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Improved Boundary Element Method for Fast 3-D Interconnect
Resistance Extraction∗

Xiren WANG†a), Student Member, Deyan LIU††, Wenjian YU†, and Zeyi WANG†, Nonmembers

SUMMARY Efficient extraction of interconnect parasitic parameters
has become very important for present deep submicron designs. In this
paper, the improved boundary element method (BEM) is presented for 3-
D interconnect resistance extraction. The BEM is accelerated by the re-
cently proposed quasi-multiple medium (QMM) technology, which quasi-
cuts the calculated region to enlarge the sparsity of the overall coefficient
matrix to solve. An un-average quasi-cutting scheme for QMM, advanced
nonuniform element partition and technique of employing the linear ele-
ment for some special surfaces are proposed. These improvements con-
siderably condense the computational resource of the QMM-based BEM
without loss of accuracy. Experiments on actual layout cases show that the
presented method is several hundred to several thousand times faster than
the well-known commercial software Raphael, while preserving the high
accuracy.
key words: interconnect resistance, fast extraction, improved boundary
element method

1. Introduction

Today, the deep submicron process technology is widely
used. The parasitic parameters of interconnect wires, such
as resistance and capacitance, have become important fac-
tors that govern the circuit delay and power consumption,
etc [1], [2]. Fast and accurate resistance extraction is neces-
sary for high-performance VLSI designs.

Some methods for resistance extraction have been pub-
lished, such as the analytical method, the heuristic methods
and numerical methods based on solving the Laplace equa-
tion [3]. The analytical formula R = ρ L/S is exact only for
very simple structures. The heuristic methods are not able
to handle complex structures [4], and less accurate than nu-
merical methods [5], [6]. Some 2-D numerical methods with
higher accuracy have been published. They include the finite
difference method (FDM) [7], finite element method (FEM)
[8] and boundary element method (BEM) [3], [9]. Among
them, BEM, with the advantage of fewer variables and bet-
ter accuracy, has been successfully applied to the area of 3-D
capacitance extraction [2], [10].
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Fig. 1 Cross section of an 8-layer interconnect structure [1].

Currently, there are usually six to eight layers of in-
terconnect wires in VLSI circuits, and they are connected
by lots of vias between different layers. The spatial struc-
ture of the interconnects is becoming more and more com-
plex. Fig. 1 gives an example from actual layouts [1]. For
such structures, two-dimensional (2-D) numerical method
for resistance extraction may be very inaccurate, due to lack
of consideration of 3-D effects occurring at the corners of
the crossing lines [11]. Moreover, in present deep submi-
cron process technology, the resistivity of narrow wires is
not constant for different wire widths or lengths [12], which
makes it more difficult for 2-D methods to handle the ac-
tual structures. Therefore, the 3-D numerical method for
resistance extraction becomes very important, which gives
accurate result even for complex interconnect structures.

In this paper, we present a 3-D method for resistance
extraction, under the electrostatic model. Our method calcu-
lates the direct current (DC) resistance, which is sufficiently
accurate for some applications, such as time delay analysis
[13]. Furthermore, under current process technology and
circuit frequency the value of DC resistance is actually very
close to that of the frequency-dependent resistance. More
discussion is presented in Appendix A.

Our method is based on 3-D BEM and improved by the
quasi-multiple medium (QMM) method. The QMM method
is a recently proposed accelerating technique for BEM, and
has been successfully applied in the 3-D capacitance extrac-
tion [2]. However, because of the difference between the
simulation regions of the capacitance and resistance, how to
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achieve highly-efficient resistance extraction with the QMM
method becomes a problem. In this paper, we propose a
scheme for region decomposition, an advanced non-uniform
element partition scheme, and a technique to replace con-
stant elements with linear elements for some sub-regions.
These measures improve the 3-D BEM by reducing the vari-
able number and enhancing the accuracy. Numerical exper-
iments on actual interconnect structures show that the im-
proved BEM consumes much less computational resource
than the commercial software Raphael, but preserves higher
accuracy.

The paper is organized as follows. Section 2 gives the
principle of interconnect resistance calculation and its real-
ization using BEM. Section 3 presents the scheme for region
decomposition in the QMM-based BEM for 3-D resistance
extraction. The other two improvements follow in Section 4.
Then, the overall efficiency of our improved BEM is demon-
strated with some numerical results. In the last section, there
are some conclusions.

2. Interconnect Resistance Calculation

Usually, actual interconnect structures are with multiple ter-
minals. We will firstly introduce the fundamental of re-
sistance extraction, and then present its realization using
boundary element method.

2.1 Resistance of Multi-Terminal Regions

In a region constituted by several conductors and multiple
terminals, there is a resistor between each pair of termi-
nals. A 2-D region and its equivalent resistance network
are shown in Fig. 2.

To get the resistance values, we let the voltage of ter-
minal j in the region be 1V and voltages of the other termi-
nals be 0V. Then Rjk, the resistance between terminals j and
k (k� j), is:

1
Rjk
=

∫
Γuk

σ· ∂u
∂n

dΓ =
∫
Γuk

σ·q dΓ, (1)

where Γuk is the boundary of terminal k, σ is the conductiv-
ity (reciprocal of resistivity), u is the electric potential and
q is its normal derivative [3]. Repeating with different bias
voltages, we can get the resistance matrix.

The q in (1) can be directly obtained using the bound-
ary element method, and then we can get the resistances.

Fig. 2 A 2-D conductor region (a), and its equivalent resistance network
(b). Γuk (k = 1, · · · , 4) denotes terminals.

2.2 Numerical Resistance Extraction Using BEM

In order to get the q distribution within a homogeneous re-
gion, i.e. with single resistivity, it is accurate to formulate
the region in terms of the Laplace equation

∂2u
∂x2
+
∂2u
∂y2
+
∂2u
∂z2
= 0 (2)

with mixed boundary conditions (see (A· 1) in Appendix B),
where u is the electric potential. If the region is with several
different resistivities, it can be regarded as the set of smaller
homogeneous regions. Such a problem is called a multi-
region one. In each smaller region Ωi, the electric potential
u fulfills the above Laplace equation; on the interface of two
adjacent regions a and b, u and q fulfill [2]

ua = ub, σa · ∂ua

∂na
= − σb · ∂ub

∂nb
, (3)

where σa and σb are the conductivities of conductors a and
b, and na and nb are their unit normal vector. Thus BEM
can handle very complex structures.

With the Green’s identity and using the free-space
Green’s function as the weighting function, the Laplace
equation (2) can be transformed into a direct boundary inte-
gral equation (BIE). After discretizing the region boundary
into quadrilateral elements, we get the discretized BIE [3]

csus+

Ni−1∑
j=0

∫
Γi j

q∗u dΓ =
Ni−1∑
j=0

∫
Γi j

u∗q dΓ. (4)

where cs is a constant depending on the geometry around
the collocation point s, us is the electric potential at point
s, u∗ is fundamental solution of Laplace equation and q∗
is its normal derivative. The entire boundary of region Ωi

is Γi, and it is partitioned into Ni elements denoted by Γi j.
Employing constant or linear elements (assuming variance
occurs along x axis), we get the electric potential on Γi j:

ui j =

{
u(00), for constant elements,
u(11)x + u(10), for linear elements,

(5)

where u(00), u(10) and u(11) are unknown constants. Substi-
tuting (5) into (4) and utilizing the boundary conditions (and
the interface conditions (3) for multi-region problems), we
get a linear system

Ax = f , (6)

where the variable vector x is composed of discreteu and q
unknowns. Solving this linear system, we can directly get q
values, and then the resistance values through (1).

The non-symmetric matrix A in (6) is dense for a one-
region problem, and is typically sparse for a multi-region
problem. A preconditioned GMRES algorithm [14] is used
to solve it efficiently.
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3. Quasi-Multiple Medium Algorithm to Improve
BEM

When the calculated region is complex and large, BEM be-
comes very slow, because a great number of variables are
needed to get proper accuracy. Usually, it takes most of the
time to generate and solve the linear system (6). If the gen-
eration and solution operations are accelerated, BEM will be
more efficient. In interconnect capacitance extraction, an ac-
celerating algorithm called quasi-multiple medium (QMM)
was reported [2], [10]. Through averagely cutting mediums
into fictitious parts, QMM can enhance the sparseness of A
in (6) and speed up the generation and solution.

3.1 Basic Idea of Quasi-Multiple Medium Algorithm

We can see from (4) that it is only the same region’s bound-
ary elements (and the u or q unknowns on them) that have
direct interactions, which means their coefficients in matrix
A in (6) are not zero. Therefore, if an original homogeneous
region is cut into fictitious sub-regions, matrix A turns from
dense to sparse. For an original multi-region problem, A
has a higher sparsity after quasi-cutting, because each sub-
region contains fewer variables. Then it is possible that the
generation and the solution of the linear system (6) are ac-
celerated.

In a word, with a proper decomposition of the original
region, QMM is able to speed up BEM calculation. On the
other hand, quasi-cutting creates additional fictitious inter-
faces, which will bring additional variables and counteract
the speed-up introduced by the higher sparsity of A.

The QMM has been successfully applied to 3-D ca-
pacitance extraction [2], [10]. For 3-D resistance extraction,
some specific techniques of QMM based BEM need to be in-
vestigated, because the simulation region and structure has
large difference with that in capacitance extraction. In the
following text, we will present a practical scheme of QMM
for 3-D resistance extraction.

3.2 Practical Quasi-Cutting Scheme for QMM

There are roughly two ways to quasi-cut an original region,
averagely and un-averagely. In the average scheme, after
quasi-cutting, the lengths, widths or heights of the produced
sub-regions are equal. The scheme is easier, and is applied
in capacitance extraction [2], [10]. In resistance extraction,
we find out by experiment that the un-average scheme is
superior.

The un-averagely cutting scheme is based on the fol-
lowing: at low voltage frequency, the density of current
flowing through corner sections of an interconnect wire is
not uniform, but it becomes nearly uniform some distance
(equaling the wire width at most) away from the corners
[15]. We will separate the different sections with uniform
or non-uniform current density, called cutting. By experi-
ment, we find out that when the cutting distance D equals
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Fig. 3 Four steps of the un-averagely Quasi-cutting scheme. Conductor
C1 will be cut along the horizontal direction. (a) Identify interfaces between
conductors. (b) Extend the interface polygons horizontally by a distance of
D, to the left and to the right. Overlapping lines are omitted for better
visibility. (c) Combine all little polygons into Rect1 to Rect3. (d) Cut each
of these rectangles as a whole respectively, producing corner conductors
(Corner1, Corner2 and Corner3) and straight ones (S1 and S2).

0.5 times of the conductor width, the scheme is very effi-
cient. We employ this value from now on.

There are four steps to cut a conductor. Firstly, identify
the interfaces between the conductor to be cut and other con-
ductors. Secondly, extend the interface polygons by D in the
current flow direction and the reversed direction. Thirdly,
combine all the polygons, and get some large enough rect-
angles. Lastly, cut each of the rectangles as a whole from
the original conductor, separately. The sub-conductors con-
taining the rectangles are called corner conductors, and the
others are straight conductors. Note that the straight con-
ductor may be very long.

For example, in Fig. 3, to make the description simple,
assume that conductor C1 is to be cut and current flows hor-
izontally. C2 to C5 are in the same plane as C1. C6 is above
C1. C7 and C8 is below C1. The cutting process is like (a)
to (d). Finally, C1 is cut into three corner sub-conductors
(Corner1,Corner2 and Corner3), and two straight ones (S1

and S2).

3.3 Experiment on QMM Algorithm

In the following text, in order to examine the performance
of the presented QBEM (QMM accelerated BEM), we com-
pare it with pure BEM (without improvements), and with
the well-known commercial software Raphael RC3 (version
2000.2, a finite difference solver with advanced non-uniform
meshes) [16]. Two test cases from actual layouts are used
throughout this paper. They are within smallest cubes of
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1.83 × 2.67 × 1.50 µm3 and of 10.33 × 9.55 × 8.45 µm3, re-
spectively. There are two layers of wires with different re-
sistivities in case 1, and three layers of wires in case 2 (the
latter is shown in Fig. 4). All programs run on Sun Ultra
Enterprise 450 (CPU frequency 248 MHz). The results of
them are resistance matrixes, corresponding to the network
in Fig. 2. In all the coming tables, “GridNum” is the default
element number for BEM (or the default grid number for
Raphael), and “Time” means default running time. “Error”
means the maximum of the absolute diagonal values in the
error matrices, where the criteria compared with are the re-
sults of Raphael RC3 using denser meshes of 2 × 106 grids
and 4 × 106 grids, respectively.

For the two cases, results of QBEM with the un-
average or average scheme† are shown in Table 1. Results
of pure BEM and Raphael are also listed. “RegnNum” in
the table means the number of sub-regions.

The table shows that the BEM without improvement
is also much faster than Raphael which is based on finite
difference method, but has a worse accuracy. QBEM with
either cutting scheme occupies less computational resource
than BEM, that is to say, QMM is able to improve BEM
calculation.

Note that QBEM with the un-average scheme here has
a smaller number of sub-regions and boundary elements
than with the average scheme. The reason is that in the un-
average scheme, even if a straight conductor is very long, it
is not cut any more. This may restrict the accelerating effect
of the QMM. However, in Section 4.4.3 we will learn that it
is much better to employ linear elements for such a straight
conductor than to cut it into more parts and then partition
the traditional constant elements.

It is also noted that errors of QMM are larger than those
of the pure BEM. Generally speaking, the mesh discretiza-
tion error is the major source of the numerical errors for
BEM computation [17]. Although the QMM dose not bring

Fig. 4 The second test case. There are three layers of wires which are
with different resistivity values in it.

Table 1 QBEM with the un-average scheme and average scheme.

Case 1 Case 2
RegnNum GridNum Mem(MB) Time(s) Error(%) Speedup RegnNum GridNum Mem(MB) Time(s) Error(%) Speedup

QBEM(Un-Avg) 12 839 0.52 2.46 5.22 157.7 25 4276 9.94 80.55 3.71 76.0
QBEM(Avg) 24 870 0.51 1.85 5.47 209.7 56 4639 8.22 49.01 5.28 124.8
Pure BEM 9 835 0.68 3.79 4.40 102.4 12 4536 17.08 154.65 2.62 39.6

Raphael RC3 - 63168 14.00 388.03 1.05 1 - 336398 89.00 6118.76 1.61 1

new source of error, the more complex sub-regions after
quasi-cutting make the boundary element mesh less reason-
able. Therefore, the QMM accelerated BEM reveals less
accuracy. The nonuniform meshes and linear boundary ele-
ments in the following Section IV will enhance the accuracy.

4. Nonuniform Meshes and Linear Boundary Elements

When the above un-average scheme is used, the original re-
gion becomes a set of sub-regions which are very likely to
be of different electrical properties. For example, they may
be equipotential bodies or straight conductors with uniform
current density. We can make use of the difference. We will
select dense or sparse element meshes according to the cur-
rent variation. For straight conductors, one linear element
can replace many constant elements.

4.1 Discard Conductors not in Current Flow Paths

As we know, if a conductor is not in the current flow path
within the calculated region, it is equipotential everywhere.
Such a conductor is of no use for numerical calculation for
resistance. Removing†† it from the calculated region affects
neither the current nor the resistance values, but is able to
reduce the element and variable number. In other words, we
partition zero element on it.

For example, after quasi-cutting with the above un-
average scheme, conductor W in Fig. 5(a) can be discarded,
and the leftover region in Fig. 5(b) is smaller.

4.2 Partition Elements More Accurately

Usually, boundary elements are divided in two perpendicu-
lar directions on a surface, as that in capacitance extraction
[2]. In resistance extraction, some conductor surfaces needs
to be partitioned in both directions, while others only in one
direction without sacrificing accuracy.

Take the straight conductor segment in Fig. 6 as an ex-
ample. Because of the regularity of the conductor geometry,
the current is supposed to distribute nearly uniformly across

†Here, the average scheme is to cut the original conductors
averagely into sub parts whose lengths are less than r times of con-
ductor width. The performance of QBEM with the scheme varies
with the r value. When r = 2, the performance will be relatively
high.
††Removing here does not means really getting rid of them from

the original region. They are just temporarily neglected in the nu-
merical calculation for resistance.
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the cross section. Therefore in Fig. 6(a), the potential dis-
tribution on element e1 and e2 is the same. We do not need
to sperate them while making discretization. For this rea-
son, the four side surfaces of the straight conductor can only
be partitioned in one direction (like that shown in Fig. 6(b)),
without loss of accuracy.

It is also possible that some surfaces on corner con-
ductors can be divided in only one direction. For example,
in Fig. 7, we can predict that the current flows horizontally
above the bottom surface of conductor B. Since this surface
is relatively remote from the conductor connection portion
and the current near it is nearly uniformed, the elements on it
can be divided only in one direction (shown with the dashed
lines in Fig. 7).

It can be expected that the mixed-direction scheme is
able to reduce the element number. For the above two test
cases, the results of QBEM with the mixed-direction scheme
and with the usual two-direction scheme are shown in Ta-
ble 2.

This table verifies that the mixed-direction scheme can

Fig. 5 Discarding the waste conductor W.
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Fig. 6 Divide elements on a straight conductor in both directions and in
only one direction. Assume that current flows horizontally. (a) In both
directions. (b) In one direction.

Fig. 7 Current flows downwards, and turns to the left. The current flows
horizontally above the bottom surface (in grey) of conductor B. The ele-
ments are divided horizontally, as separated by dashed lines.

Table 2 QBEM with the mixed-directions and two-direction scheme.

Case 1 Case 2
GridNum Mem(MB) Time(s) Error(%) Speedup GridNum Mem(MB) Time(s) Error(%) Speedup

QBEM(mixed-dir) 587 0.19 1.03 1.85 376.7 3233 5.48 29.25 2.06 209.2
QBEM(two-dir) 870 0.51 1.85 5.47 209.7 4639 8.22 49.01 5.28 124.8

Raphael RC3 63168 14.00 388.03 1.05 1 336398 89.00 6118.76 1.61 1

really reduce the element number, and condense computa-
tional resource usage. And the error is reduced for both
cases. This is because that the new element meshes approx-
imate actual current distribution much better.

4.3 Employ Linear Elements for Straight Conductors

Recalling the WHOLE scheme in section 3.3.2, the cur-
rent flowing through a straight conductor will be uniform
(or nearly uniform), and thus the electric potential on its
surfaces will vary linearly along the current path. In other
words, if the current in the conductor flows along the x axis,
the potential on its one surface is a linear function

u = u1x + u0, (7)

where u1 and u0 are unknown constants. Then, we can em-
ploy linear element to accurately simulate the linear poten-
tial u. In this way, many constant elements on this surface
are replaced by one linear element.

For a constant element, there is only one unknown. We
select the element center as the collocation point to get the
BIE equation (4). For a linear element, there are two un-
knowns, like u1 and u0 in (7). We select two collocation
points from the element, and then the variable number and
the equation number are balanced. We will discuss how to
generate the equations in Appendix B.

With linear elements employed for straight conductors
and constant elements for the other conductors, the new
QBEM is called a coupling QBEM†. For a line conductor
(1× 10× 1 µm3 in size, resistivity is 1Ωm) with terminals at
two far ends, there are only four linear elements and two
constant elements in the coupling QBEM. The resistance
value obtained by QBEM is 10.00002 KΩ, while the ana-
lytical value is 10 KΩ. For the two test cases, Table 3 shows
the results of the coupling QBEM and constant QBEM (with
only constant elements).

From the table we find out that the coupling QBEM
has much fewer elements, because one linear element can
replace many constant ones. The coupling QBEM takes up
much less time or memory than any QBEM in the above text
or pure BEM. Besides, it has a higher accuracy. In order to
get the accelerating effects introduced by linear elements,
we prefer to obtain long straight conductors when quasi-
cut the original region. This is why we don’t cut straight
conductors any more in the un-averagely cutting scheme in
section 3.

†It applies the un-average scheme to cut the original region.
With this scheme, straight conductors are easier to be identified.
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Table 3 QBEM with constant-linear elements and pure constant elements.

Case 1 Case 2
GridNum Mem(MB) Time(s) Error(%) Speedup GridNum Mem(MB) Time(s) Error(%) Speedup

QBEM(Coupling) 287 0.10 0.53 0.67 732.1 1173 1.52 10.0 −1.05 611.9
QBEM(constant) 870 0.51 1.85 5.47 209.7 4639 8.22 49.01 5.28 124.8

Raphael RC3 63168 14.00 388.03 1.05 1 336398 89.00 6118.76 1.61 1

Table 4 Combination of all improvements.

Case 1 Case 2
GridNum Mem(MB) Time(s) Error(%) Speedup GridNum Mem(MB) Time(s) Error(%) Speedup

QBEM 230 <0.10 0.44 0.79 881.9 598 0.43 2.78 −1.01 2201.0
Pure BEM 835 0.68 3.79 4.40 102.4 4536 17.08 154.65 2.62 39.6

Raphael RC3 63168 14.00 388.03 1.05 1 336398 89.00 6118.76 1.61 1

5. Overall Numerical Results

Applying the QMM algorithm in Section 3, the non-uniform
meshes and linear elements in Section 4, and we get the final
QBEM. Run the test cases using this QBEM, the pure BEM
and Raphael RC3, respectively. The computational results
are listed in Table 4.

Compared with the data in Table 3, the CPU times of
QBEM are reduced further in Table 4. This is because here
the techniques of discarding conductor not in current path
and partitioning element in only one direction are combined,
which result in the further reduction of boundary elements.

Table 4 shows that the computational resources occu-
pied by the pure BEM is several to hundreds of times more
than the final QBEM, but the errors are larger. One reason
is that the constant element meshes and the linear elements
in the final QBEM can more accurately reflect the physi-
cal current distribution in the simulation region. Compared
with Raphael with default meshes, the final QBEM is hun-
dreds of to thousands of times faster, saves most of memory,
and achieves comparable or higher accuracy.

6. Conclusions

In this paper, we present the boundary element method ap-
plied to 3-D interconnect resistance calculation and improve
it by the improved quasi-multiple medium (QMM) method.
An un-average quasi-cutting scheme is proposed for QMM,
and two related techniques are also presented to make the
element meshes more reasonable. One is the nonuniform
element meshes which can reduce the element number and
enhance the accuracy. The other is coupling the linear ele-
ments for straight conductors, which represents the linear
electric potential variance. Experiments on actual layout
cases show that these improvements can considerably en-
hance the efficiency of BEM calculation, but not sacrifice
accuracy. When compared with the well-known software
Raphael, the final improved BEM runs hundreds of to thou-
sands of times faster, consumes much less memory and pre-
serves higher accuracy.
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Appendix A: Direct Current (DC) Resistance Can Be
Accurate Enough for Narrow Wires at
Present

Usually, the interconnect resistance value will increase with
the operating frequency. The resistance can be called
frequency-dependent resistance. It is paid much attention
to, and some related algorithms were published, for exam-
ple, FastHenry [18].

Generally speaking, at high frequency, frequency-
dependent resistance is more suitable than DC resistance.
However, due to the consideration of fairly comprehen-
sive electromagnetic effects, the solution for frequency-
dependent resistance will generally need a large number of
unknowns and require a great deal of computational time.
The DC resistance is much easier to be obtained, and we
will see that the DC extraction is accurate enough in some
cases.

In fact, the decrease in the feature size and wire width
may enhance the accuracy of DC resistance. As we know,
the resistance increases with frequency because of the skin
effect, the proximity effect and so on. Here we only give a
rough discussion about the skin effect in theory.

The skin depth is δ = 1/
√
π fµσ, where f is the fre-

quency, µ is the magnetic permeability, and σ is the con-
ductivity [19]. ITRS’2001 forecasts that in 2007, the fea-
ture size will be 0.065 µm, and the clock frequency will be
6739 MHz [20]. At that time, the skin depth of copper wires
is about 0.81 µm. Assume some local wires are with the as-
pect ratio (height/width) of 3. Then the skin depth is much
larger than half width or half height of the minimum wires,
i.e. δ � (0.065 × 0.5), δ � (0.065 × 0.5 × 3 = 0.098). This
indicates that the skin effect of narrow wires is too weak to
change the uniform distribution of current in the wire cross
sections. Therefore, the DC resistance value is able to be
very approximate to the actual value in the near future. This
is supported by FastHenry’s results for some not very simple
structures.

Of course, for global wires which have larger cross sec-
tions, the frequency-dependent resistance will be more suit-
able than DC resistance. The numerical extraction method
presented in this paper is mainly oriented to local intercon-
nects which are typically narrow wires.

Moreover, DC resistance is sufficiently accurate for
some applications, such as time delay analysis [13].

In a word, the presented method for DC resistance ex-
traction is reasonable, and useful at present and in the near
future.

Appendix B: Integral Equations of Constant and Lin-
ear Boundary Elements

The detailed boundary conditions of (2) are

u = ū (on Γu), q = 0 (on Γq), (A· 1)

where ū is 1 or 0 (see Section 2), Γu is the boundary of ter-
minals, and Γq is conductor boundary. The entire boundary
Γ is Γq + Γu.

Here, let the entire boundary Γ = Γconst + Γlinear, where
Γconst is the boundary composed of constant element and
Γlinear is the boundary constituted by linear elements. If
Γlinear is an empty set, u or q on an element will be constant,
and for a collocation point s, (4) is

csus +

N−1∑
j=0


∫
Γ j

q∗dΓ
 uj =

∫
Γ

uq∗dΓ, (A· 2)

where the integral on constant elements can be obtained us-
ing the numerical integral or analytical integral (refer to [2]).
On linear elements, u is a linear function like (7), and for
point s, (4) becomes

csus

∫
Γconst

uq∗dΓ +
Nl−1∑
l j=0


∫
Γl j

q∗
(
u1

l j x + u0
l j

)
dΓ


=

∫
Γlinear

u∗qdΓ +
∫
Γconst

u∗qdΓ, (A· 3)

where the first integral on constant elements has similar so-
lution to that in (A· 2), Γl j is the jth element of Γlinear, Nl

is the total number of Γl j, and u1
l j and u0

l j are unknown con-
stants. Because the linear element in this paper is only on
conductor surfaces where q = 0 (see (A· 1)),

∫
Γlinear

u∗qdΓ =
0. Therefore, in addition to the integrals on constant ele-
ments, here we only need to get the potential integral on a
linear element Γl:

IntU =
∫
Γl

q∗udΓ =
∫
Γl

q∗(u1x + u0)dΓ

=

(∫
Γl

q∗xdΓ

)
u1 +

(∫
Γl

q∗dΓ
)

u0. (A· 4)

Now, we need the coefficients of u1 and u0.
For a non-rectangle Γl, we can get the coefficients

through numerical integral. If Γl is a rectangle (as shown
in Fig. A· 1), the coefficients can be numerically or analyt-
ically obtained. Here we select the analytical integral, and
give the derivation of the equations.

In order to make the discussion simple, assume that the
integral point (x, y, z) is in a horizontal plane z = zint with
unit normal vector of n = {0, 0, 1}. Let the coordinate of the
collocation point s be (xs, ys, zs).
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Fig. A· 1 Coordinate boundary of linear element Γl.

q∗ =
∂u∗

∂n
= �

(
1

4πr

)
· n = − 1

4πr2

∂r
∂z
. (A· 5)

r =
√

(x − xs)2 + (y − ys)2 + (z − zs)2,

∂r
∂z
=

z − zs

r
. (A· 6)

Substituting (A· 6) into (A· 5), we get

q∗ = − z − zs

4πr3
=

Z
4πr3
, (A· 7)

where the constant Z is zs − zint. Therefore

IntU =
Z
4π

(∫
Γl

x
r3

dΓ

)
· u1 +

Z
4π

(∫
Γl

1
r3

dΓ

)
· u0

=
Z
4π

I1 · u1 +
Z
4π

I2 · u0, (A· 8)

where

I1 =

∫
Γl

x
r3

dΓ=
∫∫

x
r3

dxdy (A· 9)

and

I2 =

∫
Γl

1
r3

dΓ=
∫∫

1
r3

dxdy. (A· 10)

We will only discuss the related indefinite integrals
with the integral constant C omitted, and give entire equa-
tions at last. Let R =

√
x2 + y2 + Z2. Consider I1:

I1 =

∫∫
x
r3

dxdy =
∫∫

x′ + xs

R3
dx′dy

= I11 + xsI12, (A· 11)

where I11 =
∫∫

x
R3 dxdy and I12 =

∫∫
1

R3 dxdy. Consider I12

in the two steps of I121 and I122:

I121 =

∫
1

R3
dx =

x
(y2 + Z2)R

, (A· 12)

and

I122 =

∫
x

(y2 + Z2)R
dy

=
1
Z

arctan
( x
Z
· y

R

)
. (A· 13)

Substituting (A· 12) and (A· 13), we can get I12. Secondly,

let

I11 =

∫∫
x

R3
dxdy, (A· 14)

and we consider in two steps:

I111 =

∫
x

R3
dx = − 1

R
(A· 15)

and

I112 =

∫
1
R

dy = log (y + R). (A· 16)

Then I11 can be obtained. Obviously, I2 has a similar solu-
tion to I12.

Finally, we write the entire formulas of I1 and I2:

I1 = I11 + xsI12

= log


(y2 +

√
x2

1 + y
2
2 + Z2)

(y2 +

√
x2

2 + y
2
2 + Z2)



+ log


(y1 +

√
x2

2 + y
2
1 + Z2)

(y1 +

√
x2

1 + y
2
1 + Z2)


+

xs

Z

[
arctan

(
x2y2

Z
√

x2
2 + y

2
2 + Z2

)

+ arctan

(
x1y1

Z
√

x2
1 + y

2
1 + Z2

)

− arctan

(
x1y2

Z
√

x2
1 + y

2
2 + Z2

)

− arctan

(
x2y1

Z
√

x2
2 + y

2
1 + Z2

)]
, (A· 17)

and

I2 =
1
Z

[
arctan

(
X2Y2

Z
√

X2
2 + Y2

2 + Z2

)

+ arctan

(
X1Y1

Z
√

X2
1 + Y2

1 + Z2

)

− arctan

(
X1Y2

Z
√

X2
1 + Y2

2 + Z2

)

− arctan

(
X2Y1

Z
√

X2
2 + Y2

1 + Z2

)]
, (A· 18)

where [X1, X2], [Y1, Y2] are the boundary coordinates of the
rectangle Γl (as shown in Fig. A· 1), [x1, x2] = [X1 − xs, X2 −
xs], [y1, y2] = [Y1 − ys, Y2 − ys], and Z = zs − zint.
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