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Abstract—Three-dimensional integrated circuits (3D ICs) 

make use of the vertical dimension for smaller footprint, higher 
speed, lower power consumption, and better timing performance. 
In 3D ICs, the inter-tier-via (ITV) is a critical enabling technique 
because it forms vertical signal and power paths. Accordingly, it 
is imperative to accurately and efficiently extract the electrostatic 
capacitances of ITVs using field solvers. Unfortunately, the 
cylindrical via shape presents major challenges to most of the 
existing methods. To address this issue, we develop a novel 
floating random walk (FRW) method by rotating the transition 
cube to suit the cylindrical surface and devising a special space 
management technique. Experiments on typical ITV structures 
suggest that the proposed techniques can accelerate the existing 
FRW and boundary element method (BEM) based algorithms by 
up to 20X and 180X, respectively, without loss of accuracy. In 
addition, compared with the naïve square approximation 
approach, our techniques can reduce the error by 10X. Large 
and multi-dielectric structures have been tested to demonstrate 
the versatility of the proposed techniques. 

Keywords—capacitance extraction; floating random walk 
method; monolithic inter-tier via (MIV); three-dimensional (3D) IC; 
through-silicon-via (TSV) 

 I. INTRODUCTION 
Three-dimensional integrated circuits (3D ICs) are 

generally considered to be one of the most promising solutions 
that offer a path beyond Moore’s law. By integrating multiple 
tiers vertically, 3D ICs provide smaller footprint, higher speed, 
lower power consumption, and better timing performance. 
There are in general two types of 3D ICs: die stacking and 
monolithic integration. Die stacking based 3D ICs simply stack 
multiple two-dimensional dies fabricated through conventional 
processes using through-silicon-vias (TSVs) [1-4]. It is fully 
compatible with existing processes, but the TSVs are large in 
size to ensure proper wafer handling and alignment. On the 
other hand, monolithic integration uses monolithic inter-tier 
vias (MIVs) to connect multiple device layers fabricated 
sequentially. It requires innovative fabrication process [5-7], 
but allows the MIV to be much smaller than the TSV. In this 
paper, we use inter-tier-via (ITV) to denote both the TSV and 
the MIV.  

ITVs play a critical role in 3D ICs to deliver signal and 

power vertically, and therefore their parasitics need to be 
accurately modeled. High-precision parasitic extraction for 
ITVs has become a key challenge due to the rising number of 
3D analog effects, narrowed performance margins and time 
windows. Overestimation of ITV parasitics results in excessive 
guardbands, which impacts performance and degrades the 
benefits of the 3D technology. On the other hand, 
underestimation of parasitics causes potential timing failures 
and yield loss.  

Among the parasitics, the ITV coupling capacitance has 
attracted much attention, due to its large impact on timing and 
noise analysis. Most existing works focused on the ITV’s 
electrical model and the extraction of its cylindrical metal-
oxide-semiconductor (MOS) capacitance [1-3]. Few works 
were devoted to the electrostatic coupling capacitances among 
ITVs and horizontal wires, especially in the context of general 
layout structures. In [4], a set of analytical formulas were 
proposed for the coupling capacitance among ITVs and wires. 
It was also revealed there, that the electrostatic capacitance can 
be comparable to the MOS capacitance, and should not be 
ignored. However, the technique was derived from the square-
shape assumption of TSV, which obviously differs from the 
reality and may have large error. And, the analytical technique 
is only applicable to regular TSV placements, whereas its error 
for random TSV placement was shown to reach 20% [4].    
      A more comprehensive approach to capture the parasitic 
capacitance of ITVs is to use field solvers [8-15]. Field solvers 
for capacitance extraction are mainly attributed to two 
categories: the boundary element method (BEM) [13-15] and 
floating random walk (FRW) method [9-10, 12]. Generally 
speaking, BEM runs faster than the FRW method for small- 
and medium-size problems. Yet its accuracy largely depends 
on the quality of boundary discretization and is therefore not 
very stable. On the other hand, FRW method is a 
discretization-free method, and thus enjoys the advantages of 
better scalability for large structures, tunable accuracy, and 
higher parallelism, etc. Unfortunately, none of these methods 
apply to the ITV capacitance extraction directly, mainly due to 
the cylindrical shape of ITV.  

If we employ BEM, we shall first use a polyhedron to well 
approximate the cylinder shape. This may cause a dense panel 
discretization. Taking into account the large dimensions of ITV, 
we can anticipate that such approximation can induce a large 
number of unknowns and large computational cost. On the 
other hand, the existing FRW algorithms for capacitance 
extraction assume that the considered geometries are all 
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rectilinear-shaped [9-10, 12]. This limits their application only 
to the Manhattan geometries of interconnect wires in digital 
circuits. One naïve solution is to approximate the cylindrical 
ITV with square-shape objects, but as we will demonstrate in 
the experiments, the approximation causes large error. 

In this work, we propose a novel method for ITV parasitic 
capacitance extraction considering its cylindrical shape. We 
first evaluate the error brought by the square approximation of 
cylinder with several typical ITV structures. Then, based on the 
FRW algorithm, an approach with rotated transition cubes is 
proposed to accurately model the cylindrical ITVs. A special 
space management technique is also devised to efficiently 
handle general large-scale structures in 3D ICs. Numerical 
experiments validate the accuracy of the proposed techniques, 
which show that we can reduce the error caused by the square-
approximation approach by more than 10X with affordable 
runtime overhead.  Compared with the BEM solvers [13, 14], 
the proposed FRW based method also exhibits several tens 
times speedup and huge memory save, while guaranteeing 
stable accuracy. In addition, experiments have been carried out 
to show the scalability of the proposed method to large 
structures and its feasibility to actual multi-dielectric structures. 

The main contributions of this work are as follows: 
1) To the best of the authors’ knowledge, this is the first field 

solver that can directly handle cylindrical ITVs without any 
geometric approximation. Experiments have verified the 
high accuracy of the proposed method. 

2) It is also the first work handling non-Manhattan geometries 
with the random walk method using cubic transition 
domains. 

3) By utilizing the rotated transition cube and special space 
management techniques, the proposed method inherits the 
advantages of the FRW algorithm for capacitance extraction. 
Its speedup over a simple extension of original FRW method 
is up to 20X. It is also more than 10X faster than fast BEM 
algorithms, while accurately calculating total and coupling 
capacitances and greatly saving the memory cost. 

II. PRELIMINARIES 

A. Modeling of ITVs in 3D ICs 
There are in general two types of 3D ICs: die stacking with 

TSVs and monolithic integration with MIVs. The die stacking 
based 3D ICs can be further divided into different types such as 
face-to-face, face-to-back, etc. The TSVs are mainly fabricated 
with three technologies: TSV-first, TSV-middle and TSV-last. 
Under the TSV-first technology, devices and TSVs are 
fabricated first, and then metal layers are deposited. So, TSVs 
are surrounded by other TSVs laterally, and by wires mostly 
vertically [see Fig. 1(a)]. With the TSV-last technology, TSVs 
are fabricated after metal deposition, which makes them go 
through all the layers from the substrate to the topmost metal 
layer. Therefore, TSVs are surrounded by other TSVs laterally 
and by interconnect wires laterally and vertically [see Fig. 1(b)]. 
Due to some fabrication issue, the size of TSV is much larger 
than that of conventional via. It is of cylinder shape, with 
diameter larger than 1 μm (typically 5 μm). Going through the 
entire substrate, the TSV usually has a large aspect ratio 
(height/diameter, typically 10). 

In Fig. 1, we show the capacitive couplings among TSVs 
and wires. CTT and CTD are the capacitances between two TSVs, 

and between TSV and device, respectively. They involve the 
semiconductor effects in silicon substrate. In previous works, 
e.g. [1-4], the circuit model to capture the coupling among 
TSVs has been proposed. All of them, except [4], paid 
attention to the calculation of the MOS capacitance component 
in CTT and CTD, rather than the electrostatic capacitance 
component and CTW shown in Fig. 1. In [4], an analytical 
approach was proposed to approximately calculate the 
electrostatic capacitances of TSVs, whose results showed that 
the electrostatic capacitance (~32.2fF excluding TSV-to-wire 
coupling) could be as large as half of CMOS (~68.8fF).  

The topology of MIVs and wires in monolithic 3D IC is 
similar to that of TSVs and wires shown in Fig. 1. The 
difference is that MIVs have much smaller size and much 
larger density as well [5-6]. The diameter of MIV is similar to 
that of local via. However, since MIV passes through the 
device layer and inter-layer dielectric (ILD), it has larger aspect 
ratio. Therefore, it is more important to accurately extract the 
MIV’s capacitance than that of local via (sometimes ignored).  

To sum up, we find out that accurately calculating the 
electrostatic capacitances of TSV/MIV in 3D IC is important, 
and very few works have considered it. Furthermore, no one 
considers the 3D cylinder shape of these inter-tier-vias (ITVs) 
while calculating electrostatic capacitances. To evaluate the 
effect of the square approximation [4] on the extracted ITV 
capacitances, we have simulated three typical TSV and MIV 
structures, as listed in Table I. The TSV-first structure is a 
“TSVs with top and bottom neighbors” structure, while TSV-
last is a “TSVs with top, bottom and side neighbors” structure, 
both obtained from [4]. We assume an equivalent single-
dielectric environment in this experiment, as in [4]. And, the 
dielectric permittivity is set to 1. The side view and top view of 
the TSV-last structure are shown in Fig. 2, with detailed 
parameters in Table I. The keep-out-zone distance of TSV is 
set to 0.5 μm. In the MIV structure, a MIV is surrounded by a 
compact hexagon array of MIVs. The wire width equals to 
MIV diameter, and only three parallel wires are above or below 
the MIV array. The simulation has been performed with 
Synopsys Raphael [11]. Square approximation of an ITV is 
obtained by changing its circular cross section to a square with 
same area (i.e., square size / 2a D= π ) 1 . The capacitances 
related to the center ITV are extracted. 

From Table I, we can see that the square approximation 
overestimates the total capacitance by more than 5%. The error 
of coupling capacitances is much larger, often more than 20%. 
This verifies the necessity of modeling the ITV cylinders. 

                                                 
1  We have done more experiments with the ITV cylinder replaced by its 
bounding box or its inscribed square prism. These two square-shape approxi-
mations both cause larger error than that using the same-area squares. 
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B. The Floating Random Walk Method 
The FRW method for calculating electrostatic capacitance 

is originated from expressing the electric potential of a point r 
as an integral of the potential on surface S enclosing r [9, 12]: 

(1) (1) (1)( ) ( , ) ( )d
S

Pφ φ= ∫r r r r r ,                                                   (1) 

where P(r, r(1)) is called surface Green’s function. The domain 
enclosed by S is often called the transition domain. P(r, r(1)) is 
non-negative for any point r(1) on S, and can be regarded as the 
probability density function (PDF) for selecting a random point 
on S. Therefore, φ(r) is the statistical mean of φ(r(1)), and can 
be calculated with a Monte Carlo (MC) procedure.  

To calculate the capacitances related to master conductor i, 
a Gaussian surface Gi is constructed to enclose it (see Fig. 3). 
According to the Gauss theorem, the charge of conductor i  

(1)

(1) (1) (1) (1)( ) ( , ) ( , ) ( )d d
i

i G S
Q F qω φ= ∫ ∫r r r r r r r r ,                       (2) 

where F(r) is the dielectric permittivity at point r, q(r, r(1)) is 
the PDF for sampling on S(1) which may be different from  P(r, 
r(1)), and ω(r, r(1)) is the weight value [9]. Thus, Qi can be 
estimated as the statistical mean of sampled values on Gi, 
which is further the mean of sampled potentials on S(1) 
multiplying the weight value. If the sampled potential is 
unknown, the construction of transition domain and the spatial 
sampling procedure will repeat until a point with known 
potential is obtained (e.g. on conductor surface). This forms a 
floating random walk (FRW) including a sequence of hops (see 

Fig. 3). Each hop is from the center of a transition domain to its 
boundary. With a number of such walks, the statistical mean of 
the weight values for the walks terminating at conductor j 
approximates the capacitance Cij between conductors i and j (if 
j≠i), or the total capacitance Cii of master conductor i. 

Although the surface Green’s function for a spherical 
transition domain has simple analytical expression, the cubic 
transition domain is widely adopted because it well fits the 
Manhattan-shaped interconnects in VLSI circuit [9]. This 
means larger probability for terminating a walk earlier. The 
sampling probability and weigh value for a cube domain can be 
pre-calculated and tabulated, so as to accelerate the sampling 
operation. Another technique is the space management [9, 10], 
which largely facilitates finding the nearest conductor for 
constructing the transition cube, especially for large structure. 

The total runtime of the FRW method is roughly: 
total walk hop hopT N N T= ⋅ ⋅  ,                                                            (3) 

where Nwalk is the number of random walks/paths, Nhop is the 
average number of hops per walk, and Thop is the average 
computing time for a hop. The variance reduction techniques in 
[9] contributes to the reduction of Nwalk, while suitable 
transition domains and efficient space management approach 
are crucial to the reduction of Nhop and Thop, respectively. 

III. FRW BASED TECHNIQUES FOR EXTRACTING THE 
CAPACITANCES OF STRUCTURE WITH CYLINDRICAL ITVS 
In this section, we first present an extension of the FRW 

method to handle the cylindrical ITVs. Then, the technique 
which rotates the Manhattan transition cubes to reduce the 
number of hops is proposed. Finally, the problem of 
accelerating each hop for structures with a large number of 
ITVs is considered, followed by algorithm description and 
more discussions. 

A. Walk with Manhattan Transition Cubes 
Since the FRW method has very high efficiency to handle 

Manhattan geometries, a straightforward idea is still using 
“Manhattan” transition cubes but treating the ITV cylinder 
exactly. Here, “Manhattan” refers to a shape with each surface 
parallel to one of the xoy, yoz, and zox axis planes. We call this 
FRW-1 method, which is a simple extension of the original 
FRW method.  

For each hop of random walk, a maximum transition cube 
which does not intersect any conductor is needed. As in 
existing works, with the space management technique it is easy 
to find the nearest Manhattan conductor block. The ∞-norm 
distance between the current point of walk and the nearest 
block is the half edge size (HES) of a transition cube. However, 
this cube may intersect the cylinders and becomes invalid. To 
avoid this, we can further check all cylinders one by one, and 
shrink the cube once it crosses a cylinder. After that, we obtain 
the transition cube for performing a FRW hop. 

Below, we show how to calculate the size of the valid 
transition cube while taking an ITV cylinder as the obstacle. 
Without loss of generality, we assume the cylinder’s center is 
at (0, 0, 0), its diameter and height are D and h respectively. 
The current position if walk is (x, y, z). A vertical distance and 
a horizontal distance are calculated separately. And, the larger 
one of them is the HES of the Manhattan transition cube.  

Firstly, it is easy to see that the vertical distance is  Fig. 3. Two examples of random walk in the FRW method for capacitance
extraction (a 2-D top view). 

Gaussian surface 

 

 

  master   

 

Fig. 2. The simulated TSV-last structure: (a) side view, (b) top view. 
(a)                                                    (b) 
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TABLE I.CAPACITANCE RESULTS FROM THE REAL CYLINDER MODEL AND AN 
APPROXIMATE SQUARE-SHAPE MODEL FOR THREE ITV STRUCTURES. 

Structure 
Dimensions(μm) Ctotal  

(aF) 
Err. 
Ctotal 
(%) 

Error of  
Ccouple (%) TSV/MIV Wire 

D h s w t Cylinder Square min max avg*

TSV-first 5 50 5 0.2 0.36 3740 3962 5.9 -20 21 6.3
TSV-last 5 50 5 0.2 0.36 3866 4065 5.2 -38 71 13

MIV 0.07 0.25 0.07 0.07 0.14 14.7 15.8 7.5 -1.6 9.1 4.8
* The average of the absolute values. 
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2vd z h= − .                                                                            (4) 
To calculate the horizontal distance we look at the 2D top view 
of a cylinder and a cube (i.e. a circle and a square). Two 
situations are shown in Fig. 4(a)~(b). If −D/2 ≤ |x|−|y| ≤ D/2, as 
in Fig. 4 (a), only a corner of the square touches the circle. The 
HES of the square, the horizontal distance d fulfills:  

2 2 2( ) ( ) / 4x d y d D− + − = ,                                                    (5) 
whose meaningful solution is:  

2 2( / 2 ( x ) ) / 2d x y D y= + − − − .                                     (6) 
Otherwise, i.e. the situation shown in Fig. 4(b), the square 
touches the circle at an inner point of edge. In this case, 

max( , ) / 2d x y D= − .                                                            (7) 
Combining (6) and (7), we get the horizontal distance dh1: 

1 2 2

max( , ) / 2 ,                         / 2

( / 2 ( x ) ) / 2 ,   / 2
h

x y D x y D
d

x y D y x y D

⎧ − − >⎪= ⎨
+ − − − − ≤⎪⎩

,     (8) 

and  
1 1max( , )v hd d d=                                                                      (9) 

is the HES of the transition cube considering a specific 
cylindrical ITV. 

In Fig. 4(a)~(b), we use green shadow to indicate the 
contact between the cylinder and the Manhattan transition cube. 
Its size is so small, if comparing with that in Fig. 3. Therefore, 
the random walk using Manhattan transition cube has less 
probability to terminate quickly, and is thus inefficient. 

B. Walk with Rotated Transition Cubes 
The FRW-1 method can be improved by allowing the 

transition cube to rotate in the xoy plane. This brings better 
touch to the cylinder [see Fig. 4(c)~(d)]. It increases the 
probability of terminating a walk, and reduces the number of 
hops. With this strategy, the horizontal distance or the HES of 
the transition cube can be: 

2 2
2 / 2hd x y D= + −  ,                                                          (10) 

which is not less than dh1 in (8). However, the rotated transition 
cube may intersect other conductor, which should be avoided. 

By traversing all the cylinders one by one and repeatedly 
calculating with (9), we get the final (also the smallest) 
Manhattan transition cube for performing a FRW hop. Suppose 
the final cube’s size is limited by cylinder A. During this course, 
we can also get the second smallest transition cube which only 
intersects A. If the rotated transition cube with HES calculated 
with (10) is inside the second smallest cube, it should be 
accepted as a better transition domain (see Fig. 5). Otherwise, 
we still use the Manhattan transition cube. 

A δ-touching criterion can be used to terminate a walk 
close to an ITV cylinder. That is, if the distance of the walking 
point is no more than δ⋅D/2 (δ is a small quantity), we regard 

that the walk has reached the cylinder (see Fig. 5). If the 
rotated transition cube is used, this can be applied more 
efficiently. We can calculate the largest distance from the 
cube’s touching face to the cylinder. If it is no more than δ⋅D/2 
(equivalently dh2 ≤ / 2 (2 )D ⋅ δ + δ ), any hop to that face makes 
the walk terminated, which has a fixed 1/6 probability. Now, 
we get a method with rotated transition cubes (called FRW-2). 

In the above discussion, we traverse all cylindrical ITVs in 
each hop. If there are many ITVs in the extracted structure, Thop 
will be very large, which greatly harms the algorithm’s runtime. 

C. Reduce the Time for Each Hop 
To reduce Thop for the situation where a large number of 

cylindrical ITVs are involved, we consider the space 
management technique. Firstly, we can insert each ITV’s 
Manhattan bounding box into the space management structure 
[9]. This does not induce any modification of the existing 
approach. Therefore, we can easily find the nearest block from 
current walking point. This block is either a regular conductor 
or an ITV’s bounding box. If it’s the former, the transition cube 
is constructed normally. For the latter case, we have to consider 
the ITV cylinder and perform further computation. 

When the nearest block is an ITV’s bounding box, we may 
be able to find a larger transition domain touching the ITV’s 
cylinder. According to (9) and (10), we can construct two 
transition cubes touching the ITV with edge sizes L1 and L2 
respectively. Obviously, L2 ≥ L1. However, the both may not be 
safe (may intersect other conductor). To ensure the safety, we 
can find the second nearest conductor block and construct a 
Manhattan transition cube (with size L3) touching it. It does not 
matter if the block is an ITV’s bounding box. We now choose 
one from the three transition cubes. If L3 < L1, we have to 
choose the third transition cube to avoid crossing any 
conductor [see Fig. 6(a)]. Otherwise, we judge the condition 

2 3( cos( ) sin( ) )L Lθ θ+ ≤ , where θ is the rotation angle of the 
rotated transition cube. If it’s true, we can choose the second 
transition cube which is inside the third one and is safe [see Fig. 
6(b)]. If the condition does not stand, the rotated transition 

Fig. 4. 2D topologies of a cylindrical ITV and a Manhattan transition cube:
(a), (b), or a rotated transition cube: (c), (d).

(a)                         (b)                         (c)                          (d) 
Gaussian surface 

the second smallest cube 

safe Manhattan transition cube 

rotated transition cube 

Fig. 5. The rotated transition cube is a better choice. 

A δ⋅D/2
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cube L3

Fig. 6. Construct transition domain according to the nearest cylinder and
the second nearest block. 
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cube cannot be accepted. We have to choose the safe first 
transition cube with size L1. This situation is shown in Fig. 6(c). 
Note that, if the chosen cube’s size is zero, the current point 
must be on the cylindrical surface and we terminate the walk. 

The left problem is how to find the second nearest block 
without traversing the cylindrical ITVs one by one. We can 
define each ITV’s neighbor region by expanding distance dnb 
based on its bounding box (see Fig. 7). In the initialization of 
space management [10], we treat ITV’s neighbor region as a 
special spatial cell and generate a candidate list containing the 
possible nearest blocks from any points in it. The only 
difference is that the ITV itself is not inserted into the 
candidate list. During the hop, when current point’s nearest 
block is an ITV’s bounding box, we first check if it is in the 
ITV’s neighbor region. If it is (see point P1 in Fig. 7), we can 
easily get the second nearest block with a pre-calculated 
candidate list. However, if the point is out of the neighbor 
region (see P2 in Fig. 7) the second nearest block cannot be 
found. In this situation, we just use the Manhattan transition 
cube restricted by the ITV’s bounding box, whose HES is 
larger than dnb. By setting a suitably large dnb, it is guaranteed 
that we either get the second nearest block efficiently or use a 
large enough transition cube. This largely reduces the time of 
performing a hop while handling the structure with a large 
number of cylindrical ITVs. 

D. Algorithm Flow and Discussions 
With the technique in last subsection, we obtain method 

FRW-3 for extracting the capacitances for a structure with 
cylindrical ITVs. With this method, the flow of performing a 
FRW walk can be described as the following Algorithm 1. 
Algorithm 1: A FRW walk in the FRW-3 method (startPoint P)
1. B := the nearest conductor block (or ITV bounding box)

from P; 
2. d := d(P, B);   IsRotated := false; 
3. If B isn’t an ITV’s bounding box then goto Step 16; 

Endif 
4. Use V to denote the cylindrical ITV inside B; 
5. If d > ITV’s dnb then goto Step 16; Endif 
6. d := d1(P, V);                  // calculate with (9) in FRW-1. 
7. S := d(P, the nearest block found from V’s candidate list);
8. If S < d then 
9.     d :=  S;   goto Step 16; 
10. Endif 
11. L := dh2(P, V);               // calculate with (10). 
12. Get θ, which is the rotation angle of the transition cube; 
13. If d < L and (|cos(θ)|+|sin(θ)|)L < S then 
14.     d := L;  IsRotated := true; 
15. Endif 
16. If d < a small tolerance then 

17.    This walk terminates at conductor B or V;  return.
18. Endif 
19. Use d as the HES to construct a Manhattan transition 

cube; 
20. If IsRotated, then rotate the transition cube by θ ; Endif 
21. P := a randomly selected point on the transition cube; 
22. goto Step 1;
The function d( , ) in Steps 2 and 7 calculates the ∞-norm 
distance between a point and a 3D Manhattan block. Steps 11 
and 12 determine a rotated transition cube. 

A whole description of FRW-3 is given as Algorithm 2. 
Algorithm 2: The FRW-3 algorithm for structure with 
cylindrical ITVs 
1. Load pre-computed transition probabilities and weight 

values; 
2. Construct the Gaussian surface enclosing master 

conductor i; 
3. Cij :=0, ∀j;   npath := 0; 
4. Repeat 
5.     npath: = npath+1; 
6. Pick a point r on the Gaussian surface, and generate a 

cubic transition domain S centered at r ; pick a point r(1)

on the surface of S with the transition probabilities and 
then calculate the weight value ω with the pre-computed 
data; 

7. Perform a walk starting from r(1);    //Algorithm 1 
8. Cij := Cij +ω ;            //the walk terminates at conductor j
9. Until the convergence criterion is met 
10.Cij := Cij /npath,  ∀j.

In the FRW-3 algorithm, no assumption of the number, size, 
and positions of ITVs is made. We only assume that the 
Manhattan bounding box of an ITV does not intersect other 
conductor block or ITV’s bounding box. In realistic layouts, 
this is obviously satisfied.  

The proposed techniques hardly degrade the accuracy of the 
original FRW algorithm. Only the δ-touching criterion in 
Section III.B introduces some error. In practice, we set δ to 
5×10-4, which keeps the induced error in the order of 0.1% [16]. 

As described in Section III.C and Algorithm 1, the FRW-3 
method performs extra computation for generating rotated 
transition cube only when the current point is close to an ITV. 
The space management is also a small modification of the 
existing techniques [9, 10]. Therefore, the increase of 
computational cost should be limited as compared with the 
original FRW algorithm which only handles Manhattan objects. 

 Because the cubic transition domains are still used, the 
proposed method can be easily extended to the problem with 
multi-layered dielectrics. It can be accomplished by plugging in 
the pre-characterized multi-dielectric GFTs and WVTs as [9].  

IV. NUMERICAL RESULTS 
We have implemented the FRW method and the proposed 

techniques in C++. The space management technique in 
Section III.C is implemented based on an Octree structure and 
the pruning skills in [10], and dnb for the ITV’s neighbor region 
is set to the radius of ITV. Several 3D-IC structures with TSVs 
or MIVs are tested. We first use several small and medium test 
cases to validate the accuracy and efficiency of the proposed 
method. Raphael [11] which employs FDM with dense 
discretization is used to validate the accuracy, while RWCap [9, 
10] which only handles Manhattan geometries is used for 
efficiency comparison. Then, large cases and multi-dielectric 

neighbor region P1 

P2 

second nearest block 

dnb 

Fig. 7. A cylindrical ITV’s neighbor region. 
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cases are used to validate the scalability and versatility of the 
proposed techniques, respectively. The results of two fast BEM 
solvers, i.e. FastCap [13] and QBEM [14], are also presented 
for comparison.  

Experiments are carried out on a Linux server with Intel 
Xeon E5-2650 2.0 GHz CPU. All results are obtained from the 
execution of serial computing. 

A. Results for Small and Medium Cases 
Four structures are tested, and three of them are those 

described in Table I. The last one “TSV-first2” is the same as 
“TSV-first”, except that TSVs No. 1, 3, 7, 9 and several 
horizontal wires are removed (see Fig. 2). For each case, the 
total capacitance of the center ITV is first extracted. The results 
obtained with Raphael, RWCap and our FRW method (setting 
1-σ error to be 0.5% of the mean value) are listed in Table II. 
From it we see that the discrepancy between the result of our 
method and the Raphael’s result got from accurately modeling 
cylinder shape is within 1.5%. The result of RWCap is close 
to the Raphael’s result based on the square approximation, 
which causes from 5.1% to 7.5% error on the total 
capacitance of ITV. While comparing the runtime of RWCap 
and our method, we see that the latter is 3X~6X slower. 

To evaluate the accuracy of the proposed method for 
extracting coupling capacitance, we present a result in Table III. 
For the TSV structures, it is the coupling capacitance between 
the center TSV and a horizontal wire (the red one in Fig. 2), 
while for the MIV structure it is the coupling between the 
center MIV and a neighbor MIV. When running the FRW 
algorithms, we set the horizontal wire as the master conductor 
and the 1-σ error of the coupling capacitance to 1% of its mean 
value for termination. From Table III, we can see the large 
error brought by the square-shape approximation (over 20% 
error in the TSV cases, and 8.7% error in the MIV case). And, 
the proposed method exhibits high accuracy as compared with 
Raphael’s result with cylinder model. For the runtime, the 
proposed method only increases 30% computing time of that 
consumed by RWCap for the TSV structures. Because there are 
much fewer TSVs than the horizontal wires, the runtime 
overhead of the proposed method is moderate. 

FastCap and QBEM are also run with the ITV and the 
horizontal wire set as the master conductor, respectively. Their 
computational results are listed in Table IV and Table V. To 
make the computation feasible, each cylinder is approximated 
by a regular 16-side prism and the cylindrical surface is 

replaced by 16 rectangles. The approximation with regular 32-
side prisms has also been tried, which produces similar results. 
In the tables, “Err” denotes the error measured based on 
Raphael’s result. We can see that FastCap has good accuracy 
on the total capacitance, but is quite inaccurate on the TSV 
related coupling capacitance (see Table V). Note in these cases, 
there are TSVs with large dimensions and a number of 
horizontal wires. So, the panel discretization employed in 
FastCap may not dense enough for producing accurate 
coupling capacitance. We have tried denser discretization, but 
FastCap broke down due to its limitation of 2GB memory 
usage. On the other hand, QBEM employs an automatic 
boundary discretization and is able to extract the total and 
coupling capacitances to certain accuracy. The error of 
QBEM’s result may be due to the 16-side prism approximation 
and the imperfect quality of boundary discretization mesh.  

From Table IV and Table V, we can see that the proposed 
FRW algorithm consumes comparable or even more time than 
the fast BEM solvers while extracting the capacitance of the 
small MIV case (including only 13 conductors). However, for 
the TSV cases, our algorithm is more than 10X faster than the 
latter while extracting the coupling capacitance accurately. The 
speedup ratio in the total-capacitance extraction is less, but is 
still about 6X and 30X compared to FastCap and QBEM 
respectively. Generally, the runtime speedup of our method 
increases with increasing size of test case.   

For the test cases with the single dielectric assumption, the 
memory cost of our FRW algorithm is no more than 1MB. It is 
negligible if compared with the memory needed by the BEM 
solvers (see Tables IV and V).  

TABLE IV. THE COMPARISION OF THE FAST BEM SOLVERS AND OUR METHOD FOR THE TOTAL-CAPACITANCE EXTRACTION. 

Case FastCap QBEM Proposed FRW Alg. 
Ctot(aF) Err(%) #panel Time(s) Mem. Ctot(aF) Err(%) #panel Time(s) Mem. Ctot(aF) Err(%) Time(s) Sp1* Sp2* Mem.

TSV-first 3710 -0.8 190K 67.3 1.8GB 3603 -3.7 118K 402 7.6GB 3778 1.0 13.4 5.0 30 ~1MB
TSV-last 3736 -3.4 197K 79.0 1.9GB 3708 -4.1 118K 404 7.7GB 3908 1.1 12.7 6.2 32 ~1MB

MIV 14.7 0.0 40K 8.43 407MB 14.33 -2.5 6.5K 1.58 48MB 14.9 1.4 1.88 4.5 <1 <1MB
TSV-first2 3691 -0.7 117K 50.1 1.1GB 3547 -4.6 82K 271 5.3GB 3776 1.5 15.5 3.2 17 ~1MB
*Sp1 and Sp2 are the speedup ratios to FastCap and QBEM, respectively. 

TABLE V. THE COMPARISION OF THE FAST BEM SOLVERS AND OUR METHOD FOR THE COUPLING-CAPACITANCE EXTRACTION. 

Case FastCap QBEM Proposed FRW Alg. 
Cc(aF) Err(%) #panel Time(s) Mem. Cc(aF) Err(%) #panel Time(s) Mem. Cc(aF) Err(%) Time(s) Sp1* Sp2* Mem.

TSV-first 64.9 30.1 190K 66.8 1.8GB 48.0 -3.8 109K 298 5.9GB 50.3 0.8 4.51 15 66 ~1MB
TSV-last 64.5 33.8 197K 79.1 1.9GB 46.1 -4.4 110K 299 6.0GB 48.1 -0.2 5.43 15 55 ~1MB

MIV 2.11 2.4 40K 8.23 407MB 2.06 0.0 6.5K 1.58 48MB 2.1 1.9 8.01 1.0 <1 <1MB
TSV-first2 65.1 30.3 117K 51.2 1.1GB 47.9 -4.2 85K 192 4.2GB 49.6 -0.8 5.14 10 37 ~1MB
*Sp1 and Sp2 are the speedup ratios to FastCap and QBEM, respectively. 

TABLE II. THE RESULTS OBTAINED FROM EXTRACTING AN ITV’S TOTAL 
CAPACITANCE (IN UNIT OF AF). 

Case Raphael RWCap Proposed FRW Alg.
cylinder square Err(%) Ctot Time(s) Ctot Err(%) Time(s)

TSV-first 3740 3962 5.9 3930 2.06 3778 1.0 13.4 
TSV-last 3866 4065 5.1 4056 2.01 3908 1.1 12.7 

MIV 14.7 15.8 7.5 15.6 0.61 14.9 1.4 1.88 
TSV-first2 3718 3939 5.9 3916 2.58 3776 1.5 15.5 

TABLE III. THE RESULTS OBTAINED FROM EXTRACTING AN ITV RELATED 
COUPLING CAPACITANCE (IN UNIT OF AF). 

Case Raphael RWCap Proposed FRW Alg.
cylinder square Err(%) Cc Time(s) Cc Err(%) Time(s)

TSV-first 49.9 60.2 20.6 59.6 3.5 50.3 0.8 4.51 
TSV-last 48.2 58.6 21.6 58.2 4.2 48.1 -0.2 5.43 

MIV 2.06 2.24 8.7 2.26 2.6 2.1 1.9 8.01 
TSV-first2 50 60.4 20.8 60.0 3.9 49.6 -0.8 5.14 
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B. Results for Large Cases 
To test the proposed FRW based techniques for large-scale 

structures, four large cases with more ITVs are constructed: 
• viafirst100: a random placement of 100 TSVs of diameter 

4μm and height 40μm, plus a top and bottom layers of 
parallel wires. The wire dimensions follow those in Case 
TSV-first; the spacing between any two TSVs is kept to be 
larger than 4μm. 

• viafirst400: the structure is similar to that of viafirst100, 
except that the random TSV placement includes 400 TSVs. 

• MIV144: a regular layout of transistor-level monolithic 3D 
IC, with 144 MIVs (see Fig. 8). The dimensions of MIV and 
wires are the same as those in Case MIV. There are parallel 
wires in the very top and bottom metal layers. 

• MIV576: formed by duplicating case MIV144 for four times. 
For these large cases with at least 100 cylindrical ITVs and 

350 wires, it becomes infeasible to simulate them with Raphael. 
The FastCap program [13] has a limitation of 2GB memory 
usage, and is not able to simulate them either.  

For each case, we set a net of ITV as the master conductor 
and extract the capacitances (a MIV net is outlined in Fig. 8). 
The results of QBEM and our FRW method are given in Table 
VI, where QBEM’s results for the two largest cases are not 
available due to the issue of memory overflow. From Table VI 
we can see that the proposed method can be up to 180X faster 
than QBEM, while the capacitance results of both methods are 
comparable.  

The proposed method (FRW-3) is also compared with the 
simple extension of the original FRW using Manhattan 
transition cube (FRW-1) and the algorithm without the 
proposed space management technique (FRW-2). Their results 
are listed in Table VII. Comparing the average numbers of 
hops per walk (Nhop) in FRW-1 and FRW-2, we see that the 
rotated transition cube can reduce the hop number by more 
than 2X. And, FRW-3 is much faster than FRW-2, because 

with the space management Thop can be largely reduced. The 
speedup ratio of FRW-3 over the simple extension of the 
original FRW reaches 20X for the largest structure. 

We have also extracted the capacitances of a wire net. The 
results reveal the similar speedup of FRW-3 over FRW-1. It 
should be pointed out that the runtime for extracting a wire’s 
capacitances can be much less than that for extracting the 
TSV’s capacitances. It is due to two reasons: 1) the electric 
field is much uniform around a wire than that around a big 
TSV, and thus Nwalk in FRW is much fewer in the former 
situation; 2) the FRW walk in the former situation seldom 
encounters the cylinder TSV, and thus can be performed faster. 

C. Results for Multi-Dielectric Cases 
For the test cases with TSVs, we assume there are ILDs 

with relative permittivities of 3.7 and 4.2. For the cases with 
MIVs, the ILD permittivities are set to 2.6 and 5.0. With the 
permittivity of silicon set to 11.9, we get the multi-dielectric 
counterparts for the test cases. Here, TSV’s liner is ignored, 
because it is very thin and can be well modeled with the 
equivalent dielectric formula in [4]. With the TechGFT 
program [9], we have built the GFTs and WVTs for the multi-
dielectric structures, which are needed by the FRW algorithms. 
The results of Raphael, QBEM and our method are listed in 
Table VIII. Due to the memory issue, FastCap breaks down for 
these multi-dielectric cases. Similarly, the results of Raphael 
and QBEM are also not available for some larger cases. Due to 
the quasi-multiple medium approach, we notice that QBEM is 
more suitable for multi-dielectric structures than FastCap [14]. 

The results in Table VIII verify the accuracy of our method 
again. The increase of memory used by the FRW method is due 
to the multi-dielectric GFTs and WVTs. The speedup ratio of 
proposed method to QBEM is up to 61X. Different versions of 
the FRW algorithms for cylindrical ITVs have also been 
compared. As the results in Table VII for single-dielectric 
cases, we see similar acceleration of the proposed techniques 
for the multi-dielectric cases (e.g. the largest speedup of 19.3X 
for the largest case).  

V. CONCLUSIONS 
To tackle the challenge of accurate parasitic extraction 

brought by high-density ITVs (TSVs and MIVs) in 3D ICs, 
efficient techniques based on the floating random walk method 
are proposed to calculate the electrostatic capacitances among 
cylindrical ITVs and wires. The proposed method is accurate 
and versatile, and shows advantages over the fast capacitance 
solvers based on boundary element method. The collaboration 
of this work and the ITV model considering semiconductor 
effect could be explored in the future. 

Fig. 8. The structure of MIV144 case: (a) side view, (b) top view of a small
part of layout with 8 MIVs (the parallel wires in the very top and bottom
layers are not drawn). 

(a)                                                    (b)      

M2 

M1 

Silicon 

M2 

M1 
a MIV net 

TABLE VI. THE RESULTS OF QBEM AND THE PROPOSED FRW METHOD FOR 
EXTRACTING LARGE CASES. 

Case QBEM Proposed FRW Alg.
Ctot(fF) Dis.(%) #panel Mem. Time(s) Ctot(fF) Mem. Time(s) Sp.

MIV144 0.509 -5.9 27K 549MB 25 0.541 1MB 1.4 18
MIV576 0.515 -5.0 78K 5.2GB 270 0.542 3MB 1.5 180

Viafirst100 -- -- -- -- -- 3.03 7MB 35.3 --
Viafirst400 -- -- -- -- -- 3.04 29MB 35.0 --

TABLE VII. THE RESULTS OF FRW ALGORITHMS FOR FOUR ITV 
STRUCTURES (TIME IN UNIT OF SECOND). 

Case FRW-1 FRW-2 FRW-3 
Nwalk Nhop Time Nwalk Nhop Time Nwalk Nhop Time Sp1* Sp2*

MIV144 148K 13.0 3.2 149K 10.8 2.7 152K 11.2 1.4 2.3 1.9
MIV576 149K 13.0 11.4 147K 10.8 9.4 152K 11.2 1.5 7.7 6.4

Viafirst100 6.3M 36.0 231 6.2M 13.3 96.0 6.2M 11.5 35.3 6.5 2.7
Viafirst400 6.1M 36.0 710 6.1M 13.2 279 6.2M 11.5 35.0 20 8.0

*Sp1 and Sp2 are the speedup ratios to FRW-1 and FRW-2, respectively.

TABLE VIII. THE RESULTS OF RAPHAEL, QBEM AND OUR FRW METHOD 
FOR THE MULTI-DIELECTRIC STRUCTURES (CAPACITANCE IN UNIT OF FF). 

Case Raphael QBEM Proposed FRW Alg. 
Cap. Cap. Mem. Time(s) Cap. Err(%) Mem. Time(s) Sp.

TSV-first 33.4 32.56 11GB 534 33.9 1.5 22MB 28.5 19
TSV-last 32.9 30.96 5.2GB 188 33.2 0.9 22MB 32.7 5.9

MIV 0.146 0.146 581MB 18.4 0.148 1.4 22MB 2.53 7.3
TSV-first2 32.9 31.88 8.8GB 400 33.5 1.9 22MB 48.0 8.3
MIV144 -- 0.276 856MB 35.9 0.292 -- 23MB 6.31 5.7
MIV576 -- 0.29 6.7GB 344 0.291 -- 25MB 5.67 61

Viafirst100 -- -- -- -- 24.7 -- 28MB 112 -- 
Viafirst400 -- -- -- -- 25.2 -- 51MB 71.9 -- 
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