
Faster Matrix Completion Using Randomized SVD

Xu Feng
BNRist, Dept. Computer Science & Tech.

Tsinghua University
Beijing, China

fx17@mails.tsinghua.edu.cn

Wenjian Yu
BNRist, Dept. Computer Science & Tech.

Tsinghua University
Beijing, China

yu-wj@tsinghua.edu.cn

Yaohang Li
Dept. Computer Science
Old Dominion University

Norfolk, VA 23529, USA

yaohang@cs.odu.edu

Abstract—Matrix completion is a widely used technique for
image inpainting and personalized recommender system, etc.
In this work, we focus on accelerating the matrix completion
using faster randomized singular value decomposition (rSVD).
Firstly, two fast randomized algorithms (rSVD-PI and rSVD-
BKI) are proposed for handling sparse matrix. They make use of
an eigSVD procedure and several accelerating skills. Then, with
the rSVD-BKI algorithm and a new subspace recycling technique,
we accelerate the singular value thresholding (SVT) method in [1]
to realize faster matrix completion. Experiments show that the
proposed rSVD algorithms can be 6X faster than the basic rSVD
algorithm [2] while keeping same accuracy. For image inpainting
and movie-rating estimation problems (including up to 2 × 107

ratings), the proposed accelerated SVT algorithm consumes 15X
and 8X less CPU time than the methods using svds and lansvd
respectively, without loss of accuracy.

Index Terms—matrix completion, randomized SVD, image
inpainting, recommender system.

I. INTRODUCTION

The problem of matrix completion, or estimating missing

values in a matrix, occurs in many areas of engineering and

applied science such as computer vision, pattern recognition

and machine learning [1], [3], [4]. For example, in computer

vision and image processing problems, recovering the missing

or corrupted data can be regarded as matrix completion. A

recommender system provides recommendations based on the

user’s preferences, which are often inferred with some ratings

submitted by users. This is another scenario where the matrix

completion can be applied.

The matrix which we wish to complete often has low rank

or approximately low rank. Thus, many existing methods for-

mulate the matrix completion as a rank minimization problem:

min
X

rank(X), s.t. Xij = Mij , (i, j) ∈ Φ, (1)

where M is the incomplete data matrix and Φ is the set of

locations corresponding to the observed entries. This problem

is however NP-hard in general. A widely-used approach relies

on the nuclear norm (i.e., the sum of singular values) as a

convex relaxation of the rank operator. This results in a relaxed

convex optimization, which can be solved with the singular

value thresholding (SVT) algorithm [1]. The SVT algorithm

has good performance on both synthetic data and real applica-

tions. However, it involves large computational expense while

This work is supported by National Natural Science Foundation of China
(No. 61872206).

handling large data set, because the singular values exceeding

a threshold and the corresponding singular vectors need to

be computed in each iteration step. Truncated singular value

decomposition (SVD), implemented with svds in Matlab or

lansvd in PROPACK [5], is usually employed in the SVT

algorithm [1]. Another method for matrix completion is the

inexact augmented Lagrange multiplier (IALM) algorithm [6],

which also involves singular value thresholding and was orig-

inally proposed for the robust principal component analysis

(PCA) problem [7]. With artificially-generated low-rank ma-

trices, experiments in [6] demonstrated that IALM algorithm

could be several times faster than the SVT algorithm.

In recent years, randomized matrix computation has gained

significant increase in popularity [2], [8]–[11]. Compared with

classic algorithms, the randomized algorithm involves the

same or fewer floating-point operations (flops), and is more

efficient for truly large data sets. An idea of randomization is

using random projection to identify the subspace capturing the

dominant actions of a matrix. Then, a near-optimal low-rank

decomposition of the matrix can be computed. A comprehen-

sive presentation of the relevant techniques and theories are in

[2]. This randomized technique has been extended to compute

PCA of data sets that are too large to be stored in RAM

[12], or to speed up the distributed PCA [13]. For general

SVD computation, the approaches based on it have also been

proposed [14], [15]. They outperform the classic deterministic

techniques for calculating a few of largest singular values

and corresponding singular vectors. Recently, a compressed

SVD (cSVD) algorithm was proposed [11], which is based

on a variant of the method in [2] but runs faster for image

and video processing applications. It should be pointed out,

these methods are not sufficient for accelerating the matrix

completion. The SVT operation used in matrix completion

requests accurate calculation of quite a large quantity of

singular values. Thus, existing randomized SVD approaches

cannot fulfill the accuracy requirement or cannot bring the

runtime benefit. Besides, as sparse matrix is processed in

matrix completion, special technique should be devised to

make the randomized SVD approach really competitive.

In this work, we investigate the acceleration of matrix com-

pletion for large data using the randomized SVD techniques.

We first review some existing acceleration skills for the basic

randomized SVD (rSVD) algorithm, along with theoretic jus-

tification. Combining them we derive a fast randomized SVD

608

2018 IEEE 30th International Conference on Tools with Artificial Intelligence

2375-0197/18/$31.00 ©2018 IEEE
DOI 10.1109/ICTAI2018.2018.00086

algorithm (called rSVD-PI) and prove its correctness. Then,

utilizing these techniques and the block Krylov-subspace iter-

ation (BKI) scheme [16] we propose a rSVD-BKI algorithm

for highly accurate SVD of sparse matrix. Finally, for matrix

completion we choose the SVT algorithm (an empirical com-

parison in Section IV.A shows its superiority to the IALM

algorithm), and accelerate it with the rSVD-BKI algorithm

and a novel subspace recycling technique. This results in a

fast SVT algorithm with same accuracy and reliability as

the original SVT algorithm. To demonstrate the efficiency

of the proposed fast SVT algorithm, several color image

inpainting and movie-rating estimation problems are tested.

The results show that the proposed method consumes 15X and

8X less CPU time than the methods using svds and lansvd
respectively, while outputting same-quality results.

For reproducibility, the codes and test data in this work will

be shared on GitHub (https://github.com/XuFengthucs/fSVT).

II. PRELIMINARIES

We assume that all matrices in this work are real valued,

although the generalization to complex-valued matrices is of

no difficulty. In algorithm description, we follow the Matlab

convention for specifying row/column indices of a matrix.

A. Singular Value Decomposition
Singular value decomposition (SVD) is the most widely

used matrix decomposition [17], [18]. Let A denote an m×n
matrix. Its SVD is

A = UΣVT, (2)

where orthogonal matrices U = [u1,u2, · · ·] and V =
[v1,v2, · · ·] include the left and right singular vectors of A,

respectively. And, Σ is a diagonal matrix whose diagonal ele-

ments (σ1, σ2, · · ·) are the singular values of A in descending

order. Suppose Uk and Vk are the matrices with the first k
columns of U and V, respectively, and Σk is a diagonal matrix

containing the first k singular values of A. Then, we have the

truncated SVD:

A ≈ Ak = UkΣkV
T
k . (3)

It is well known that this truncated SVD, i.e. Ak, is the best

rank-k approximation of the matrix A, in either spectral norm

or Frobenius norm [17].
To compute truncated SVD, a common choice is Matlab’s

built-in svds [19]. It is based on a Krylov subspace iterative

method, and is especially efficient for handling sparse matrix.

For a dense matrix A, svds costs O(mnk) flops for comput-

ing rank-k truncated SVD. If A is sparse, the cost becomes

O(nnz(A)k) flops, where nnz(·) stands for the number of

nonzeros of a matrix. Another choice is PROPACK [5], which

is an efficient package in Matlab/Fortran for computing the

dominant singular values/vectors of a large sparse matrix. The

principal routine “lansvd” in PROPACK employs an intri-

cate Lanczos method to compute the singular values/vectors

directly, instead of computing the eigenvalues/eigenvectors of

an augmented matrix as in Matlab’s built-in svds. Therefore,

lansvd is usually several times faster than svds.

B. Projection Based Randomized Algorithms
The randomized algorithms have shown their advantages for

solving the linear least squares problem and low-rank matrix

approximation [20]. An idea is using random projection to

identify the subspace capturing the dominant actions of matrix

A. This can be realized by multiplying A with a random

matrix on its right side or left side, and then obtaining the

subspace’s orthonormal basis matrix Q. With Q, a low-rank

approximation of A can be computed which further results in

the approximate truncated SVD. Because the dimension of the

subspace is much smaller than that of range(A), this method

facilitates the computation of near-optimal decompositions of

A. A basic randomized SVD (rSVD) algorithm is described

as Algorithm 1 [2].

Algorithm 1 basic rSVD

Input: A ∈ R
m×n, rank parameter k, power parameter p

Output: U ∈ R
m×k, S ∈ R

k×k, V ∈ R
n×k

1: Ω = randn(n, k + s)
2: Q = orth(AΩ)
3: for i = 1, 2, · · · , p do
4: G = orth(ATQ)
5: Q = orth(AG)
6: end for
7: B = QTA
8: [U,S,V] = svd(B)
9: U = QU

10: U = U(:, 1 : k),S = S(1 : k, 1 : k),V = V(:, 1 : k).

In Alg. 1, Ω is a Gaussian i.i.d matrix. Other kinds of

random matrix can replace Ω to reduce the computational cost

of AΩ, but they also bring some sacrifice on accuracy. With

the subspace’s orthogonal basis Q, we have the approximation

A ≈ QB = QQTA. Then, performing the economic SVD

on the (k + s) × n matrix B we obtain the approximate

truncated SVD of A. To improve the accuracy of the QB

approximation, a technique called power iteration (PI) scheme

can be applied [2], i.e. Steps 3∼6. It is based on the fact that

matrix (AAT)pA has exactly the same singular vectors as A,

but its singular value decays more quickly. Thus, performing

the randomized QB procedure on (AAT)pA can achieve

better accuracy. The orthonormalization operation “orth()” is

used to alleviate the round-off error in the floating-point

computation. More theoretical analysis can be found in [2].
The s in Alg. 1 is an oversampling parameter, which enables

Ω with more than k columns used for better accuracy. s is

a small integer, 5 or 10. “orth()” is achieved by a call to a

packaged QR factorization (e.g., qr(X, 0) in Matlab).
The basic rSVD algorithm with the PI scheme has the

following guarantee [2], [16]:

‖A−QQTA‖ = ‖A−USVT‖ ≤ (1 + ε)‖A−Ak‖, (4)

with a high probability (Ak is the best rank-k approximation).
Another scheme called block Krylov-subspace iteration

(BKI) can also be collaborated with the basic randomized QB

procedure in Alg. 1. The resulted algorithm satisfies (4) as

well, and has better accuracy with same number of iteration

609

(p in Alg. 1). In [16], it has been revealed that with the BKI

scheme, the accuracy converges faster along with the iteration

than using the PI scheme (Alg. 1). Specifically, the BKI

scheme converges to the (1 + ε) low-rank approximation (4)

in Õ(1/
√
ε) iterations, while the PI scheme requires Õ(1/ε)

iterations. This means that BKI based randomized SVD is

more suitable for the scenario requiring higher accuracy.

Some accelerating skills have been proposed to speed up

the basic rSVD algorithm [11], [14], [15], whose details will

be addressed in the following section. However, they are

developed individually and some of them just lack theoretic

support. And, whether they are suitable for large sparse matrix

is not well investigated.

C. Matrix Completion Algorithms

The matrix completion problem (1) is often relaxed to the

problem minimizing the nuclear norm ‖ · ‖∗ of matrix:

min
X
‖X‖∗, s.t. PΦ(X) = PΦ(M), (5)

where PΦ(·) is an orthogonal projector onto the span of

matrices vanishing outside of set Φ. The solution of (4) can

be approached by an iterative process:{
Xi = shrink(Yi−1, τ),

Yi = Yi−1 + δPΦ(M−Xi).
(6)

Here, τ > 0, δ is a scalar step size, and shrink(Y, τ) is a

function which applies a soft-thresholding rule at level τ to the

singular values of matrix Y. As the sequence {Xi} converges,

one derives the singular value thresholding (SVT) algorithm

for matrix completion (i.e. Algorithm 2) [1].

Algorithm 2 SVT

Input: Sampled entries PΦ(M), tolerance parameter ε
Output: Xopt

1: Y0 = cδPΦ(M), r0 = 0
2: for i = 1, 2, · · · , imax do
3: ki = ri−1 + 1
4: repeat
5: [Ui−1,Si−1,Vi−1] = svds(Yi−1, ki)
6: ki = ki + l
7: until Si−1(ki − l, ki − l) ≤ τ
8: ri = max{j : Si−1(j, j) > τ}
9: Xi =

∑ri
j=1(S

i−1(j, j)− τ)Ui−1(:, j)(Vi−1(:, j))
T

10: if
∥∥PΦ(X

i)−PΦ(M)
∥∥
F
/‖PΦ(M)‖F <ε then break

11: Yi = Yi−1 + δ(PΦ(M)− PΦ(X
i))

12: end for
13: Xopt = Xi

In Alg. 2, “svds(Y, k)” computes rank-k truncated SVD

of Y. There are some internal parameters which follow the

empirical settings in [1]: τ = 5n, where n is matrix column

number, l = 5 and c = �τ/(δ ‖PΦ(M)‖2)	. The value of δ
affects the convergence rate, and one can slightly decrease it

with the iteration.

Due to space limit, we omit the details of IALM algorithm

[6]. In Section IV.A, with experiment we will show that the

IALM is inferior to SVT algorithm for handling real data.

III. FASTER RANDOMIZED SVD FOR SPARSE MATRIX

A. The Ideas for Acceleration

Because in each iteration of the SVT operation we need to

compute truncated SVD of sparse matrix Yi−1, accelerating

randomized SVD for sparse matrix is the focus. From Alg. 1,

we see that Steps 2 and 7 occupy the majority of computing

time if A is dense. However, for sparse matrix this is not true

and optimizing other steps may bring substantial acceleration.

In existing work, some ideas were proposed to acceler-

ate the basic rSVD algorithm. In [14], the idea of using

eigendecomposition to compute the SVD in Step 8 of Alg.

1 was proposed. It was also pointed out that in the power

iteration, orthonormalization after each matrix multiplication

is not necessary. In [15], the power iteration was accelerated

by replacing the QR factorization with LU factorization, and

the Gaussian matrix is replaced with the random matrix with

uniform distribution. In [11], the randomized SVD without

power iteration was discussed for the dense matrix in image

or video processing problem. It employs a variant of the basic

rSVD algorithm, where the random matrix is multiplied to

the left of A. The algorithm is accelerated by using sparse

random matrices and using eigendecomposition to obtain the

orthonormal basis of the subspace.

Considering the situation for matrix completion, we de-

cide only using the Gaussian matrix for Ω, because other

choices are not suitable for sparse matrix (may cause AΩ
rank-deficient), and contribute little to the overall efficiency

improvement. Other random matrix also degrades the accuracy

of rSVD. The useful ideas for faster randomized SVD for

sparse matrix are:

• use eigendecomposition for the economic SVD of B;

• perform orthonormalization after every other matrix-

matrix multiplication in the power iteration;

• perform LU factorization in the power iteration;

• replace the orthonormal Q with the left singular vector

matrix U.

We first formulate the eigendecomposition based SVD com-

putation as an eigSVD algorithm (described as Alg. 3), where

“eig()” computes eigendecomposition. Its correctness is given

as Lemma 1.
Algorithm 3 eigSVD

Input: A ∈ R
m×n (m ≥ n)

Output: U ∈ R
m×n, S ∈ R

n×n, V ∈ R
n×n

1: B = ATA
2: [V,D] = eig(B)
3: S = sqrt(D)
4: U = AVS−1

Lemma 1. The matrices U,S,V produced by Alg. 3 form the
economic SVD of matrix A.

Proof. Suppose A has SVD as (2). Since m ≥ n,

A = U(:, 1 : n)Σ̃VT, (7)

610

where Σ̃, a square diagonal matrix, is the first n rows of Σ.

Eq. (7) is the economic SVD of A. Then, Step 1 computes

B = ATA = VΣ̃2VT. (8)

The right-hand side is the eigendecomposition of B. This

means in Step 2, D = Σ̃2 and V is the right singular vector

matrix of A. So, S in Step 3 equals Σ̃, and lastly in Step 4

U = AVS−1 = AVΣ̃−1 = U(:, 1 : n). The last equality is

derived from (7). This proves the lemma.

Notice that eigSVD is especially efficient if m� n, when

B becomes a small n×n matrix. Besides, the singular values

in S are in ascending order. Numerical issues can arise if

matrix A has not full column rank. Though more efficient than

standard SVD, eigSVD is only applicable to special situations.

The idea that we can replace the orthonormal Q with the

left singular matrix U can be explained with Lemma 2.

Lemma 2. In the basic rSVD algorithm, orthonormal ma-
trix Q includes a set of orthonormal basis of subspace
range(AΩ) or range((AAT)pAΩ). No matter how Q is
produced, the results of basic rSVD algorithm do not change.

Proof. The first statement is obviously correct by observing

Alg. 1. The result of the basic rSVD algorithm is actually

QB = QQTA, which further equals USVT. Notice that

QQT is an orthogonal projector onto the subspace range(Q),
if Q is an orthonormal matrix. The orthogonal projector is

uniquely determined by the subspace [18], here equals to

range(AΩ) or range((AAT)pAΩ). So, no matter how Q
is produced, QQT does not change, and the basic rSVD

algorithm’s results do not change.

Both QR factorization and SVD of a same matrix produce

the orthonormal basis of its range space (column space), in

Q and U respectively. So, with Lemma 2, we can replace Q
with U from SVD in the basic rSVD algorithm.

Performing LU factorization is more efficient than QR

factorization. It can be used while not affecting the correctness.

Lemma 3. In the basic rSVD algorithm, the “orth()” opera-
tion in the power iteration, except the last one, can be replaced
by LU factorization. This does not affect the algorithm’s
accuracy in exact arithmetic.

Proof. Firstly, if the “orth()” is not performed, the power

iteration produces Q including a set of basis of the subspace

range((AAT)pAΩ). As mentioned before, the “orth()” is just

for alleviating the round-off error , and after using it Q still

represents range((AAT)pAΩ).
The pivoted LU factorization of a matrix K is:

PK = LU, (9)

where P is a permutation matrix, and L and U are lower tri-

angular and upper triangular matrices respectively. Obviously,

K = (P
T
L)U, where PTL has the same column space as

K. So, replacing “orth()” with LU factorization (using PTL)

also produces the basis of range((AAT)pAΩ). Then, based

on Lemma 2, we see this does not affect the algorithm’s results

in exact arithmetic.

Notice that the LU factor PTL has scaled matrix en-

tries with linearly independent columns, since L is a lower-

triangular matrix with unit diagonals and P just means row

permutation. So, it also alleviates the round-off error. Finally,

the orthonormalization or LU factorization in the power itera-

tion can be performed after every other matrix multiplication.

It harms the accuracy little, but remarkably reduces runtime.

B. Fast rSVD-PI Algorithm and rSVD-BKI Algorithm

Based on the above discussion, we find out that the eigSVD

procedure can be applied to the basic rSVD to produce both

the economic SVD of B and the orthonormal Q. Because

in practice k + s � m or n and the matrices are not

rank-deficient, using eigSVD induces no numerical issue.

With these accelerating skills, we propose a fast rSVD-PI

algorithm for sparse matrix (Alg. 4), where “lu(·)” denotes

LU factorization function and its first output is “PTL”.

Algorithm 4 rSVD-PI

Input: A ∈ R
m×n, rank parameter k, power parameter p

Output: U ∈ R
m×k, S ∈ R

k×k, V ∈ R
k×n

1: Ω = randn(n, k + s)
2: Q = AΩ
3: for i = 0, 1, 2, 3, · · · , p do
4: if i < p then [Q,∼] = lu(Q)
5: else [Q,∼,∼] = eigSVD(Q) break
6: Q = A(ATQ)
7: end for
8: B = QTA
9: [V,S,U] = eigSVD(BT)

10: ind = s+ 1 : k + s
11: U = QU(:, ind), S = S(ind, ind),V = V(:, ind).

Theorem 1. Alg. 4 is mathematically equivalent to the basic
rSVD algorithm (Alg. 1).

Proof. One difference between Alg. 4 and Alg. 1 is in the

power iteration (the “for” loop). Based on Lemma 1 we see

that eigSVD accurately produces a set of orthonormal basis.

And, based on Lemma 2 and 3, we see the power iteration

in Alg. 4 is mathematically equivalent to that in Alg. 1. The

other difference is the last three steps in Alg. 4. Its correctness

is due to Lemma 1 and that the singular values produced by

eigSVD is in the ascending order.

For the scenario requiring higher accuracy, the BKI scheme

[16] should be employed. Its main idea is to accumulate

the subspaces generated in every iteration to form a larger

subspace. Combining the accelerating skills we propose a fast

BKI based rSVD algorithm (rSVD-BKI), i.e. Alg 5. Because

the number of columns of H in Alg. 5 can be much larger than

Q’s in Alg. 4, we use “orth()” instead of eigSVD to produce

Q finally. Similarly, we have the following theorem.

Theorem 2. Alg. 5 is mathematically equivalent to the origi-
nal BKI algorithm in [16].

611

Algorithm 5 rSVD-BKI

Input: A ∈ R
m×n, rank parameter k, power parameter p

Output: U ∈ R
m×k, S ∈ R

k×k, V ∈ R
k×n

1: Ω = randn(n, k + s)
2: [H0,∼] = lu(AΩ)
3: for i = 1, 2, 3, · · · , p do
4: if i < p then [Hi,∼] = lu(A(ATHi−1))
5: end for
6: H = [H0,H1, ...,Hp]
7: Q = orth(H)
8: B = QTA
9: [V,S,U] = eigSVD(BT)

10: ind = (k + s)(p+ 1)− k + 1 : (k + s)(p+ 1)
11: U = QU(:, ind), S = S(ind, ind),V = V(:, ind).

Both Alg. 4 and Alg. 5 can accelerate the randomized SVD

for sparse matrix. They do not reduce the major term in

computational complexity, but have smaller scaling constants

and reduce other terms. They also inherit the theoretical error

bound of the original algorithms [2], [16]. Their accuracy and

efficiency will be validated with experiments in Section V.A.

Based on the rSVD-BKI, we will derive a fast SVT algorithm

for matrix completion problems in the following section.

IV. A FAST MATRIX COMPLETION ALGORITHM

A. The Choice of Algorithm

To evaluate the quality of matrix completion, we consider

the mean absolute error (MAE),

MAE =

∑
ij∈Φ |Mij − M̃ij |

|Φ| , (10)

where M is the initial matrix, M̃ is the recovered matrix, and

|Φ| is the number of samples. MAE can be measured on the

sampled matrix entries, or the whole matrix entries if the initial

matrix is known. Before developing a faster matrix completion

algorithm, we compare the SVT and IALM algorithms for

recovering a 2, 048 × 2, 048 color image from 20% pixels in

it (i.e. Case 2 in Section V.II). The MAE curves along the

iteration steps produced with SVT and IALM algorithms are

shown in Fig. 1. From it we see that SVT achieves much

better accuracy than IALM, though the latter converges faster.

0 50 100 150 200
iteration

10

15

20

25

30

35

M
A

E

IALM
SVT

Fig. 1. The accuracy convergence of SVT and IALM algorithms.

A probable reason is that the IALM algorithm works well on

some low-rank data, instead of the real data.

In this work, we focus on the acceleration of the SVT

algorithm. A basic idea is replacing the truncated SVD in

SVT algorithm with the fast rSVD algorithms in last section.

However, with the iterations in SVT algorithm advancing,

the rank parameter ki becomes very large. Calculating so

many singular values/vectors accurately is not easy. Firstly, the

rSVD-BKI algorithm is preferable, which will be demonstrated

with experiment in Section V.A. Secondly, with a large power

p, its runtime advantage over svds or lansvd may lose, so

that other accelerating technique is needed.

B. Subspace Recycling

The SVT algorithm uses an iterative procedure to build

up the low rank approximation, where truncated SVD is

repeatedly carried out on Yi. According to Step 11 in Alg. 2,∥∥Yi−Yi−1
∥∥
F
=δ

∥∥PΦ(M−Xi)
∥∥
F
≤δ

∥∥M−Xi
∥∥
F

(11)

Because
∥∥M−Xi

∥∥
F
→ 0 when iteration index i becomes

large enough (see Theorem 4.2 in [1]), Eq. (11) means Yi is

very close to the Yi−1. So are the truncated SVD results of

Yi and Yi−1. The idea is to reuse the subspace of Yi−1

calculated in previous iteration step to speed up the SVD

computation of Yi. This should be applied when i is large

enough. Two recycling strategies are:

• Reuse the orthogonal basis Q in the rSVD-BKI for Yi−1,

and then start from Step 8 in the rSVD-BKI algorithm

for computing SVD of Yi.

• Reuse the left singular vectors Ui−1 in last iteration to

calculate SVD of Yi, with the following steps.

1: B = Ui−1TYi

2: [Vi,Si,Ui] = eigSVD(BT)
3: Ui = Ui−1Ui

The second strategy costs less time, because the size of

Ui−1 is m × k while the size of Q is m × (p + 1)(k + s).
However, it is less accurate than the first one. So, the second

strategy is suitable for the situation where the error reduces

rapidly in the iterative process of SVT algorithm, e.g. the

image inpainting problem.

C. Fast SVT Algorithm

Based on the proposed techniques, we obtain a fast SVT

algorithm described as Alg. 6. ireuse represents the minimum

iteration to execute subspace recycling, and qreuse represents

the maximum times of subspace recycling with one subspace.

To guarantee the accuracy of randomized SVD, the power

parameter p should increase with the iteration because the

rank ki of Yi increases. Our strategy is increasing p by 1 once

the relative error in Step 16 increases. This ensures a gradual

decrease of error. And, if the error continuously decreases for

10 times, we reduce p by 1. This prevents overstating p. Other

parameters follow the settings for Alg. 2 (see Section II.B).

Here we would like to explain the convergence of the

proposed fast SVT algorithm. As proved in [16], the BKI

based randomized SVD is able to attain any high accuracy

if p is large enough. So is our rSVD-BKI algorithm. In the

612

Algorithm 6 fast SVT

Input: Sampled entries PΦ(M), tolerance ε
Output: Xopt

1: Y0 = cδPΦ(M), r0 = 0, q = 0, p = 3
2: for i = 1, 2, · · · , imax do
3: ki = ri−1 + 1, adjust the value of p
4: repeat
5: if i < ireuse or q == qreuse then
6: [Ui−1,Si−1,Vi−1] = rSVD-BKI(Yi−1, ki, p)
7: q = 0
8: else
9: reuse Q or U in last execution of rSVD-BKI

algorithm and compute Ui−1,Si−1,Vi−1

10: q = q + 1
11: end if
12: ki = ki + l
13: until Si−1(ki − l, ki − l) ≤ τ
14: ri = max{j : Si−1(j, j) > τ}
15: Xi =

∑ri
j=1(S

i−1(j, j)− τ)Ui−1(:, j)(Vi−1(:, j))
T

16: if
∥∥PΦ(X

i)−PΦ(M)
∥∥
F
/‖PΦ(M)‖F <ε then break

17: Yi = PΩ(Y
i−1) + δ(PΦ(M)− PΦ(X

i))
18: end for
19: Xopt = Xi

fast SVT algorithm (Alg. 6), the k-truncated SVD is computed

and k increases with the iterations. We initially set a p value

which enables the rSVD-BKI algorithm attains same accuracy

as svds for computing a few leading singular values/vectors.

With the iteration advancing a mechanism gradually increas-

ing p value is applied, such that rSVD-BKI can accurately

compute more leading singular values/vectors. As a result,

this accurate SVD computation guarantees that Alg. 6 behaves

the same as the original SVT algorithm using svds. On the

other hand, Theorem 4.2 in [1] proves the convergence of the

original SVT algorithm. So, the convergence of our Alg. 6 is

also guaranteed.

Notice that the subspace recycling technique is inspired by

the theoretic analysis of (11). We have devised two recycling

strategies and restrict their usage with parameters ireuse and

qreuse. They, to some extent, ensure that the accuracy in the

fast SVT algorithm will not degrade after incorporating the

subspace recycling. This has been validated with extensive

experiments, some of which are given in Section V.II and V.III.

V. EXPERIMENTAL RESULTS

All experiments are carried out on a computer with Intel

Xeon CPU @2.00 GHz and 128 GB RAM. The algorithms

have been implemented in Matlab 2016a. svds in Matlab and

lansvd in PROPACK [5] are used in Alg. 2, respectively. The

resulted algorithms are compared with the proposed fast SVT

algorithm (Alg. 6). The CPU time of different algorithms are

compared, which is irrespective of the number of threads used

in different SVT implementations.

The test cases for matrix completion are color images

and movie-rating matrices from the MovieLens datasets [21].

Below, we first evaluate the proposed fast rSVD algorithms

for sparse matrix and then validate the fast SVT algorithm.

A. Validation of Fast rSVD Algorithms

In this subsection, we first compare our rSVD-PI algorithm

(Alg. 4) with the basic rSVD, cSVD (using randn as the

random matrix) [11], pcafast [15], rSVDpack [14] algorithms.

We consider a sparse matrix in size 45,115 × 45,115 obtained

from the MovieLens dataset. The matrix has 97 nonzeros per

row on average and is denoted by Matrix 1. Then, we randomly

set some nonzero elements to zero to get two sparser matrices:

Matrix 2 and 3 with 24 and 9 nonzeros per row on average,

respectively. Setting rank k = 100, we performed the truncated

SVD with different algorithms. The results are listed in Table

I. Error there is the approximation error
∥∥∥A− Ãk

∥∥∥
F
/ ‖A‖F ,

where Ãk denotes the computed rank-k approximation.

From the table we see that the proposed rSVD-PI algorithm

has same accuracy as the basic rSVD algorithm, but is from

2.2X to 6.0X faster (Sp. in Table I denotes the speedup ratio to

the basic rSVD). And, for a sparser matrix the speedup ratio

increases. If the power iteration is not imposed (p = 0), cSVD

and rSVDpack perform well, with at most 3.3X and 3.0X

speedup respectively. When p = 4, the speedup ratios of these

methods decrease. However, rSVDpack is better, due to the

improvement of power iteration. pcafast also shows moderate

speedup because it replaces QR with LU factorizaiton. These

results verify the efficiency of our rSVD-PI algorithm for

handling sparse matrix. It has up to 6.0X speedup over the

basic rSVD algorithm, and is several times faster than other

state-of-the-art rSVD approaches.

Considering the scenario needing high accuracy, we com-

pare rSVD-PI and rSVD-BKI algorithms with various matri-

ces. Different values of power parameter p are tested and the

results of svds are also given as the baseline. The results

for Matrix 1 (setting k = 100) are listed in Table II. From

it, we see that rSVD-BKI can reach the accuracy of svds
in shorter runtime and a smaller p = 4. However, rSVD-PI

cannot attain the accuracy of svds even when p is as large

as 15. The experimental results show that rSVD-BKI achieves

better accuracy than rSVD-PI in shorter CPU time, with much

smaller p. This verifies that the rSVD-BKI algorithm (Alg. 5)

is more efficient than rSVD-PI for high-precision computation.

As we have tested, to ensure the accuracy of SVD in the

SVT iterations, the power p can increase to several tens while

using rSVD-PI algorithm or similar randomized algorithms.

This largely increase the runtime and makes rSVD-PI and

those algorithms in Table I no competitive advantage over the

standard SVD methods. So, we can only use rSVD-BKI in the

following matrix completion experiments.

B. Image Inpainting

In this subsection, we test the matrix completion algorithms

with a landscape color image. It includes 2, 048 × 2, 048
pixels, and we stack the three color channels of it to get a

matrix in size of 6, 144× 2, 048. Then, we randomly sample

10% and 20% pixels to construct Case 1 and Case 2 for

613

TABLE I
THE COMPUTATIONAL RESULTS OF DIFFERENT RANDOMIZED SVD ALGORITHMS (k = 100). THE UNIT OF CPU TIME IS SECOND

Setting Matrix 1 Matrix 2 Matrix 3

Algorithm p tcpu Error Sp. tcpu Error Sp. tcpu Error Sp.

basic rSVD (Alg.1) 0 6.19 0.8166 * 5.10 0.9341 * 4.98 0.9506 *

cSVD [11] 0 2.76 0.8166 2.2 1.74 0.9352 2.9 1.51 0.9508 3.3

pcafast [15] 0 5.92 0.8188 1.0 5.04 0.9338 1.0 4.66 0.9506 1.1

rSVDpack [14] 0 2.59 0.8186 2.4 1.67 0.9355 3.1 1.67 0.9506 3.0

rSVD-PI (Alg.4) 0 2.10 0.8156 3.0 1.10 0.9342 4.8 0.84 0.9502 6.0

basic rSVD (Alg.1) 4 18.7 0.7305 * 13.2 0.8614 * 12.1 0.8804 *

cSVD [11] 4 14.9 0.7305 1.3 9.70 0.8614 1.4 8.51 0.8805 1.4

pcafast [15] 4 12.9 0.7305 1.5 8.36 0.8615 1.6 6.69 0.8805 1.8

rSVDpack [14] 4 11.7 0.7305 1.6 6.32 0.8617 2.1 5.40 0.8804 2.2

rSVD-PI (Alg.4) 4 8.32 0.7305 2.2 3.18 0.8615 4.2 2.02 0.8804 6.0

TABLE II
THE COMPARISON OF RSVD-PI AND RSVD-BKI ALGORITHMS

Algorithm tcpu (s) Error Sp.

svds 75.0 0.7289 *

rSVD-PI (Alg.4), p = 2 5.20 0.7345 14

rSVD-PI (Alg.4), p = 15 26.4 0.7290 2.8

rSVD-BKI (Alg.5), p = 4 22.0 0.7289 3.4

image inpainting, respectively. The error of image inpainting

is measured with the MAE on all image pixels.

For the two cases, ε in the SVT algorithms is set 0.052 and

0.047 respectively. They correspond to the situation where the

error of matrix completion does not decrease any more. The

parameters for subspace recycling are qreuse = 10, ireuse =
100. And, we use the second recycling strategy reusing U
matrix. Our fast SVT algorithm is compared with the SVT

algorithm using svds and lansvd, see Table III.

TABLE III
THE RESULTS OF IMAGE INPAINTING (UNIT OF CPU TIME IS SECOND)

Test case
SVT (Alg.2) fast SVT (Alg.6)

Sp1 Sp2
tsvds tlansvd MAE tw/o tw/ MAE

Case 1 10,674 6,295 11.69 1,812 944 11.69 11.3 6.7

Case 2 19,358 10,008 8.854 3,254 1,279 8.854 15.1 7.8

In Table III, tsvds and tlansvd denote the CPU time of

the SVT algorithms (Alg. 2) using svds and lansvd for

truncated SVD, respectively. tw/o and tw/ denote the CPU

time of our fast SVT Algorithm (Alg. 6) without and with

subspace recycling, respectively. Sp1 and Sp2 are the ratios

of tsvds and tlandsvd to the CPU time of our algorithm (with

subspace recycling). We can see that the proposed algorithm

is up to 15.1X and 7.8X faster than the SVT algorithms using

svds and lansvd, respectively. Its memory cost is 512 MB,

slightly larger than 420 MB used by the SVD algorithm with

lansvd. All algorithms present the same accuracy (same

MAE value), with same iteration numbers (400 for Case 1 and

700 for Case 2). The rank of the result matrix is 109 for Case

1 or 102 for Case 2. Comparing tw/o and tw/ we see that the

subspace recycling technique brings about 2X speedup, while

not degrading the accuracy.

The recovered images from Case 1 are shown in Fig. 2,

along with the original image. It reveals that our Alg. 6

produces same quality as the original SVT algorithm.

(a) Initial image (b) Sampled 10% pixels

(c) Recovered with Alg. 2 (d) Recovered with Alg. 6

Fig. 2. The initial image and recovered images from 10% pixels.

C. Rating Matrix Completion

The rating matrix includes users’ ratings to movies, ranged

from 0.5 to 5. For each dataset we keep a portion of ratings

to be the training set. With them we recover the whole

rating matrix and then use the remaining ratings to evaluate

the accuracy of the matrix completion. In this experiment,

614

qreuse = 10, ireuse = 50, and the first subspace recycling

strategy is used because it delivers better accuracy.

We first test a smaller dataset, including 10,000,054 ratings

from 71,567 users judging 10,677 movies. We randomly

sample 80% and 90% ratings as the training sets to obtain

Case 3 and Case 4, respectively. The ε in the SVT algorithms

is 0.16 and 0.19 for the both cases respectively, corresponding

to the situation where the error of matrix completion does not

decrease any more. The experimental results are in Table IV.

TABLE IV
THE RESULTS OF RATING MATRIX COMPLETION FOR A SMALLER

DATASET

Test case
SVT (Alg.2) fast SVT (Alg.6)

Sp1 Sp2
tsvds tlansvd MAE tw/ MAE

Case 3 75,297 48,290 0.6498 15,133 0.6501 5.0 3.2

Case 4 19,813 12,509 0.6458 3,771 0.6460 5.3 3.3

According to Table IV, we see that the fast SVT algorithm

has same accuracy as the original SVT algorithm. Here, MAE

is measured on the remaining ratings. With the proposed

techniques, the fast SVT algorithm is up to 5.3X and 3.3X

faster than the methods using tsvds and tlansvd, respectively.

From MAE we see that the error of rating estimation is on

average 0.65, which is moderate.

Then, we test a larger dataset which includes 20,000,263

ratings from 138,493 users to 26,744 movies. It derives Case

5 and Case 6 by sampling 80% and 90% known ratings.

The computational results are listed in Table V. They confirm

the accuracy of the proposed algorithm again, and show its

speedup up to 4.8X. It should be pointed out that the number

of iterations to achieve the best quality in SVT algorithms are

362 for Case 5 and 293 for Case 6, which are larger than 208

for Case 3 and 153 for Case 4. But the ranks of the result

matrix are 58 for Case 5 and 45 for Case 6 which are much

smaller than 239 for Case 3 and 138 for Case 4. This explains

why the CPU time for handling the larger dataset is less than

that for handling the smaller dataset.

TABLE V
THE RESULTS OF RATING MATRIX COMPLETION FOR A LARGER DATASET

Test case
SVT (Alg.2) fast SVT (Alg.6)

Sp1 Sp2
tsvds tlansvd MAE tw/ MAE

Case 5 30,213 15,213 0.6676 6,582 0.6676 4.6 2.3

Case 6 19,951 9,785 0.6685 4,180 0.6685 4.8 2.3

VI. CONCLUSIONS

In this paper, we have presented two contributions. Firstly, a

fast randomized SVD technique is proposed for sparse matrix.

It results in two fast rSVD algorithms: rSVD-PI and rSVD-

BKI. The former is faster than all existing approaches and up

to 6X faster than the basic rSVD algorithm, while the latter

is even better for problem requiring higher accuracy. Then,

utilizing the rSVD-BKI, we propose a fast SVT algorithm for

matrix completion. It also includes a new subspace recycling

technique and is applied to the problems of image inpainting

and rating matrix completion. The experiments with real data

show that the proposed algorithm brings up to 15X speedup

without loss of accuracy.
In the future, we will explore the application of this fast

matrix completion algorithm to more AI problems.

REFERENCES

[1] J. F. Cai, E. J. Cands, and Z. Shen, “A singular value thresholding algo-
rithm for matrix completion,” SIAM Journal on Optimization, vol. 20,
no. 4, pp. 1956–1982, 2010.

[2] N. Halko, P. G. Martinsson, and J. A. Tropp, “Finding structure
with randomness: Probabilistic algorithms for constructing approximate
matrix decompositions,” SIAM Review, vol. 53, no. 2, pp. 217–288, 2011.

[3] H. Fang, Z. Zhang, Y. Shao, and C.-J. Hsieh, “Improved bounded matrix
completion for large-scale recommender systems,” in Proc. International
Joint Conference on Artificial Intelligence (IJCAI), Aug. 2017, pp. 1654–
1660.

[4] D. Zhang, Y. Hu, J. Ye, X. Li, and X. He, “Matrix completion by
truncated nuclear norm regularization,” in Proc. IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2012, pp. 2192–
2199.

[5] R. M. Larsen, “Propack-software for large and sparse svd calculations,”
Available online. URL http://sun.stanford.edu/rmunk/PROPACK, 2004.

[6] Z. Lin, M. Chen, and Y. Ma, “The augmented lagrange multiplier method
for exact recovery of corrupted low-rank matrices,” arXiv preprint, vol.
arXiv:1009.5055, 2010.

[7] E. J. Candès, X. Li, Y. Ma, and J. Wright, “Robust principal component
analysis?” Journal of the ACM (JACM), vol. 58, no. 3, p. 11, 2011.

[8] M. W. Mahoney, “Randomized algorithms for matrices and data,”
Foundations and Trends® in Machine Learning, vol. 3, no. 2, pp. 123–
224, 2011.

[9] D. P. Woodruff et al., “Sketching as a tool for numerical linear algebra,”
Foundations and Trends® in Theoretical Computer Science, vol. 10, no.
1–2, pp. 1–157, 2014.

[10] P. G. Martinsson, “Randomized methods for matrix computations and
analysis of high dimensional data,” arXiv preprint arXiv:1607.01649,
2016.

[11] N. Benjamin Erichson, S. L. Brunton, and J. Nathan Kutz, “Compressed
singular value decomposition for image and video processing,” in Proc.
IEEE International Conference on Computer Vision (ICCV), Oct. 2017,
pp. 1880–1888.

[12] W. Yu, Y. Gu, J. Li, S. Liu, and Y. Li, “Single-pass PCA of large high-
dimensional data,” in Proc. International Joint Conference on Artificial
Intelligence (IJCAI), Aug. 2017, pp. 3350–3356.

[13] Y. Liang, M.-F. F. Balcan, V. Kanchanapally, and D. Woodruff, “Im-
proved distributed principal component analysis,” in Advances in Neural
Information Processing Systems, 2014, pp. 3113–3121.

[14] S. Voronin and P.-G. Martinsson, “RSVDPACK: An implementation of
randomized algorithms for computing the singular value, interpolative,
and cur decompositions of matrices on multi-core and gpu architectures,”
arXiv preprint arXiv:1502.05366, 2015.

[15] H. Li, G. C. Linderman, A. Szlam, K. P. Stanton, Y. Kluger, and
M. Tygert, “Algorithm 971: An implementation of a randomized al-
gorithm for principal component analysis.” ACM Transactions on Math-
ematical Software, vol. 43, no. 3, pp. 1–14, 2017.

[16] C. Musco and C. Musco, “Randomized block Krylov methods for
stronger and faster approximate singular value decomposition,” in Ad-
vances in Neural Information Processing Systems, 2015, pp. 1396–1404.

[17] C. Eckart and G. Young, “The approximation of one matrix by another
of lower rank,” Psychometrika, vol. 1, no. 3, pp. 211–218, 1936.

[18] G. H. Golub and C. F. Van Loan, Matrix Computations. JHU Press,
2012.

[19] R. Lehoucq, D. Sorensen, and C. Yang, ARPACK User’s Guide: Solution
of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi
Methods. SIAM Press, 1998.

[20] P. Drineas and M. W. Mahoney, “RandNLA: randomized numerical
linear algebra,” Communications of the ACM, vol. 59, no. 6, pp. 80–
90, 2016.

[21] F. M. Harper and J. A. Konstan, “The movielens datasets: History and
context,” ACM Transactions on Interactive Intelligent Systems (TiiS),
vol. 5, no. 4, p. 19, 2016.

615

