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Abstract 
With the increasing demands of performance, yield, and 

turn-around time of smart device design, fast and accurate 
three-dimensional (3-D) numerical simulation has 
become indispensable and poses the computational 
challenge to the designers. On the other hand, the Monte 
Carlo (MC) method has the advantages of better 
parallelism, better scalability for very large structures, 
tunable accuracy, etc., and therefore gains more and more 
attentions as an effective computing scheme. In this paper, 
the MC based techniques for 3-D capacitance calculation 
are presented, with focus on the applications in integrated 
circuit design and touchscreen design. The MC based 
approach for partial singular value decomposition (SVO) 
of large matrices is also presented, which could benefit 
various applications of big-data analytics. 

1. Introduction 

Monte Carlo (MC) method is one of "the top 10 
algorithms in the 20th century" [1]. Instead of the random 
process used to investigate a system's behavior, the MC 
method in this paper is referred to as a computing method 
for deterministic or stochastic quantities. For solving 
partial differential equation, a kind of MC method called 
random walk method or Green's function MC method has 
been developed. It has the following advantages if 
compared with deterministic methods: 
• Locality. It allows to obtain the solution at few local 

positions without solving the whole equations. 
• Stability of accuracy. Its accuracy is more stable and 

tunable, as its error is mainly stochastic error. 
• Geometric adaptability. Without geometry discreti­

zation, it reduces memory and avoids preprocessing. 
• Suitability for large problem. Without generation of 

linear equation system, it works for large problem. 
• Natural parallelism, due to independent samplings. 
The drawbacks of the MC method are mainly the 
generality and the computational speed. It relies on the 
stochastic explanation of the original problem's solution. 
So, it is only able to solve limited kind of equations, not 
as general as the finite difference or finite element 
methods. Its runtime is inversely propositional to the 
square of error. So, for the problem where we need the 
whole solutions or higher accuracy the MC method would 
run much slower than the deterministic methods. It is 
commonly agreed that it is most efficient when point 
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values or linear functionals of the solution are needed [2]. 
With the increasing demands for 3-�, large-scale 

simulation during the design of integrated circuit (lC), flat 
panel display (FPO) and other kind of smart devices, the 
deterministic methods are faced by large challenge of 
computation cost and even accuracy. The MC based 
approaches regain the attraction due to the population of 
parallel computing infrastructures. Actually, they have 
become the major solution for some practical problems, 
like the interconnect capacitance field solver for the 
design of vary large scale integrated (VLSI) circuits. 

In this paper, the theory and recent developments of the 
MC based techniques for large-scale simulation and 
computation problems are surveyed. We first present the 
random walk method for calculating electric potential and 
capacitances, and its connection to a Markov random 
process. Then, the extensions for tackling the challenges 
in simulating the touchscreen structures (a special kind of 
FPO) are presented. Lastly, we move forward to a MC 
based matrix decomposition scheme which is applicable 
to large-scale machine learning applications. 

2. The Basics of Monte Carlo method 

The modern MC method is a kind of method which 
utilizes a process of random sampling with the aid of 
computer generated randomness. It was invented for 
estimating quantities in controlled fission and thermos­
nuclear reactions in 1940s [3]. Consider a simple problem 

of calculating an integral: I = fOl fCx)dx. We derive 

I = f.l PC ) [(x) d (1) o x P(x) x, 
where P(x) is a probability density function on interval [0, 
1]. So, I can be interpreted as the statistical mean of the 
random quantity fix)/ P(x) if random variab Ie x fo llows the 
distribution P(x). P(x) can be arbitrary, but a trivial choice 

is the uniform distribution (P(x) == I). So, approximating 
the stochastic mean with the average of N sample values, 

f.l - 1 N 1= 0 fCx)dx � I = NLi=dCxJ , (2) 

where Xi is the i-th uniform random sample on [0, I]. For 
a sufficient large N, I in (2) can attain enough accuracy. 
This is the MC process for calculating an integral. It is 
advantageous over the conventional numerical 
quadratures for high-dimensional integrals. 

The central limit theorem tells us that I is a Gaussian 
random quantity as N approaches to the infinity, since it is 
the average of independent random variables with 



identical distribution. The standard deviation (Std) of this 
Gaussian distribution measures the error of I, which is 
often called I-a error. It can be estimated by the variance 
of sampled values {[(Xi)}, and is thus tunable during the 
MC process. We can monitor the error and terminate the 
computation once it attains a preset accuracy within a 
certain level of confidence. 

Similarly, the MC process applies to the linear algebra 
computations. Take a summation problem as an example. 

5 = L�l ai=L�l[Pi (�)], (3) 

where {pd�l is a set of probability. Choosing a simple 
uniform probability, i.e. Pi == 11m, we have 

S=L�l[�(m·aJ]�S=�·mLJ=laij' (4) 

where ij is the j-th uniform sample among indices from 

I to m. This method for calculating S is the basis of the 
MC method for other linear algebra problems [4, 5]. 

Two major concerns of the MC method is how to make 
each random sample, and how to reduce the number of 
samples N for a given accuracy. Notice in practice that the 
sampling probability function P(x) in (I) and {pd�l in 
(3) can be arbitrary. The techniques of rejection sampling 
and Markov chain Monte Carlo (MCMC) can be used for 
generating samples with complicated distribution [6, 7]. 
As for reducing N, the variance reduction techniques like 
importance sampling (IS) and stratified sampling are 
often used, which construct special P(x) or {pd�l to 
accelerate the convergence of the MC process [7]. 

3. The Monte Carlo based capacitance calculation 

In this section, we first present the theory of the floating 
random walk algorithm for capacitance extraction. Then, 
recent developments and related topics are addressed. 

3. 1 The floating random walk algorithm for the 

capacitance extraction in VLSI design 

With the feature size scaled down to nanometers, the 
signal delay on interconnect wires has dominated the total 
circuit delay of IC. Therefore, modeling the interconnects 
becomes a critical task in the design of digital VLSI 
circuits. The capacitance extraction refers to calculating 
the capacitance parameters in the equivalent RC circuit of 
interconnects, which is the base of accurate circuit 
modeling and simulation. Capacitance relates the electric 
potential and the induced charge of conductors. It depends 
on the 3-D electrostatic field around the considered wire 
segment. So, electrostatic field solver is desirable for 
capacitance extraction, and provides calibration for other 
empirical approaches [7]. The field-solver method can be 
based on deterministic fmite difference, finite element and 
boundary element methods, or the floating random walk 
(FRW) method. 

In 1970s or earlier, the random walk (or MC) method 
had been used for calculating electric potential [8], but 
was not for capacitance extraction until 1992 [9]. The 
random walk method is based on expressing the electric 

potential ¢(r) at point r as an integral of the potential on 
surface S<l) enclosing r: 

¢(r) = ¢S(l) PRW(r, r(1))¢(r(1))ds(1) , (5) 

where PRW(r, rCl)) is called surface Green's function 

and can be regarded as a probability density function. 
Without loss of generality, we first consider a problem 

of calculating ¢(r) within the domain shown in Fig. 1. 
On the domain boundary, the potential is zero except on 
fl' Eq. (5) suggests that ¢(r) is the stochastic mean of 

¢(rCl)), and can be calculated by randomly sampling 

S(1) with probability function PRW. If at the sample point 

¢(rCl)) is unknown, we construct a similar surface S<2) 
enclosing r(1) and sample it. Repeat this until we reach 
a point with known potential, which is an estimate for 
¢(r). This spatial sampling procedure forms a random 
walk (including some hops). With N random walks 
performed, the average of returned electric potentials 
approximates ¢(r). This is the random walk method. 

fl ¢ = 1 

Figure 1. The illustration of random walk method for calculating 

electric potential. 

Based on the problem's geometry, we can define a dual 
problem. Suppose particles are released at point r . . With 
same manners of generating the closed surface S<t), the 
particle randomly hops from its current position to S<iJ. 
The end point r(i) of a hop only depends on its start point 
r(i-1) and is determined by a Markov transition probability 

density function PMy(r(i-l)�;'J)). If we set PMy(r(i-l)�;'J)) 
identical to PRw(r(i-1), Ii)) in the random walk process, the 
particle's trajectory is the same as the spatial sampling 
trajectory in the latter, which is a well-defined Markov 
process. In the dual problem, the probability of a partial 
released at r finally reaching fl: Pr(r) is concerned. Due 
to the property of Markov process, 

Pr(rCi-l)) = ¢sCi) PMT(rCi-l) ---7 r(i))Pr(rCi))dsCl) 
-

,t:. P (rCi-l) rCi))Pr(rCi))dsCl) (6) - ':I's (i) RW , . 
This equation is just the same as that which defines the 
relationship among electric potentials (5), if we replace 

Pr(rCi)) with ¢(rCi)). So, calculating ¢(r) equals to 

calculating Pr(r), which by definition can be obtained 
by a MC process. That means we emulate the random 
walks of particles and count the probability of partials 
finally reaching fl' This equivalence between ¢(r) and 
Pr(r) explains the convergence of the random walk 
method. For the discussion about problem with more 
general boundary conditions, please refer to [10]. 



For calculating the capacitances related to a specified 
conductor j (often called master conductor), a Gaussian 
surface Gj should be constructed to enclose it (see Fig. 2). 
With the Gauss theorem, conductor j's electric charge 

Qj = ¢G F(r)g ¢S(l) w(r, r(1))q(r, r(1))rfJ(r(1))ds(l) ds, (7) 
] 

where F(r) is the dielectric permittivity at point r, q(r, r(1)) 
is the probability density function for sampling 8<1), the 
surface of a transition domain. 9 is a constant, which 
satisfies ¢G F(r)gds = 1. q(r, r(1)) may be different from 

] 
the surface Green's function, and OJ(r, r(l)) is the weight 
value [7]. Thus, Qi can be estimated as the statistical mean 
of sampled values on Gi, which is further the mean of 
sampled electric potentials on 8<1) multiplying the weight 
value. The spatial sampling procedure for calculating the 
potential forms a floating random walk (FRW) including 
a sequence of hops. Usually, each hop is from the center 
of a transition domain to its boundary. With a number of 
such walks, the statistical mean of the weight values for 
the walks terminating at conductor i approximates the 
capacitance Cji between conductors i and j (if ft=i), or the 
self-capacitance Cji of master conductor j. 
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Figure 2. Two examples of random walk in the FRW method 

for capacitance extraction (a 2-D top view). 

Although the surface Green's function for a spherical 
transition domain (as that in Fig. 1) has simple analytical 
expression [11], the cubic transition domain is widely 
adopted because it well fits the IC layout including mostly 
Manhattan shapes. This means larger probability for 
terminating a walk quickly. The sampling probability and 
weigh value for a cubic domain can be numerically pre­
calculated and tabulated, so as to largely accelerate the 
sampling operation. This induces some discretization, but 
its error is tolerable for capacitance extraction. 

The runtime of the FRW method is proportional to the 
product of the number of random walks, the average 
number of hops per walk and the average time for 
performing a hop. The variance reduction techniques can 
reduce the number of walks [7, 12]. The placement of the 
Gaussian surface also affects. For a 3-D IC structure 
including cylindrical through-silicon vias, the treatment 
of the Gaussian surface and the corresponding [S can 
bring lOX speedup [13]. For large structure including 
many conductors, employing an efficient space 
management technique is crucial for reducing the time for 
performing a hop. For structures including only 
Manhattan conductors, a major idea is to maintain a 
candidate list of conductor cuboids for each spatial cell, 

such that for any point in the cell its nearest conductor is 
in the list. Therefore, the inquiry of nearest conductor only 
demands to traverse the candidate list and can be executed 
very quickly. This was recently extended to handle 
general non-Manhattan conductors [14]. 

3.2 Recent developments and related topics 
The touch panel has been combined with FPD to 

largely enhance the interactivity and user experience of 
various customer electronics. Most of these touchscreens 
utilize the capacitive touch sensor (see Fig. 3), because of 
its advantages in durability, reliability and capability. To 
validate the functionality (like Multi-Touch, Force-Touch) 
and sensitivity of the touchscreen, calculating the relevant 
capacitances becomes an important and frequent task 
during the design of high-quality touchscreens. This is 
similar to the capacitance extraction in the design of VLSI 
circuits, but with distinct differences (see Table 1). 

Figure 3. The illustration of capacitive touch panel. 

Table I. The differences between capacitance extraction for 
VLST circuit and capacitance calculation for touchscreen design 

VLSI circuit Touchscreen 
capacitance extraction capacitance calculation 

Conductor 
Mostly Manhattan Generally non-

geometry 
shape, with moderate Manhattan shape, with 

aspect rati 0 very large aspect ratio 

Dielectric 
On-chip dielectric Tn-device dielectrics and 

environment 
insulators; relatively out-device air; arbitrary 

fixed dielectric profile dielectric configuration 

Accuracy Mainly self-capacitance Need accurate coupling 
demand for delay calculation capacitances 

Because there are divergent process technology reCipes 
for the touchscreen, it is desirable to have a unified 
dielectric pre-characterization scheme instead of pre­
calculating the FRW transition tables for each process 
technology [7]. Also note that inclusion of air leads to a 
large range of dielectric permittivities. This prevents the 
existing unified pre-characterization technique [15] from 
being applied. [n [16], we proposed a unified dielectric 
pre-characterization scheme which overcomes these 
difficulties. We also implemented the algorithm on a 
large-scale computer cluster. With algorithm recons­
truction and MPI parallel computing, we achieved 
93X�114X speedup using 120 processors. This makes an 
efficient capacitance simulator for touchscreen design. 

To leverage the tremendous computational power of the 
general-purpose graphics processing units (GPUs), the 
GPU-friendly algorithmic flow and data structure have 
been investigated for the FRW based capacitance 



extraction [17, 18]. The major efforts have been paid to 
minimize the divergence of operations and alleviate the 
bottleneck of global memory of GPUs. Another recent 
advancement is the combination of the FRW scheme and 
a Markov-chain random walk scheme to accelerate the 
capacitance extraction, and handle circuits including 
intellectual-property (IP) protected or geometry-complex 
substructures [19]. The resulted macromodel-aware 
algorithm enhances the capability of the state-of-the-art 
FRW based capacitance solver with negligible overhead. 

Statistical modeling and simulation is required to 
capture the uncertainties in the nanometer manufacturing 
process. For capacitance extraction, the geometric 
variation of interconnect wire is of major concern. 
Although some techniques were proposed for statistical 
capacitance extraction [20, 21], the MC method is still the 
golden standard, and is the only choice for the situation 
where a lot of independent variables are involved. Except 
for capacitance, the calculation of resistance and 
inductance/impedance [22] are also required. The FRW 
method can be applied to resistance calculation, but with 
less advantage over deterministic methods. In contrast, 
MC based impedance extraction is still an open problem. 
Although there is a recent progress on solving the 
telegraph equation [23], applying the MC method to a 
general wave equation is difficult. 

4. The Monte Carlo based large matrix approximation 

Low-rank matrix factorization plays a crucial role in 
data analysis and scientific computing. It accelerates the 
solution of linear equation system, or make a choice of 
model order reduction for the simulation problems in 
electronic design [7, 24]. The optimal rank-k 
approximation of matrix A can be obtained by its SVD: 
A � Ak = Uk�kVr , (8) 
where Uk and V k include the k dominant left and right 
singular vectors respectively, and the diagonal matrix �k 
has the k largest singular values. This approximation has 
the minimal error IIAk - All among all rank-k matrices. 

Recent years have witnessed a boom in "Big Data" 
related research. Large-scale data analytics requires 
machine learning approaches, which often involve matrix 
SVD, or principal component analysis (PCA). Efficiently 
approximating large matrices is of large importance. To 
tackle the challenges caused by the large computational 
cost using traditional matrix methods, the MC based 
techniques have been proposed for these linear algebra 
problems [4, 25-28]. The results show that randomization 
can be a powerful computational resource to develop 
algorithms with improved runtime and stability properties. 

An example scheme of randomized matrix decompo­
sition is shown in Fig. 4 [26, 27]. It uses random sampling 
to identify the subspace capturing the dominant actions of 
matrix A (represented by orthonormal matrix Q). Then, 
standard factorizations are performed on the smaller B, 
which finally make the low-rank factorizations of A. The 

scheme is adaptive to parallel computing environments 
and orders of magnitude faster than traditional methods. 

A 

Figure 4. A scheme of randomized matrix decomposition. 

5. Conclusion 

The Monte Carlo method has diverse usages nowadays, 
due to its unique advantages over deterministic methods. 
It is expected to have more successful applications to 
large-scale simulation and machine learning problems. 
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