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Abstract1 

To perform accurate chip-level thermal simulation, the 
irregular 3D structure including heat sink components is 
considered. Two approaches, i.e. domain decomposition 
and hybrid random walk, are presented to accelerate the 
tasks of calculating entire temperature profile and 
hot-spots temperatures, respectively. They both are much 
faster than existing techniques while keeping good 
accuracy, and suitable for the high-resolution thermal 
simulation for design optimization and verification. 
 
1. Introduction 

The continuous scaling trend of the CMOS technology 
has led to the drastic increase of the number of devices in 
integrated circuit (IC). The heat dissipation has become a 
problem that threatens circuit reliability and performance 
[1]. The chip-level thermal analysis is performed during 
the sign-off stage for performance and reliability 
verification. Accurate and efficient thermal analysis is 
also indispensable for many design-time circuit 
optimizations, where a large number of thermal 
simulations with different power dissipation distributions 
are required. Now, three-dimensional (3D) IC has been 
developed to reduce the interconnect delay and enable the 
heterogeneous integration [2]. The increased power 
density and the low-thermal-conductivity inter-layer 
material in 3D IC cause a more serious problem of heat 
dissipation. This further increases the importance of 
accurate thermal simulation during the IC design stage.  

To address the problem of accurate thermal simulation, 
the whole thermal system, including the die of IC, the 
copper heat spreader attached to the die and the heat sink 
attached to the spreader, should be considered (see Fig. 1). 
Note that the simulation only involving the die will incur 
significant error of temperature [3]. 

Some algorithms have been proposed for chip-level 
thermal analysis, such as the geometric multigrid solver 
[4], Green’s function based fast algorithm [5], and the 
preconditioned conjugate gradient (PCG) algorithm [3]. 
The volume discretization has been employed to transform 
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the problem into a linear equation system, and the 
temperature profile of the whole simulated domain is 
solved. Most of these works only consider a rectangular 
simulation domain, with a simplified boundary 
assumption (often the Dirichlet condition) accounting for 
the heat dissipation effect. When the real pyramid-shape 
model is considered, a large number of unknowns 
involved will cause excessive runtime and memory cost. 

 Sometimes, the entire temperature profile is not 
required. What we really concern is the temperature of 
hot-spots at IC device layer. For this purpose, the random 
walk method is suitable. The random walk algorithms 
have been proposed for power grid simulation [6, 7]. 
Based on the similarity of thermal analysis and power grid 
simulation, the random walk method [6] was applied to the 
problems of thermal via planning [8] and thermal analysis 
[9]. The random walk method has also been successfully 
applied to problem of capacitance extraction [10, 11]. 

 In this paper, two approaches are presented to 
accelerate the chip-level thermal simulation. Firstly, a 
technique based on the domain decomposition method 
(DDM) [12] is briefly introduced. It alleviate the problem 
of simulating entire temperature profile while considering 
the pyramid-shape IC model. Then, a hybrid random walk 
(HRW) algorithm is presented, which is suitable for 
calculating the temperature of some hot-spots. HRW is 
more general for handling complex IC thermal models. 
Both approaches are orders of magnitude faster than 
existing techniques, while preserving good accuracy.  
 
2. Background 

The steady-state thermal analysis involves solving the 
temperature T(x,y,z) from the 3-D Poisson equation: 
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where k is thermal conductivity and p(x,y,z) is the internal 
heat generation density at point (x, y, z). The heat 
generation is due to the device modules, or function blocks 
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Fig. 1. The pyramid-shape IC geometry for thermal simulation: 
(a)  the side view, (b) the details of a IC with two tiers of dies.
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located around the top surface of the silicon die. Eq. (1) 
holds for a homogeneous region. For a problem with 
multiple homogeneous regions, the equation of continuous 
heat flux should be applied at the region interfaces.  

The finite volume method (FVM) is conventionally 
used for 3-D thermal simulation, where the domain is 
discretized into cells and each cell is associated with a 
temperature [1, 3, 4, 8, 9, 12]. Similar to simulating the 
steady-state electric current field with electric resistors, 
we can define and calculate thermal resistor to model the 
heat flow through the interface between any two adjacent 
cells. Fig. 2 illustrates the finite volume discretization of a 
3-D rectangular domain. For two cells with different 
thermal conductivities or different lengths along the 
aligned direction, the thermal resistance connecting them 
can be calculated as the series of resistors. For example, 
the RIz shown in Fig. 2(c) can be calculated with: 
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where hx and hy are edge sizes of cell along x-axis and 
y-axis, respectively. hz1 and hz2 are the heights of the two 
adjacent cells; k1 and k2 are the thermal conductivities. 

The heat source resembles the current source in electric 
circuit. Thus, an equivalent resistor circuit is generated, 
which corresponds to a linear equation system: 
AT = f      ,                                                                     (3) 
where A is a sparse symmetric positive definite matrix, f is 
the vector of current sources, and T is the temperature 
vector. The temperature can be obtained by solving (3). 

There are different boundary conditions for the 
simulation domain. At the bottom surface of heat sink, a 
convective condition should be set, which models the heat 
transfer mechanism at the interface of heat sink and air:  
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where nr  is the out normal direction of the boundary, Tamb 
is the ambient temperature, and h is the convective 
coefficient. The partial derivative in (4) can be 
approximated with finite difference formula. By defining  
Ramb=1/(h⋅hx⋅hy) ,                                                           (5) 
where hx and hy are the edge sizes of cell along x-axis and 

y-axis respectively, the effect of convective boundary is 
modeled with thermal resistors of Ramb. They connect the 
nodes of boundary cells to a virtual node with temperature 
Tamb. For other boundaries of the domain, Neumann 
boundary (adiabatic condition) is usually assumed. It can 
be modeled by the equivalent circuit naturally. 
 
3. The Domain-Decomposition Approach 

DDM is a general method for simulating problems with 
complex geometry or topology, and has been applied to 
circuit simulation problems [13]. We find out that it has 
distinct merit for the thermal simulation considering the 
whole pyramid-shape model. For the thermal model 
shown in Fig. 1, it is nature to divide the whole domain 
into three subdomains representing the chip, heat spreader 
and heat sink respectively. With DDM, the subdomains 
are simulated separately, and therefore two advantages are 
brought. 1). The subdomain often has geometry regularity, 
which enables fast simulating algorithms [3]; 2). Because 
the power distribution and temperature in chip is only 
concerned, simulating the subdomains with different 
discretization resolutions can speed up the computation, 
which is easy to accomplish under the DDM. 

Fig. 3 shows a non-overlapping DDM partition from the 
viewpoint of FVM and circuit equivalence. Taking a top- 
to-bottom iteration order as an example, the subdomains 
are solved in the order of Ω1, Ω2, and Ω3. To start, initial 
temperatures should be assumed on the bottom surfaces of 
Ω1 and Ω2. And, the heat flow across the top surface of Ω2 
and Ω3 derived from the solution of Ω1 and Ω2 
respectively constitute the Neumann boundary conditions 
for solving Ω2 and Ω3. The difference of temperatures on 
interfaces V1 and V2 should be checked to see if the 
iteration has reached a convergence. The convergence rate 
of DDM can be accelerated by a relaxed iterative scheme. 

In [12], the details of the DDM for thermal simulation is 
presented, which assumes each subdomain is of 
rectangular shape and can be solved with the fast Poisson 
solver (FPS) [3] in O(nlogn) time complexity. The 
experiments in [12] show that the DDM converges quickly 
(in 8 or 9 iterations). Compared to the state-of-the-art 
iterative equation solvers [3, 14], the DDM exhibits 10X 
memory saving and 2X or more speedup for larger cases. 

The idea of solving subdomains with different 
discretization resolutions was also verified in [12]. By 
increasing the discretization steps of the subdomains of 
heat spreader and heat sink in turn, the results show that up 
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Fig. 2. The illustration of FVM and thermal resistors. (a) The 
discretization of a homogeneous material. (b) A cell and its six 
thermal resistors. (c) A thermal resistor across material interface. 

Fig. 3 Non-overlapping DDM for the pyramid-shape IC model.
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to 18X speedup is attained with less than 0.5% 
temperature error. Note that a linear interpolation is used 
to convert the quantities across the subdomain interface, 
which guarantees the good accuracy of chip temperatures. 

The domain-decomposition approach enables fast 
thermal simulation with high-resolution chip 
discretization, which is favorable for the analysis and 
optimization of designs with complicated power profiles. 

 
4. The Hybrid Random Walk Approach 
4.1 Random walk method for thermal analysis 

There are mainly two kinds of random walk method: 
the discrete random walk (DRW) method on an existing 
mesh grid, and the floating random walk (FRW) method 
[10, 11]. In the FRW method, the cubic or spherical 
transition domains with variable size are employed, and 
each step of walk is from its center to its boundary. The 
DRW has been applied to the problems of power grid 
analysis and thermal analysis [6-9], which is called 
generic random walk (GRW) method. In a game of GRW, 
a walker starts at a node in the grid, for which the 
voltage/temperature is calculated. The walker then 
randomly visits a neighbor node following the probability 
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where d(i) is the edge degree of node i, and Gij is the 
electric/thermal conductance between node i and its 
neighbor j. At each node, the walker receives a reward of 
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where pj is the current/power injected into current node j. 
The walk terminates if the walker hits a node with known 
voltage/temperature (home node), where the walker 
receives the final reward of the value of voltage or 
temperature. The total amount of money collected by the 
walker is an estimation of the voltage/temperature of the 
starting node. Due to the central limit theorem, the 
calculated node voltage/temperature obeys the normal 
probability distribution, whose variance is inversely 
proportional to the number of walks. This gives a tradeoff 
between runtime and accuracy.  

If the GRW method is applied to the thermal simulation 
with the whole pyramid-shape IC model, the large 
simulation domain will make walks with a large number of 
steps. Also note that Ramb modeling the accurate 
convective boundary is larger than the thermal resistance 
of cells for several orders of magnitude. Therefore, they 
largely affect the computational speed of GRW method. 

Fig. 4 shows a comparison of the GRW and FRW 
method. Clearly, a walk in GRW involves larger number 
of steps than a walk in FRW. However, the FRW method is 
suitable for the Laplace equation [10, 11], while for the 
thermal problem the power item p(x, y, z) in (1) and 

complex boundary conditions bring difficulties to FRW 
method. So, it may be a good idea to combine GRW and 
FRW. In the smaller power-source region of the whole IC 
model, the GRW has to be used. The FRW applies to the 
other heat dissipation regions, which will contribute 
speedup to the overall random walk procedure.   
4.2 Techniques for the hybrid random walk approach 

The idea of hybrid random walk approach is illustrated 
in Fig. 5, where there is a walk starting from the GRW 
region and then behaving in the FRW manner. This hybrid 
random walk scheme avoids the difficulty of FRW for 
handling the power item in the thermal simulation.  

The choice of transition domain affects the efficiency of 
FRW. In our problem, the random walk is performed in the 
pyramid-shape IC geometry, where the silicon die has 
much larger width than its height. The transition domain 
of cuboid shape, rather than the cubic domain for 
capacitance extraction [10], should be used to achieve 
better efficiency. This enables jumping far in lateral 
directions, and reduces the length of walk. To make the 
walk crossing the interface of different thermal materials, 
we also need the cuboid transition domain with two halves 
of different materials. These two kinds of transition 
domains are labeled with “I” and “II” in Fig. 5. Note that 
the FRW transition domain is bounded by the boundaries 
of the geometric model and GRW region. Near these 
boundaries, the FRW will be degraded to the GRW.  

For an arbitrary transition domain where the Laplace 
equation of temperature T(r) holds, we have: 

= ( ) ( )c sS
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Fig. 4. Generic random walks on a mesh grid (a), and floating 
random walks using cubic transition domains (b). 
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Fig. 5. A portion of the pyramid-shape IC model for the 
illustration of the hybrid random walk method. Transition 
domains with cuboid shape are shown.  
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Here, Tc is the temperature at the center of a transition 
domain surrounded by S. Gs(r) is the surface Green’s 
function, which has non-negative value and can be 
regarded as the probability density function (PDF). If we 
discretize S into small panels, with Gs(r) we can calculate 
the transition probabilities to these panels, which makes 
the FRW feasible [10]. More importantly, these transition 
probabilities can be pre-calculated and recalled during the 
FRW procedure, which largely reduces the runtime.  

To further reduce the time of performing a FRW hop, 
we propose to characterize the transition domain with a 
hop-target table (HTT), which records the target boundary 
points in a long random walk process. This HTT is 
pre-calculated with a GRW procedure. While performing 
the FRW, for each hop we randomly pick an integer k from 
[0, M), where M is the length of HTT. Then, the k-th 
element of HTT indicates this hop’s target. The tradeoff 
may be the memory usage of the array for destinations, 
which is affordable in our problem of thermal analysis. 

The Neumann boundary and convective boundary can 
be handled in a more efficient way (otherwise GRW is 
used). Other than the path reflection technique [15], a 
Neumann-specific transition domain can be employed, 
which is the one with a sidewall being Neumann boundary. 
Using the similar pre-characterization procedure 
described, we can characterize the FRW transition 
behavior from the domain’s center to its five 
non-Neumann boundary faces. For the convective 
boundary, more complex technique can be used, which 
considers (5) and guarantees the accuracy. 
4.3 Numerical results 

Two chip structures are used in experiments. Structure 1 
is a four-core 2-D chip, i.e. the Testcase no. 2 in [3]. The 
transverse dimensions of the die, spreader, and sink are 
1cm×1cm, 3cm×3cm and 7cm×7cm. Structure 2 is a chip 
imitating the IBM POWER6 microprocessor. Except that 
the die is of 1.6cm×2cm, its transverse dimensions are the 
same as Structure 1. The power maps of the two chips are 
shown in Fig. 6 (each with total 175W). The heat 
convective coefficient at the surface of heat sink is 8700 
W/(K·m2) [5]. The ambient temperature is set to 20°C. 

From the test structures, with different resolution of 
discretization we obtained six test cases. For them, the 
node temperatures on the power-source layer are 
calculated with different random walk methods (see Table 

I). The hybrid0/2 are the basic HRW method and the one 
with special treatments of Neumann and convective 
boundaries, respectively. We see that the proposed 
techniques largely reduces the length of walk, and 
achieves up to 261X speedup. We have used the results got 
from Matlab “\” to validate the accuracy of HRW. For 
more details and experiments, please refer to [16]. 

Table I. The Average Runtime of Random Walk Methods for 
Calculating the Temperature of a Node (time in unit of second)  
Test
case #node GRW Hybrid random walk 

time #walk #hop hybrid0 hybrid2 #hop Sp*

1-1 5.24e5 49.8 5471 2.34e5 28.65 2.76 8.77e3 18
1-2 4.19e6 199 5522 9.28e5 48.2 4.12 8.13e3 48
1-3 6.55e7 949 6409 5.64e6 57.37 3.64 7.52e4 261
2-1 5.33e5 35.5 3576 2.52e5 32.86 1.26 1.05e4 28
2-2 4.26e6 143 3709 9.90e5 43.71 2.85 1.79e4 50
2-3 6.66e7 762 3281 5.98e6 72.7 5.17 3.12e4 147

 
5. Conclusions 

A domain-decomposition method (DDM) and a hybrid 
random walk (HRW) method are presented for the thermal 
simulation of whole IC model with heat sink components. 
The both approaches are orders of magnitude faster than 
existing techniques, while preserving good accuracy. 
Compared to DDM, the HRW method is more general for 
handling complex IC thermal models. 
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