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Abstract—Long Short-Term Memory (LSTM) network and
Gated Recurrent Units (GRU) network are two widely-used
gated Recurrent Neural Network (RNN) architectures. Both of
them usually have a huge model size and require a long time
to be trained. In this paper, we first propose a singular value
decomposition (SVD) based approach for fast training of LSTM.
Then, the factorized model and SVD based training approach
are proposed for the GRU network, which adaptively choose
the rank parameter for the matrix factorization model and
reduce the training time and parameters of the gated RNNs.
Experiments are carried out on the image classification and
sentiment classification tasks using datasets MNIST and IMDB,
respectively. The results show that the proposed LSTM-SVD
approach achieves up to 3.9X speedup compared with training the
original LSTM model, without loss of accuracy. The approaches
for training the GRU network also have about 2X speedup. And,
with the factorized models the quantity of RNN cell parameters
can be significantly reduced by more than 10X.

Index Terms—Gated recurrent neural networks (RNNs), model
compression, singular value decomposition, training acceleration

I. INTRODUCTION

As one of the most powerful deep neural networks (DNNs), the
gated recurrent neural network (RNN), like LSTM [1] or GRU
network [2], has shown promising results in many machine
learning tasks, including language modeling [3], machine
translation [4] and speech recognition [5]. The gated RNN
usually involves millions of parameters and a large quantity
of matrix multiplications both for the training and inference
stages, so that its training and deployment require a lot of
computation resource. To accelerate the training of large-scale
DNNs and to compress the relevant model size, the approaches
using GPU-based computing [6] and distributed computation
[7] have been proposed. However, such high-performance
computing equipments are costly, and are not always available.
In fact, the hardware-based acceleration is not feasible for
training the models used in intelligent household electrical
appliance, mobile phones or other even smaller embedded
devices. And, compression of the trained RNN model becomes
crucial for the realization of edge computing.

Another line of work aims at reducing the amount of
computation associated with the forward-propagation and the
back-propagation process. Since floating-point arithmetic costs
most time of training the deep-learning model, some work

were focused on replacing floating-point multiplications by
binary shifts [8] or integer shifts [9]. Lin et al. converted the
multiplications to sign changes during forward propagation
and performed quantized back-propagation that converts the
remaining multiplication into binary shifts [10]. In [11] and
[12], Han et al. proposed techniques including pruning the
unimportant connections and then retraining the remaining
sparse network, trained quantization and Huffman coding to
accelerate the training procedure of the convolution neural
network (CNN) and to reduce the storage of model. Their
method also improves the energy efficiency and does not
degrade the accuracy. Girshick applied truncated SVD to fully
connected layers in region-based convolutional network (R-
CNN) for faster detection [13]. Spring and Shrivastava pro-
posed a randomized hashing approach to reduce the amount of
computation in the training and testing procedures drastically
[14].

Besides the approaches mentioned above, low-rank matrix
approximation is another key that can be possibly used for
the training acceleration and model compression. Denil et al.
proposed a matrix-factorization based method to reduce the
number of parameters in deep learning models by training only
a small number of weights and predicting the rest [15]. Sind-
hwani et al. used structured matrix transformations with low-
rank matrices to accelerate inferences and forward/backward
pass [16]. Singular value decomposition (SVD) of a matrix
produces the optimal low-rank approximation, and this has
also been utilized for the training acceleration. In the fast
learning model proposed by Cai et al. [17], SVD is applied
to the multi-layer back-propagation (BP) network which has
been pre-adjusted by supervised training, and then the analo-
gous back-propagation is used for subsequent training of the
factorized network. Finally, the factorized model is converted
inversely to the BP network. It should be pointed out that
there is few work for the fast training of gated RNNs. Most
of existing work is focused on the BP network or CNNs.

For the gated RNNs, recently the training efficiency of
LSTM networks was improved by leveraging factorization
tricks [18]. One of the tricks is based on matrix factorization
and is named F-LSTM (Factorized LSTM). In the approach,
two low-rank matrices are initialized randomly to represent the
weight matrix in LSTM network. This reduces the number

978-1-5090-6014-6/18/$31.00 ©2018 IEEE



of parameters and results in the acceleration of the training
procedure.

In this paper, a new training acceleration approach is pro-
posed for the LSTM network, which combines the matrix fac-
torization and the SVD trick used in [17]. It adaptively chooses
the rank parameter according to the accuracy criterion of
matrix approximation, and makes faster convergence of LSTM
training than the approach in [18]. The matrix factorization
based techniques are also proposed to accelerate the training
of GRU networks. Experimental results on MNIST and IMDB
datasets show that the proposed technique is superior to F-
LSTM, and significantly reduces the training time of the
original LSTM model (up to 3.9X). For the GRU network, the
training time can also be reduced by about 2X. The proposed
techniques also significantly compress the RNN model, with
more than 10X parameter reduction shown in experiments.

II. TECHNICAL BACKGROUND

In this section, we briefly introduce the computation carried
out for training LSTM network and GRU network, and the F-
LSTM approach. σ() and tanh() denote the sigmoid function
and hyperbolic tangent function, respectively. Both work for
vector. And, “�” stands for the operator of element-wise
multiplication. The structures of an LSTM cell and a GRU
cell are illustrated in Figure 1(a) and 1(b) respectively. An
RNN classifier is illustrated in Figure 1(c), where the hidden
state of the last time step is connected to a dense layer and
softmax is used as the activation function.

(a) Illustration of an LSTM cell (b) Illustration of a GRU cell

(c) The structure of an RNN classifier

Fig. 1: Illustration of RNN cells and an RNN classifier.

A. Long Short-Term Memory Network

The computations associated with the LSTM cell can be
written in the following recurrent form:

LSTM : ht−1, ct−1,xt → ht, ct, (1)

where xt ∈ Rni is the input at time step t (t = 1, 2, . . . , T ),
ht ∈ Rnh is the corresponding hidden state and ct ∈ Rnh

is the corresponding memory. The states of the cell’s gates
before non-linearity activation at time step t are computed:

T t =


īt
f̄ t
ōt
ḡt

 = Wx′t + b = W

[
xt

ht−1

]
+ b, (2)

where īt, f̄ t, ōt, ḡt ∈ Rnh , W ∈ R4nh×(ni+nh), and b,
T t ∈ R4nh . Here ni and nh denote the dimensions of input
sequences and hidden states, respectively. Then, at time step
t the states of the input gate, forget gate, output gate and the
new memory (denoted by it, f t, ot and gt respectively) are
computed:

it = σ(īt),f t = σ(f̄ t),ot = σ(ōt), gt = σ(ḡt). (3)

The final memory ct and the hidden state ht are computed as:

ct = f t � ct−1 + it � gt, (4)

ht = ot � tanh(ct). (5)

B. Gated Recurrent Unit Network

Similar to the LSTM cell, the GRU cell has the following
recurrent form:

GRU : ht−1,xt → ht. (6)

The cell’s gates before nonlinearity activation at time step
t are computed:

T g
t =

[
r̄t
ūt

]
= W gx

g
t + bg = W g

[
xt

ht−1

]
+ bg, (7)

where r̄t, ūt ∈ Rnh , xgt ∈ Rni+nh , bg ∈ R2nh , and W g ∈
R2nh×(ni+nh). The state of reset gate rt = σ(r̄t) and the state
of update gate ut = σ(ūt). The new memory is computed as:

T c
t = W cx

c
t + bc = W c

[
xt

r � ht−1

]
+ bc, (8)

ct = tanh(T c
t), (9)

where xct ∈ Rni+nh , W c ∈ Rnh×(ni+nh), and bc ∈ Rnh .
Finally, the hidden state is computed as

ht = (1− ut)� ct + ut � ht−1, (10)

where 1 denotes the vector with all 1 elements.

C. The F-LSTM Approach

To speed up the training of LSTM, Kuchaiev and Ginsburg
proposed F-LSTM [18]. Its idea is to approximate matrix
W in Eq. (2) with the product of two smaller matrices, i.e.,
W = W 2·W 1. This makes the number of parameters reduced
from 4nh × (ni + nh) to (5nh + ni)r, where r is the rank
parameter. In F-LSTM, W 1 and W 2 are initialized randomly
before training.

The F-LSTM approach has the following shortages. Firstly,
as W 1 and W 2 are initialized randomly, the training pro-
cedure may converge slowly compared with other approach
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which assigns better initial values to W 1 and W 2. Secondly,
it is not clear how to choose the parameter r. In this work,
we propose a new fast training approach to overcome the
above shortages. We will also extend the work to accelerate
the training of GRU networks.

III. METHODOLOGY

Three training approaches for RNNs are proposed here:
LSTM-SVD, Factorized GRU (F-GRU) and GRU-SVD. All
of them can achieve a remarkable speedup and model-size
compression without loss of performance.

A. The SVD Based Approach for Training LSTM

The SVD method [19] is one of the most powerful and
widely-used tools for matrix factorization. For a weight matrix
W (m×n) in an RNN model, the rank-r truncated SVD can be
obtained by performing the full SVD and then keeping the r
largest singular values and corresponding singular vectors.

W = U (m×m) ·Σ(m×n) · V T
(n×n)

≈ U (m×r) ·
(
Σ(r×r) · V T

(r×n)

)
= W 2 ·W 1 = W f .

(11)

From Eq. (11), we see that the truncated SVD can be expressed
as the matrix factorization in form of W 2 ·W 1. And, the
result matrix W f best approximates W among all matrices
with rank r [20]. Suppose the singular values of W are σ1 ≥
. . . ≥ σn ≥ 0. The approximation error is

‖W −W f‖2
‖W ‖2

=
σr+1

σ1
. (12)

So, if we want to constrain the relative error of the approxi-
mation within ε, i.e.,

er =
‖W −W f‖2
‖W ‖2

≤ ε, (13)

the rank parameter r should be:

r∗ = min
σr+1≤σ1ε

r. (14)

This gives an adaptive strategy for choosing r value according
to accuracy criterion.

Replacing W with W 2 · W 1, we obtain the factorized
model of LSTM. To overcome the drawback brought by
randomly initializing W 1 and W 2, we instead pre-train the
original model for several iterations, and then make truncated
SVD on W to obtain the initial values of W 1 and W 2. After
that the factorized model is trained with BPTT algorithm.
While doing the truncated SVD, Eq. (14) is used to choose
the parameter r for the matrix factorization. This generates an
SVD based approach for training LSTM (named LSTM-SVD),
which includes the following steps.
• Step 1: Pre-train the LSTM network for several iterations,

e.g., for 1 epoch;
• Step 2: Apply SVD to matrix W obtained from the pre-

trained network, and then choose parameter r according
to an accuracy ε and Eq. (14);

• Step 3: Train the factorized model with W 1 and W 2, and
finally obtain the converged factorized LSTM model.

For the factorized models, BPTT algorithm is still used for
training. For LSTMs, the following can be inferred according
to the chain rule:

∇T t
L =


∇itL
∇ft

L
∇otL
∇gt

L



=


∇ct

L� gt � (1− it)� it
∇ct

L� ct−1 � (1− f t)� f t
∇htL� tanh(ct)� (1− ot)� ot

∇ct
L� it �

(
1− g2

t

)
 ,

(15)

where L is the cost function, and ∇vL stands for the gradient

of L with respect to v, i.e., ∇vL =
[
∂L
∂v1

, ∂L∂v2 , . . . ,
∂L
∂vn

]T
.

For convenience we denote:

L′t =

{∑T
s=t∇hs

L�∇ct
hs , 1 ≤ t ≤ T

0 , t = T + 1
. (16)

Here 1 and 0 stand for the vectors with all 1 and 0 elements,
respectively. The BPTT algorithm for training the factorized
LSTM model is illustrated in Algorithm 1. With the converged
W 1 and W 2, we do not convert them back to W . And, they
are used in the testing stage with a slight modification on the
forward-propagation algorithm.

Algorithm 1 The BPTT Algorithm for the factorized model
of LSTM
Input: xt ∈ Rni , it,f t,ot, gt, ct,ht ∈ Rnh , (t = 1, . . . , T );

W 1 ∈ Rr×(ni+nh), W 2 ∈ R4nh×r, b ∈ R4nh ; η ∈ R
Output: ∆W 1 ∈ Rr×(ni+nh), ∆W 2 ∈ R4nh×r, ∆b ∈ R4nh

1: lw1 ← 0r×(ni+nh), lw2 ← 04nh×r, lb ← 04nh {lw1
denotes ∇W 1

L, lw2 denotes ∇W 2
L, and lb denotes

∇bL}
2: for t← T to 1 do
3: ∇ctL← ∇htL� ot �

(
1− tanh2(ct)

)
+ L′t+1

4: calculate ∇T tL using Eq. (15)
5: lw1 += W T

2 · ∇T tL · x′t
T

6: lw2 += ∇T tL · (W 1x
′
t)
T

7: lb += ∇T tL
8: L′t ← ∇ct

L� f t
9: ∇ht−1

L←
(
(W 2W 1)T · ∇T t

L
)

[−nh :] {“[−n :]”
means the last n elements of a vector.}

10: end for
11: ∆W 1 ← η · lw1
12: ∆W 2 ← η · lw2
13: ∆b← η · lb
14: return ∆W 1, ∆W 2, ∆b .

B. The Factorization-Based Approaches for GRU

For the GRU network, both the factorization approach and
the SVD based approach in last subsection can also be applied.
They reduce the time for training the GRU network. The
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difference to training LSTM is that there are two parameter
matrices in GRU network.

The first matrix is W g including 2nh(ni+nh) parameters.
So, if it is factorized as: W g ≈W gf = W g2 ·W g1, where
W g1 ∈ Rrg×(ni+nh) and W g2 ∈ R2nh×rg . The number of
parameters is cut down to (ni + 3nh)rg , where rg is the rank
parameter of W g . Hence, for the approach with factorized
GRU model (denoted by F-GRU), the calculation of T g

t in
Eq. (7) changes to

T g
t = W g2 · (W g1 · xgt ) + bg. (17)

The second weight matrix W c can also be approximated
by a rank-rc matrix W cf = W c2 · W c1, where W c1 ∈
Rrc×(ni+nh) and W c2 ∈ Rnh×rc . Then, T c

t in Eq. (8) changes
to

T g
c = W c2 · (W c1 · xct) + bc. (18)

Notice that W c has nh(ni + nh) parameters and the
factorization can reduce this number down to (ni + 2nh)rc.
Compared with W g , this reduction seems not prominent. In
practice, we can factorize both W g and W c, but we prefer
only do factorization for the larger matrix W g . Parameters of
the F-GRU model are randomly initialized before training and
the model is also trained with the BPTT method.

An alternative approach is named GRU-SVD, which has the
same idea of LSTM-SVD. We first pre-train a conventional
GRU model for several iterations. Then, we apply SVD to
W g or both W g and W c, and each matrix is substitute by
the product of two low-rank matrices. Thus the subsequent
work is the same as the F-GRU approach. Finally, we can get
the trained GRU-SVD model. Our experiment shows that the
large singular values of W g are more distinctive than those of
W c. Therefore, a preferable strategy is applying SVD to W g

only while keeping the original W c matrix in the GRU-SVD
approach.

For GRUs, it’s not hard to derive the following expressions:

∇ut
L = ∇ht

L� (ht−1 − ct), (19)

∇rt
L =

(
(W c2W c1)T ·

(
1− c2

t

)
�∇ct

L
)

[−nh :]� ht−1,
(20)

∇T g
t
L =

[
∇ūtL
∇r̄t

L

]
=

[
∇utL� ut � (1− ut)
∇rt

L� rt � (1− rt)

]
. (21)

Here, “[−nh :]” following Python notation, means the last n
elements of a vector. The BPTT algorithm for a factorized
GRU cell is illustrated in Algorithm 2.

IV. EXPERIMENTS

The proposed approaches have been tested on two tasks -
MNIST classification task and IMDB sentiment classification
task. Each of the two tasks corresponds to a publicly available
dataset, whose statistics are summarized in Table I. The train-
ing approaches for LSTM and GRU networks are implemented
based on TensorFlow [21]. In the SVD based approach, the

Algorithm 2 The BPTT Algorithm for the factorized model
of GRU
Input: xt ∈ Rni , rt,ut, ct,ht ∈ Rnh(t = 1, . . . , T );

W g1 ∈ Rrg×(ni+nh), W g2 ∈ R2nh×rg , bg ∈ R2nh ,
W c1 ∈ Rrc×(ni+nh), W c2 ∈ Rnh×rc , bc ∈ Rnh ; η ∈ R

Output: ∆W g1 ∈ Rrg×(ni+nh), ∆W g2 ∈ R2nh×rg , ∆bg ∈
R2nh , ∆W c1 ∈ Rrc×(ni+nh), ∆W c2 ∈ Rnh×rc , ∆bc ∈
Rnh

1: lwg1← 0rg×(ni+nh), lwg2← 02nh×rg , lbg ← 02nh

2: lwc1← 0rc×(ni+nh), lwc2← 0nh×rc , lbc← 0nh {lwg1,
lwg2, lbg, lwc1, lwc2 and lbc denote ∇W g1L, ∇W g2L,
∇bg

L, ∇W c1
L, ∇W c2

L, and ∇bc
L respectively}

3: for t← T to 1 do
4: ∇ct

L← ∇ht
L� (1− ut)

5: calculate ∇T g
t
L using Eq. (21)

6: lwg1 += W T
g2 · ∇T g

t
L · (xgt )

T

7: lwg2 += ∇T g
t
L · (W g1x

g
t )
T

8: lbg += ∇T g
t
L

9: lwc1 += W T
c2 · ∇ct

L�
(
1− c2

t

)
· (xct)

T

10: lwc2 += ∇ctL�
(
1− c2

t

)
·
(
W T

c1x
c
t

)T
11: lbc += ∇ctL�

(
1− c2

t

)
12: ∇ht−1

L←
(
(W g2W g1)T · ∇T g

t
L
)

[−nh :]
13: end for
14: ∆W g1 ← η · lwg1, ∆W g2 ← η · lwg2, ∆bg ← η · lbg
15: ∆W c1 ← η · lwc1, ∆W c2 ← η · lwc2, ∆bc ← η · lbc
16: return ∆W g1, ∆W g2, ∆bg , ∆W c1, ∆W c2, ∆bc.

relative error constraint ε is set to 0.2, except explicitly stated.
All experiments were run on a machine equipped with a 16-
core Dual-Core AMD OpteronTM Processor 8224 SE and 64
GB memory.

TABLE I: Sizes of the datasets

Dataset Training size Validation size Test size

MNIST 55,000 5,000 10,000
IMDB 30,000 10,000 10,000

A. MNIST Classification Task

MNIST is a large dataset including images of handwritten
digits, and each image is represented by a 28×28 pixel matrix
of gray-scale values. MNIST has been studied in many image
classification tasks [22]. Considering each image as a sequence
of pixel rows, each image can be handled as a sequence of
vectors with 28 steps. We use the cross-entropy loss as the cost
function and Adam optimizer [23] with a learning rate decay
is used for training. Specifically, the initial learning rate is
0.0009 which decays by a factor of 0.95 per 100 steps.

We first test the approaches using LSTM network. Each
image can be handled as a sequence of vectors with T = 28
steps and the input size ni = 28. The size of hidden state is
nh = 768. With the SVD based training approach (LSTM-
SVD), we first pre-train the LSTM network for one epoch.
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Some leading singular values of weight matrix W after the
pre-training are shown in Figure 2. Compared with the initial
random weight matrix, there is distinct decay on the singular
values of the pre-adjusted W . Thus, the pre-adjusted W can
be well approximated by a low-rank matrix. With the preset
ε and (14), we can calculate the value of rank parameter
r∗. In this experiment, r∗ = 48. Then, with the factorized
LSTM model, the number of parameters in the LSTM cell
is reduced from 2,448,384 to 185,664 (13X reduction), and
the total number of parameters is reduced from 2,456,074 to
193,354 (13X).

0 50 100 150 200 250
i

1

2

3

4

5
i (initial weight matrix)
i (pre-adjusted weight matrix)

Fig. 2: Distributions of leading singular values of the initial
random weight matrix W and the pre-adjusted W in the
MNIST classification task.

With the same low-rank factorization, we then train the
network with the F-LSTM approach. In Figure 3, we show
the training loss of LSTM-SVD, F-LSTM and the conventional
LSTM. From it we can see that at the same step count LSTM-
SVD gains lower loss than F-LSTM even though they both
have same number of parameters. More results of the three
approaches are listed in Table II. For the training stage, we
use the early stopping strategy for regularization, so that the
training is stopped if the validation accuracy is not improved
for 4 epochs. From the table, we see that the approaches
converge with different speed. LSTM-SVD needs less epoch
than F-LSTM for reaching convergence, which makes the
latter’s costs 13% more training time than the former. Com-
pared with the conventional LSTM model, the LSTM-SVD
approach reduces the training time for 3.9X, while keeping
same accuracy. For the testing stage, the model obtained with
LSTM-SVD has better test accuracy than that corresponding
to the F-LSTM approach.

TABLE II: Comparisons of LSTM, F-LSTM and LSTM-SVD
approaches in the MNIST classification task.

Approach LSTM F-LSTM LSTM-SVD

Training accuracy 100.0% 99.5% 100.0%
Test accuracy 99.0% 98.4% 98.8%

Training time (min.) 229.3 65.6 58.1
Epoch number 15 19 15

Testing time (sec.) 23.9 12.4 12.0

Then, we test the approaches using GRU network. The size
of hidden state is still nh = 768. In a GRU cell, for weight
matrices W c and W g , the distributions of the singular values
before and after the pre-training step are shown in Figure 4.

For each initial weight matrix, the singular values are relatively
equally distributed. After the pre-training, more distinct decay
of singular value is exhibited for the both matrices. Between
the both, the decay trend of singular value for the pre-adjusted
W g is obviously more prominent than the pre-adjusted W c.
This indicates W g should be factorized preferentially.

In the experiment, we just factorize the matrix W g , and the
GRU-SVD approach automatically choose a rank parameter
r∗g = 103. With the same low-rank factorization, the F-
GRU approach is then performed. Different from LSTM-based
approach, with the factorized GRU model, the training loss
converges with same speed as the conventional GRU model.
The experimental results also indicate that the GRU-SVD
approach does not outperform the F-GRU approach on the
convergence rate.

In Table III, the results of the GRU-based approaches in
the MNIST classification task are listed. From it we see that,
the F-GRU approach achieves the same test accuracy as the
conventional GRU model, but costing only 69.7% training
time. With the factorized model, the testing time can also
be reduced to 69.1% of the original model. The performance
of the GRU-SVD is close to that of F-GRU, showing 1.3X
reduction of the training time of the conventional GRU model.
The number of parameters is also reduced if the F-GRU or
GRU-SVD approaches are used, as listed in Table III. It should
be pointed out more speedup and model compression can be
expected providing that both W g and W c are factorized with
lower ranks. For example, the F-GRU approach with rank-60
factorizations for both W g and W c can achieve 2.1X speedup
while keeping high performance (98.7% test accuracy). This
corresponds to a 7.6X compression rate of the model size.

B. IMDB Sentiment Classification Task

Large Movie Review Dataset contains 50,000 highly polar
movie reviews from IMDB and is widely used for sentiment
classification tasks [24]. Top 20,000 words in this corpus are
used to build the vocabulary dictionary. Natural Language
Toolkit (NLTK) [25] is used for tokenization and sentences
are truncated or padded to the length of 200.

0 200 400 600 800 1000 1200 1400
step

0.00

0.25

0.50

0.75

1.00

1.25

1.50 LSTM
F-LSTM
LSTM-SVD

Fig. 3: Training loss versus training steps (mini-batch) for the
F-LSTM, LSTM and LSTM-SVD approaches in the MNIST
classification task
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TABLE III: Comparisons of GRU, F-GRU and GRU-SVD in the MNIST classification task.

Approach Training accuracy Test accuracy Training time (min.) Testing time (sec.) num of parameters

GRU 100.0% 98.9% 111.2 16.6 1,843,978
F-GRU 100.0% 98.9% 77.5 11.5 861,518

GRU-SVD 100.0% 99.0% 80.5 11.8 861,518

0 100 200 300 400 500 600 700
i

0

2

4

6

8 g (initial weight matrix)
c (initial weight matrix)
g (pre-adjusted weight matrix)
c (pre-adjusted weight matrix)

Fig. 4: Distributions of singular values in the GRU-SVD model
for MNIST classification task.

In this binary classification task, whose output is either
positive or negative, an embedding layer is used before the
RNN cell. Dropout is used to avoid overfitting [26]. And, the
binary cross-entropy is employed as the cost function. In our
experiments, we set hidden size of 768 (nh = 768), embedding
size of 32 (ni = 32) and dropout rate 0.5, while the Adam
optimizer is used to train the model. The initial learning rate
is 0.001, and it decays by a factor of 0.6 each epoch until
reaching 0.0001.

We first test the LSTM based approaches. After pre-
training the network for 1 epoch, the LSTM-SVD automat-
ically chooses the rank parameter r∗ = 11 (corresponding to
ε = 0.2). Note that the singular value of W here presents a
more sharp drop than that for the MNIST classification task.
With the same setting for low-rank factorization, F-LSTM is
also used to train the network. And, the early stopping is used
for regularization and the training iteration stops when there
is no improvement of validation accuracy for 2 epochs. Their
results are listed in Table IV, compared with the results from
the conventional LSTM.

TABLE IV: Comparison of LSTM, F-LSTM and LSTM-SVD
in the IMDB sentiment classification task.

Approach LSTM F-LSTM LSTM-SVD

Training accuracy 97.5% 96.0% 96.0%
Test accuracy 86.2% 86.6% 87.0%

Training time (min.) 577.8 241.5 186.9
Epoch number 11 11 7

Testing time (sec.) 180.0 88.7 89.3
Parameter number 3,102,210 687,202 687,202

RNN parameter number 2,460,672 45,664 45,664

The results show that both F-LSTM and LSTM-SVD
achieve better evaluation accuracy than LSTM. The reason
might be that overfitting is alleviated by factorization. F-
LSTM and LSTM-SVD leads to 2.9X and 3.6X reduction of
training time respectively, compared with the LSTM model.

The number of parameters also reduces to 22.2% of the
original LSTM model. Note that this proportion is a little
larger in comparison with the MNIST task, where the size
of the factorized model is only 7.9% of the original LSTM
model. The reason is the existence of the embedding layer,
which also has a large quantity of parameters. Focusing on
the number of parameters within the RNN cell, we can see
that the factorized cell has 54X fewer parameters.

Compared with the MNIST task, the pre-adjusted GRU-
SVD model in the IMDB task demonstrate different distri-
butions of singular values. Both W g and W c have a few
large singular values that are very distinctive, as illustrated in
Figure 5. Hence we factorize both W g and W c in F-GRU
and GRU-SVD approaches. Given ε = 0.2, we have r∗g = 99
and r∗c = 315.

0 200 400 600 800 1000 1200 1400
i

0

2

4

6

8 g (initial weight matrix)
c (initial weight matrix)
g (pre-adjusted weight matrix)
c (pre-adjusted weight matrix)

Fig. 5: Distributions of singular values in GRU-SVD model
for IMDB sentiment classification task.

The computational results of the GRU-based approaches
are listed in Table V. Similar to the results on the MNIST
classification task, the results indicate that F-GRU performs a
little bit better than GRU-SVD. The F-GRU model achieves
the same test accuracy as the original GRU model, but
only costs 72.0% training time. The GRU-SVD approach has
comparable performance as F-GRU. If manually setting the
rank parameters, we find out that F-GRU could perform even
better. For example, if setting the rank parameters for W g

and W c to 15 and 30 respectively, the training time can be
reduced to 247 minutes (2.1X reduction if compared with the
original GRU). And, the total number of parameters can be
reduced to 29.2% of that in the original GRU.

V. CONCLUSIONS

The training acceleration and model compression of gated
RNNs is explored in this work. With the ideas of matrix
factorization and SVD, several approaches are proposed for re-
ducing the training time of LSTM and GRU networks. Among
them, LSTM-SVD automatically chooses the rank parameter
and results in up to 3.9X speedup for the training of LSTM
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TABLE V: Comparison of different GRU-based approaches for the IMDB sentiment classification task.

Approach Training
accuracy

Test
accuracy

Training
time (min.)

Testing
time (sec.)

Total number
of parameters

Parameters in
GRU cell

GRU 99.5% 86.5% 521.5 123.5 2,487,042 1,845,504
F-GRU 98.0% 86.5% 375.6 86.3 1,369,026 727,488

GRU-SVD 97.5% 86.8% 390.4 85.6 1,369,026 727,488

network in the MINST classification and IMDB sentiment
classification problems. It outperforms the existing F-LSTM
approach in terms of runtime and accuracy. F-GRU and GRU-
SVD approaches are for the training of GRU network and
bring about 2X reduction of the training time, as shown in
the experiments. With some setting of rank parameters, F-
GRU performs better and achieves up to 2.1X speedup. The
developed approaches induce less error, and can also compress
the RNN model by up to 13X.

An interesting phenomenon is that the obtained factorized
models often show better performance on the testing set.
A possible reason is that the factorization has the effect of
regularization and thus alleviates overfitting. This remains a
topic of future research. Besides, how to further improve
the proposed technique and make it adapted to actual edge-
computing scenarios will be explored in the future.
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