the discretized direct BIE (3). For a sT-type

collocation point on the Neumann boundary of top surface (ΓT in
Fig. 1), the coefficient for a discretized unknown of uT is∫

ΓTj

q∗(sT)dΓ =

∫
ΓTj

∂u∗(sT)
∂n

dΓ =

∫
ΓTj

−1
4πr2

· ∂r
∂n
dΓ (13)

where ΓTj is the jth element on the top surface. r is the distance
between the collocation point and the integral point on ΓTj , and n
is the normal vector of ΓTj . If the collocation point is just located on
ΓTj , the integral (13) is singular, of course not zero [15]. Otherwise, if
sT is not on ΓTj , ∂r/∂n = 0 because vector r (within the same plane
as ΓTj) is perpendicular to n. According to Section II, the unknowns
of type uT and collocation points of type sT are in the same order, and
thus nonzero coefficients (i.e., the integral with collocation point just
on ΓTj) are only on the diagonal. In other words, ATT is diagonal.
Theorem 2: bT in (9) is a zero vector.
Proof: The right-hand side b is formed by summing up all known

items in (3). In the discretized BIEs for medium region 3, the only
nonzero known quantity is the preset bias voltage of the master contact,
whose coefficient is in the same expression of (13), except that the
integral surface becomes contact surfaces. Since collocation points of
type sT are located on the same plane with the contact, but not on the
contact itself, the coefficients become always zero. Therefore, the bT
in (9) and (12) is zero.
Theorem 3: In the discretized BIEs with collocation point of type

sC, the coefficients of uT-type unknown is zero. In other words, the
matrix A3T2 in Fig. 3(a) is zero.

Proof: Collocation points of type sC are located on contact sur-
faces, which are on the same plane with the elements where variables
of uT are located. Therefore, as analyzed in the proof of Theorem 1,
the corresponding coefficient [i.e., the integral (13)] is zero. Therefore,
matrix A3T2 in Fig. 3(a) becomes a zero matrix. Also, we can say that
the submatrix A3T is partly sparse.

These three theorems explain the distribution of nonzero matrix
entries shown in Fig. 3 and are helpful to analyze the cost of our
matrix reduction technology. The numbers of multiplication operations
needed in (11) and (12) are:

1) A3TA−1
TT: Less than m3 × nT, because ATT is a diagonal

matrix and A3T is sparse;
2) (A3TA−1

TT) · AT3: Less than m3 × nT × n3, because
A3TA−1

TT has the same sparse pattern as A3T;
3) A3TA−1

TT · bT: No operation needed, because bT is a zero
vector.

In a word, condensing the equation system through (11) and (12) ac-
tually needs less thanm3 × nT × (1 + n3) multiplication operations.
The number of addition operations is similarly bounded. The compu-
tational cost is thus much less than the aforementioned general case.
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Fig. 4. Matrix population for a substrate structure similar to that in Fig. 1.
(a) Original 7662 × 7662 coefficient matrix A. (b) Matrix of order 7965 after
QMM cutting was applied. (c) Matrix reduced from (b), with order decreased
to 3580.

For the problem of substrate resistance extraction, there are usually
many contacts and all resistances among them need to be calculated.
Therefore, by discarding the unknowns of type uT as described, the
computational time for solving (7) with multiple right-hand sides are
greatly reduced. Numerical experiments verified this analysis. For
example, a substrate structure with two layers involves 1511 unknowns
after boundary element discretization, while only 779 unknowns
remain after using the condensation technology. The condensation
itself consumes only 2.20 s, but the average solving time is reduced
from 3.54 to 0.48 s, for one right-hand side.

C. Applying the QMM Technique

The localization character of DBEM is revealed by (3), where the
variables in each BIE are within the same medium region. This char-
acter results in a blocked sparse coefficient matrix A for a multiregion
problem. A QMM method was proposed in [15] to enlarge the matrix
sparsity by cutting a medium into some fictitious medium blocks. The
QMM-accelerated DBEM has greatly reduced the CPU time and mem-
ory usage for interconnect capacitance/resistance extraction [15], [16].

For substrate resistance extraction, the idea of QMM can also be
applied to improve the computational performance. Because there
are relatively few boundary elements in the lower layers, only the
top layer of substrate, which includes contacts, is decomposed into
Qx ×Qy fictitious medium blocks perpendicular to the bottom plane.
Correspondingly, the nonzero submatrices for region 3 in Fig. 3(a) are
replaced by many smaller nonzero submatrices. Also, the sparsity of
matrix A is largely enhanced.

The matrix reduction technology in Section III-B can be easily
extended to handle the system generated when QMM cutting is applied
on the top layer. Then, the time of matrix reduction becomes much less
than that not using QMM cutting. Taking an actual substrate structure
similar to that in Fig. 1 as example, after QMM is applied (Qx = 4,
Qy = 2), the nonzero distribution of matrix A shown in Fig. 4(a) turns
into Fig. 4(b), where the original submatrix for region 3 is replaced by
a sparse 8 × 8 block matrix. For the matrix in Fig. 4(b), the CPU time
for matrix reduction is only 3.1 s. And then, 2.8 s are needed for the
preconditioned GMRES solver to solve for one right-hand side. But
if not using the QMM technique, about 580 s are needed to reduce
4492 top-surface unknowns, while solving for one right-hand side
costs 10.3 s. Therefore, the QMM technique improves the computing
speed of both matrix reduction and equation solution.

IV. NUMERICAL RESULTS

The method in this paper is implemented as SubDBEM, a program
written in C++ for 3-D substrate resistance extraction. Some typical
substrate structures are calculated to demonstrate the efficiency of
our algorithms. All experiments are run on a Sun Fire V880 server
with a frequency of 750 MHz. The first experiment is carried out

Fig. 5. Top view and 3-D view of a simple one-layer substrate structure.

Fig. 6. Resistance value obtained by and running time of SubDBEM with
different number of boundary elements.

on a simple structure to show the accuracy and convergence of our
method. Then, SubDBEM is compared with other Green’s function-
based methods for a typical substrate with 52 contacts. Finally, we
perform calculations for a substrate structure with lateral resistivity
variation to show the versatility of SubDBEM. In the following text,
all time data are in unit of second.

A. Simple One-Layer Substrate

The test case is a single-layer substrate used in [6] and [10] (shown
in Fig. 5). There is a contact on the center of the top surface and a
grounded plane at the very bottom. The bulk height is 100 µm, and
the resistivity is2 10 Ω · cm. In [6], the contact-to-ground resistance
was calculated with several methods. The computational result of the
Green’s function method is 345 Ω; when DCT is used for acceleration,
the computed result is 340Ω; FDM gives the converged result of 318Ω
with 109 520 mesh points [6]. With our SubDBEM, this structure is
calculated for different boundary element partitions (for this simple
case, the QMM technique is not used). The relationship between the
element number and SubDBEM’s result is depicted in Fig. 6.

From Fig. 6, we find out that as the element number becomes larger
and larger, resistance decreases more and more slowly and converges
finally. If we regard the value under the finest mesh (7455 elements)
as criterion, the values under 67 and 530 element meshes have relative
errors of 15.4% and 1.9%, respectively. At the same time, compared
with the results of the Green’s function method, DCT accelerated
method and FDM, the converged result of SubDBEM has little dis-
crepancy with them. The curve for computational time of SubDBEM
versus element number is also drawn in Fig. 6. The time increases

2The resistivity given in [6] is 10 kΩ · µm, which is 1/10 of that used in [10]
and our experiment. With comparing the numerical results, we find out that this
may be a typo in [6]; the actual resistivity used should be 10 Ω · cm.
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Fig. 7. Top view of a typical substrate [2].

Fig. 8. Three substrate doping profiles used for extraction: (a) low-resistivity
profile, (b) high-resistivity profile, and (c) singer-layer profile.

less than squarely with the element number, which can be easily seen
through a log–log plot. Taking a median point for example, say which
with 530 elements, the computational time of SubDBEM is 1.4 s.
Its speedup ratios to the Green’s function method, DCT accelerated
Green’s function method and FDM are about 30, 12, and 106, respec-
tively. On an IBM RS6000 workstation (with 166-MHz frequency), the
computational time of the latter three methods are 190, 76, and 674 s,
respectively [6].

Although SubDBEM with dense boundary mesh gives more reliable
results, we need to make balance between computational accuracy and
speed. Therefore, adequate boundary meshes are used for the follow-
ing experiments, which produce substrate resistance with reasonable
accuracy.

B. 52-Contact Structure With Three Doping Profiles

In [2] and [10], a relatively complex structure from a mixed-signal
circuit was used to demonstrate the efficiency of proposed methods
for substrate resistance extraction. The example layout is a 52-contact
structure on a 128× 128-µm substrate, as shown in Fig. 7. Fig. 8
shows three representative kinds of doping profiles of substrate [2],
[4], [10], with resistivity and height signed for each layer. In [2] and
[10], the 52-contact structure with these doping profiles is calculated.
We will compare their results with those from our DBEM-based
method.

We first calculate resistances using a low-resistivity process, which
involves three medium layers shown in Fig. 8(a). Our methods are

TABLE I
COMPUTATIONAL RESULTS FOR THE 52-CONTACT SUBSTRATE

WITH LOW-RESISTIVITY PROFILE

TABLE II
RELEVANT PARAMETERS FOR THE EXTRACTION OF THE EXAMPLE

WITH LOW-RESISTIVITY SUBSTRATE PROFILE

compared with the DCT-accelerated Green’s function method and the
eigendecomposition-based method in [2]. They are denoted by “DCT-
Green” and “EigenDec,” respectively. The results of DCTGreen and
EigenDec are obtained from [2]. The pure DBEM without techniques
in Sections III-B and III-C (denoted by DBEM), Raphael, the famous
3-D FDM field solver of Synopsys [17], and the SubDBEM are run
on the same machine to calculate this case. Table I gives the com-
putational results of these methods, where Ri,j means the resistance
between contact i and contact j. In Table I, not all resistances are listed,
like that in [2]. Because DBEM gives the same results as SubDBEM,
they share a same row. For this case and the next one with high-
resistivity profile, a 4 × 2 QMM cutting is performed on the top layer.

From Table I, we can see that the discrepancy between the results
obtained with our method and those from [2] is within 5%, except
that for R20,42 is about 15%. Note that the reciprocal of R20,42, i.e.,
the current between contacts 20 and 42 is smaller than others for
several magnitudes, and the result of Raphael is close to ours (with 9%
discrepancy).

Table II shows the relevant computational parameters of these
methods for the low-resistivity case, which is actually the same case
we used in Section III-C to explain the efficiency of applying the
QMM technology (see the identity of the matrix orders in Fig. 4 and
the unknown numbers in Table II). The computing time of DBEM
with the condensing technique in Section III-B (denoted by RBEM)
and the DBEM with the QMM technique merely (denoted by QBEM)
is also listed in Table II. They show the individual impacts of these
two techniques on time saving. Since we are not able to compare
our method and those in [2] directly on a same computer, the relative
performance of our method is only estimated ignoring the difference
between processor generations. As we know, Sun Ultra Sparc 1
workstation has a CPU with frequency of 143 or 167 MHz. Therefore,
Table II shows that without the techniques proposed in this paper, the
pure DBEM has no advantage over either DCTGreen or EigenDec.
However, SubDBEM may have a speedup of 37 to DCTGreen,
and nearly 6 to EigenDec. The memory consumed by DCTGreen,
EigenDec and our SubDBEM is on the same order, much less than
that by Raphael or the pure DBEM.

If the high-resistivity profile in Fig. 8(b) is used, the relevant
computational parameters of SubDBEM, Raphael (with default grid),
DCTGreen and EigenDec for substrate extraction are listed in
Table III. Since no resistance result was given in [2] for this profile,
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TABLE III
RELEVANT PARAMETERS FOR THE EXTRACTION OF THE EXAMPLE

WITH HIGH-RESISTIVITY SUBSTRATE PROFILE

TABLE IV
COMPUTATIONAL RESULTS FOR THE 52-CONTACT SUBSTRATE

WITH LOW-RESISTIVITY PROFILE

we focus on the performance comparison. The data of DCTGreen and
EigenDec are got on Sun Ultra Sparc 1 [2]. Assuming the CPU used in
[2] has frequency of 143 MHz, our SubDBEM is more than 200 times
faster than the DCTGreen and 14 times faster than the EigenDec.
While considering the memory usage, the SubDBEM is much superior
to the DCTGreen, but consumes a little more than the EigenDec.

Compared with those in Table II, the DCTGreen and EigenDec
consume more CPU time for the example with high-resistivity profile.
This is because the number of GMRES iterations increases a lot in cal-
culating the high-resistivity example. However, SubDBEM performs
better for the substrate with high-resistivity profile than the one with
low-resistivity profile. The main reason is that in the former there is
only one medium interface rather than two interfaces in the latter. This
reduces the total number of boundary elements. Besides, the number
of GMRES iterations also reduces for the high-resistivity example.

For the 52-contact substrate with single-layer profile in Fig. 8(c), no
computational result was given in [2]. But this structure was discussed
in [10], where a fast-convergent Green’s function and an analytical
solution for the double surface integrals of substrate resistance ex-
traction were proposed. We will compare the computational results
of SubDBEM with those from [10]. To use the QMM technique in
SubDBEM, the substrate is first cut into two layers (with heights 20
and 380 µm, respectively), and then the top layer is cut into 2× 4 parts.

In Table IV, some mutual resistances computed by SubDBEM are
listed, along with corresponding results of Raphael, and those from
[10]. IE3-D is a 3-D full-wave, method of moment (MOM), integral
equation electromagnetic simulator, whose computational results are
got from [10]. From the table, we can see that the error of SubDBEM
is less than 5% (if considering results of IE3-D as the standard),
and SubDBEM has similar accuracy as the method in [10]. But the
accuracy of Raphael is much worse for this example. The CPU time of
SubDBEM is only 51.7 s on calculating all the resistances. It is more
than 940 times faster than IE3-D, which consumes up to 73 364 s on
a PC with 500-MHz frequency [10]. On a Sun Ultra 12 workstation,
the method with analytical Green’s function costs 441.2 s to complete
the resistance extraction [10]. Although we have no exact data of the
working frequency of Sun Ultra 12 workstation, we learn that it will
be above 140 MHz, from the website of SUN, Inc. Then, SubDBEM
is even a bit faster than the analytical method in [10]. Moreover, an
important advantage of our method over the method of [10] is that the
former can handle substrates with arbitrary doping profiles, while the
latter only handles structures with one or two stratified medium layers.

Fig. 9. Substrate with lateral resistivity variation.

Fig. 10. Resistance obtained with SubDBEM and Raphael, varied with the
resistivity of lateral variation region.

C. Structure With Lateral Resistivity Variation

In most literatures of substrate resistance extraction, the stratified
structures are calculated as example, partially because that the Green’s
function cannot be deduced for substrates with complicated doping
profiles. On the contrary, the DBEM in Section II has no limitation on
the topology of mediums in a substrate. To demonstrate this advantage
of DBEM over the Green’s function-based methods, a structure with
lateral resistivity variation (shown in Fig. 9) is calculated.

This case has two medium layers, with resistivities ρ1 = 0.1 Ω · cm
and ρ2 = 35 Ω · cm, respectively. The height of upper layer is
h1 = 5 µm, and the height of lower layer is h2 = 400 µm. In the
center of upper layer, there is an L× L square region with different
resistivity, which is T times of ρ1. The height of this resistivity
variation region is h0 = 5 µm. The dimension of whole structure is
200× 200 µm. On the top surface, there are two 10× 10-µm contacts
located to the left and right sides of the resistivity variation region.
The resistance between these two contacts is calculated with different
values of L and T . For L = 100, 70, or 30 µm, the resistances
calculated by SubDBEM and Raphael are depicted as curves in Fig. 10,
with the resistivity ratio T varied. In SubDBEM, 3 × 3 QMM cutting
is performed for the top layer so as to make the resistivity-variation
region be the central fictitious region.

We can learn from the figure that the results of SubDBEM are very
close to Raphael, illustrating the high accuracy of our method for such
complicated case. At the same time, the speedup ratio of SubDEBM
to Raphael with default grid is about 818.8/17.5 = 47. Besides, the
resistance increases with the resistivity of the lateral variation region,
and finally converges. This is because the block region behaves more
and more like an obstacle in the path of current flow as its resistivity
gets larger and larger. When the resistivity is large enough, the current
will not flow through this region at all, so the resistance between two
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contacts reaches a converged value. Also, the resistance increases more
quickly for largerL. This can be explained similarly, because the larger
the resistivity-variation region, the more it influences the current flow.

V. CONCLUSION

In this paper, the DBEM is presented to extract 3-D substrate
resistance for the first time. Different from the Green’s function-based
methods, only the free-space Green’s function is used in DBEM.
Therefore, DBEM is able to handle substrate structure with arbi-
trary doping profiles, which overcomes the limitation of existing
Green’s function-based methods. However, DBEM discretizes the
entire boundary of a substrate region and produces more unknowns
than the Green’s function method. To improve the performance of
DBEM, three efficient techniques are proposed for substrate resistance
extraction. With nonuniform element partition, the technique of con-
densing the linear equation system, the number of unknowns in DBEM
is greatly reduced. Also, with the enhanced sparsity brought by the
QMM approach, the equation reduction and final equation solution can
be performed much faster. The combination of these techniques largely
improves the computational efficiency of the DBEM, especially for the
structure involving many contacts and lateral resistivity variation.

Numerical results demonstrate high accuracy of our DBEM-based
method. The experiments on a typical 52-contact substrate structure
show that our method is several times faster than the Green’s function
method, which is accelerated by the eigendecomposition technique and
tens of times faster than the DCT-accelerated Green’s function method.
An example with lateral resistivity variation is also simulated to show
the versatility of our method.
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Comments on “Modeling of Metallic Carbon-Nanotube
Interconnects for Circuit Simulations and a Comparison

With Cu Interconnects for Sealed Technologies”

Hong Li, Wen-Yan Yin, and Jun-Fa Mao

I. INTRODUCTION

In [1], Raychowdhury and Roy proposed a compact resistance,
inductance, and capacitance circuit model for the metallic single-
walled carbon nanotube (CNT) interconnects, in which the CNT’s
differential resistance was given as follows:

For low biases (V < Vcritical)

Rlowdiff =
dV

dI
=

(
h

4e2

)
Θ

(
l

λlow

)
. (1)

For high biases (V > Vcritical)

Rhighdiff =
dV

dI
=
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4e2

)
Θ

(
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λlow
+
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0.16l
V

+ λhigh

)
(2)

where

Θ(x) =
{
1, x < 1
x, otherwise

(3)

and h is the Plank’s constant, e is the electronic charge, and λ is the
mean free path (mfp). As given in [1], Vcritical = 160mV and λhigh ≈
30 nm, while λlow is in the range of 1.0 and 1.6 µm.
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