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Abstract 
Capacitance extraction for interconnect parasitics 

modeling is the basis of accurate circuit simulation and 

physical verification for quality integrated circuit (IC) 

design. Due to its scalability and reliability, the floating 

random walk (FRW) based solver has been widely used 

for the capacitance extraction. In this paper, the recently 

developed techniques on distributed parallel FRW solver 

and for handling complex floating metals are presented. 

With them, the efficiency and accuracy of capacitance 

extraction/simulation for very large-scale integration 

(VLSI) circuit design are remarkably improved. 

1. Introduction  

Accurate capacitance modeling and simulation with 

three-dimensional (3-D) field solver has been applied to 

the design of advanced integrated circuits (ICs) [1, 2]. It 

enables device/interconnect capacitance extraction 

necessary for the verification of circuit performance 

metrics, and provides a design validation tool for on-chip 

capacitor structures. There are three main kinds of 

methods for 3-D capacitance solver: domain discreti- 

zation method, boundary element method, and the 

floating random walk (FRW) method [3-6]. Compared to 

the others, the FRW method is more stable in accuracy 

and scalable to large cases, due to its nature of a 

discretization-free method. And, as a Monte Carlo 

method, it’s embarrassingly parallelizable. This makes 

the FRW based capacitance solver popular nowadays [2], 

since parallel-computing facilities are easily available. 

Recently, the FRW method was extended to efficiently 

handle cylindrical inter-tier-vias in 3-D ICs [7] and the 

non-Manhattan conductors in packaging and touchscreen 

[8]. For the variation-aware capacitance modeling [9], a 

technique based on the FRW method was proposed [10]. 

Combined with a Markov-chain random walk approach, 

it was also made to efficiently extract the capacitances of 

circuits with IP protected or cyclic substructures [11]. 

A lot of work has been devoted to the FRW method to 

improve its efficiency. Most of them consider the multi- 

threaded parallel implementation on a single computer [4, 

12]. To tackle very large computing task, the parallel 

computing using GPU or multiple computers should be 

considered [6, 13, 14]. Although the approach based on 

GPU can be more energy-efficient, its implementation 

requires more labor on software development and 

maintenance. In contrast, the distributed parallel FRW 

algorithm on computer cluster or the cloud is more 

feasible. This has been evidenced by the industrial 

practice of multi-net or full-chip extraction using FRW 

solver. Its basic idea is to assign subsets of nets to each 

machine and then collect their results on a host machine. 

This approach with coarse-grained workload distribution 

is not efficient enough, and not suitable for the extraction 

of a single net. For the capacitance extraction in VLSI 

design, the parallel FRW solver handling millions of 

conductor blocks is of concern. Besides, as complex 

floating metals exist for the on-chip decoupling capacitor, 

how to accurately simulate it is also a challenge. 

In this paper, we first present efficient distributed 

FRW techniques for large-scale VLSI capacitance 

extraction, after a brief review of the FRW method. Then, 

the technique accurately simulating the structure with 

complex floating metals is presented, which adapts to the 

validation of metal-insulator-metal (MIM) capacitors. 

2. Floating Random Walk Based Capacitance Solver 

The FRW method is originated from expressing the 

electric potential of a point r as an integral of the 

potential on surface S enclosing r [3, 4, 15]: 
(1) (1) (1)( ) ( , ) ( )d

S
P  r r r r r ,                   (1) 

where P(r, r
(1)

) is called surface Green’s function and 

can be regarded as a  probability density function and 

dr
(1)

 denotes infinitesimal area at position r
(1)

. Therefore, 

(r) is the statistical mean of (r
(1)

), and can be 

calculated with a Monte Carlo procedure sampling S. 

The domain enclosed by S is called transition domain. 

In capacitance extraction, the coupling capacitances 

between a conductor i and other conductors are wanted. 

With the FRW method, a Gaussian surface Gi is 

constructed to enclose conductor i (see Fig. 1). Ac- 

cording to the Gauss theorem, the charge of conductor i  

(1)

(1) (1) (1) (1)( ) ( , ) ( , ) ( )d d
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i
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where (r) is the dielectric permittivity at point r, q(r, r
(1)

) 

is the probability density function for sampling on S
(1)

, 

the surface of a transition domain. g is a constant, which 

satisfies ( ) d 1
iG

g  r r .  q(r, r
(1)

) may be different from  

P(r, r
(1)

), and (r, r
(1)

) is the weight value [4]. Thus, Qi 

can be estimated as the statistical mean of sampled 

values on Gi, which is further the mean of sampled 

potentials on S
(1)

 multiplying the weight value. If the 
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sampled potential is unknown, this spatial sampling 

procedure will repeat until a point with known potential 

is obtained (e.g., on conductor surface). It forms a 

floating random walk (FRW) including a sequence of 

hops. Each hop is from the center of a transition domain 

to its boundary. With a number of such walks, the 

statistical mean of the weight values for the walks 

terminating at conductor j approximates the coupling 

capacitance Cij (if ji), or the self-capacitance Cii. 

For the structure with floating dummies, the FRW 

method was modified in [16] to calculate the equivalent 

capacitances among normal conductors. As shown in Fig. 

1, the random walk does not terminate at a floating metal, 

and instead continues with the next position randomly 

selected on its neighborhood boundary. The neighbor- 

hood boundary is the uniform inflation of the cuboid 

dummy fill. Although this approach demonstrated good 

accuracy for structures including floating dummies, it 

could induce large systematic error for structure with 

general-shape floating metals, like the MIM capacitor. 

3. Distributed Parallel FRW Algorithms 

In this section, we first present a parallel space 

management technique, which is necessary for handling 

large-scale interconnect structures. Then, the efficient 

distributed parallel FRW procedure is presented. 

3.1 Distributed space management construction 

The cubic transition domain is widely adopted because 

it fits well the Manhattan-shaped interconnects in VLSI 

circuit. The space management technique [4, 12] is for 

quickly finding the nearest conductor for constructing 

the transition cube, and required for simulating a case 

with thousands of conductor blocks. Its basic idea is to 

construct a spatial data structure (like Octree, grid, or 

their hybrid) storing the local conductor information, and 

then with it the size of transition cube can be quickly 

calculated. However, only a multi-thread parallel 

algorithm exists for generating the spatial data. Notice 

for a large-scale case, the construction of space manage- 

ment data costs more time than the FRW procedure. 

To develop a distributed algorithm for constructing 

space management data, we adopt the uniform grid as 

the spatial structure as it leads to simpler inter-process 

communication. Fig. 2 demonstrates a grid with candi- 

date list structure. Every grid cell contains a candidate 

list that consists of the conductor blocks which can be 

the nearest to the cell’s inside points. Generating these 

candidate lists are the major work of space management 

construction, for which conductor blocks in nearby cells 

are inserted into the candidate list after checking 

domination relationship. As the candidate lists are inde- 

pendent to each other, their generation can be distributed 

to processes. After all processes finish the work, the 

results are sent among processes to build the whole 

spatial data structure for each process.  

The flowchart of the distributed space management 

construction is shown in Fig. 3, which is implemented 

with message passing interface (MPI). A well designed 

communication scheme is crucial to its efficiency. Two 

concerns are how to communicate between processes 

and what to send. We use MPI_Allgather command for 

the communication, while a compressed data structure is 

designed for the information of candidate lists. Therefore, 

high parallel efficiency can be achieved [17]. 

3.2 Distributed FRW procedure 

The random walk procedure in the FRW method is 

suitable for parallel computing, as the random walks are 

independent to each other. An existing distributed FRW 

algorithm sends intermediate data from each process to 

process 0 after executing every m walks [14]. It still has 

large communication overhead. From [4], we see that the 

estimated error of capacitance is inversely proportional 

to the square root of the number of walks. It means if we 

evenly divide the walks to processes, it’s equivalent to 

assigning a new termination criterion to each process: 

procm    ,                               (3) 

Figure 3. The distributed space management construction. 

Figure 1. Two random walks from r in the FRW method, and a 

random walk encountering a floating metal (2-D top view). 
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Figure 2. A uniform grid structure. The blue dashed box 

encloses nearby cells of the dot’s owner cell (2-D top view). 
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where mproc is the number of processes and  is the 

specified accuracy criterion of the FRW algorithm (the 

program stops when capacitance error becomes less than 

). Therefore, we can just set the termination criterion (3) 

to each process at the beginning, and then no more 

communication among processes is needed. The flow- 

chart of this distributed FRW procedure is as Fig. 4. 

This distributed algorithm reduces the communication 

cost to the least, and thus makes large acceleration. To 

handle the situation where the machines in the cluster 

have different performance, a comprehensive formula for 

assigning the termination criterion is also derived [17]. 

Another merit of this algorithm is that it ensures the 

reproducibility of capacitance result. The reproducibility 

has drawn a lot of attention in the community of parallel 

computing [18], but is not addressed in the research of 

parallel FRW solver. Actually it’s a practical request 

from customers. With fixed random number seeds and 

this static workload distribution, we’re able to make this 

parallel FRW solver 100% reproducing same capacitance 

results when the simulated cases, the termination 

criterion and the number of processes do not vary. At the 

same time, the accuracy and efficiency is not degraded. 

3.3 Experimental results 

The above techniques have been implemented into 

RWCap [4], and tested on a computer cluster. Each node 

of the cluster includes 12-core Intel Xeon X5670 CPU at 

2.93GHz and 32GB memory, and the nodes are 

connected with infiniband QDR network. Two VLSI 

design cases, one containing 484,441 conductor blocks 

and the other 2,302,995 blocks, are tested. The runtimes 

of space management construction are listed in Table 1. 

From the table we see that with 60 processes the cost 

of constructing the space management can be reduced 

from 824 seconds to 22 seconds, meaning 37.4X 

speedup. We also set 0.5% 1- error criterion on self- 

capacitance, and extract a single net. With 60 processes 

the cost of FRW procedure for Case 2 is reduced by 39X, 

from 189 seconds to 4.9 seconds. This validates the high 

efficiency of the proposed distributed FRW algorithms. 

4. Accurate Treatment of Complex Floating Metals 

In this section, we derive a theoretically rigorous 

approach (based on electric neutrality) for handling 

floating metals in the FRW method. Then, experiments 

are presented to demonstrate its advantage. 

For each floating metal F, the electric neutrality means 

its charge equals to zero: 

( )
( ) ( ) d 0

( )f

Q F
n







 


r

r r
r

 ,                   (4) 

where f is a neighborhood boundary around F, (r) is 

the dielectric permittivity at point r, and ( ) ( )n r r  is 

the outer normal electric field intensity. Approximating 

the partial derivative in (4) with the central difference 

formula, we obtain 

out in( ) ( )
0 ( ) d

2 ( )f s
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




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r r
r r

r
,                    (5) 

where rin and rout are  two points such that the line 

connecting them intersects f perpendicularly at r. And, 

rin and rout have the same distance s(r) to point r (see Fig. 

5). If rin is on F such that (rin) equals to (F), we have: 

( ) ( )
( d ) ( ) ( )d

( ) ( )f f
outF
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 
 

 
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Obviously, PF(r) is a probability density function, and (7) 

implies a random transition scheme from the floating 

metal F. This is different from the method in [16]. We do 

not assume an integral of electric potential on the 

neighborhood boundary f. Instead, the integral in (7) 

involves the electric potential on possible locations of 

rout which constitute an unclosed sampling surface. 

To ensure the existence of rin on F, we construct the 

neighborhood boundary f for a cuboid-shape floating 

rin
 

r 
rout

 

Figure 5. The central difference formula based approach with 

a special neighborhood boundary. (a) top view; (b) side view. 
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s(r) Table 1. The runtimes of the parallel space management 

construction for two test cases from VLSI circuits. 

mproc 
Case 1 Case 2 

time (s) speedup time (s) speedup 

1 52.1 1 824.1 1 

12 6.55 8.0 76.7 10.7 

36 3.15 16.6 29.9 27.6 

60 2.27 23.0 22.1 37.4 

 

Figure 4. The distributed parallel FRW procedure. 



metal with dimensions l1l2l3, as that shown in Fig. 5. 

We first translate each face of F outward a distance and 

then connect these translated faces with bevel faces. The 

resulted f includes 26 faces: 6 faces obtained by 

translating the faces of F (denoted by type I), 12 faces 

each connecting two adjacent type-I faces (denoted by 

type II), and 8 faces each connecting three type-II faces 

(denoted by type III). So far, we have derived a new 

approach for handling cuboid-shape floating metal. It is 

based on (5) rigorously with the 2nd-order central 

differentiation formula. Thus, it has less systematic error 

than the method in [16]. Further, we derive the integrals 

of PF(r) on the three types of faces in f. Then, we can 

perform random sampling on f according to PF(r) in (8) 

and the rejection sampling technique. For each sample, 

the next random-walk position rout is finally obtained. 

This forms a new transition scheme applied while the 

random walk encounters a floating metal, and results in a 

new modified FRW method for capacitance simulation. 

The MIM capacitor often involves floating metals in 

multi-rectangle shape (see Fig. 6). Eq. (7) still holds and 

f can be constructed similarly. To simplify its cons- 

truction and sampling, we consider a multi-rectangle 

metal as a combination of multiple blocks. Then, we just 

construct f for each block, and then make sampling on 

them and apply the rejection sampling technique [12]. 

This correctly produces sampling points, and enables the 

random transitions starting from a multi-rectangle 

floating metal. This approach can also be extended to 

handle structures with multi-dielectric environment [19]. 

Three capacitor structures with floating metals (Case 

3~5) are tested. Case 5 is just like that in Fig. 6. The 

proposed approach is compared with that in [16]. For the 

both, we make each face of floating metal have same 

distance d to the neighborhood boundary. The calculated 

capacitances for varied d values are shown in Fig. 

7(a)~(c). To suppress the stochastic error, a small 0.05% 

1- error is set as the termination criterion. And, the 

golden values from Raphael are also plotted. From them 

we see with the approach in [16] and its extension the 

systematic error can be very large, while the proposed 

approach keeps reasonable accuracy even for the largest 

d. It brings up to 5X reduction on the systematic error. 

We draw Fig. 7(d) to reflect how d affects the runtime of 

the approaches and their errors. It reveals that they have 

almost same runtime-vs-d trend, but different errors. 

From it we also see that, to achieve 0.5% systematic 

error the proposed approach can be over 3.7X faster than 

the extension of the approach in [16]. 

5. Conclusions 

Techniques for distributed parallel space management 

construction and FRW procedure are presented. They 

produce an efficient distributed FRW solver for VLSI ca- 

pacitance extraction. An approach for handling complex 

floating metals is also presented, which makes the FRW 

solver capable of accurate on-chip capacitor simulation. 
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Figure 7. (a)~(c) Capacitance (with 3 error bars) versus the 

d value for Case 3~5. (d) Runtime and error trends for Case 4. 
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