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ABSTRACT
Due to the advantages on scalability and reliability, the floating
random walk (FRW) algorithm has been widely adopted for calcu-
lating the capacitances among three-dimensional (3-D) conductors.
This is evidenced by the industrial practice of interconnect capaci-
tance extraction during the design of high-performance very large-
scale integrated (VLSI) circuits. In this work, the FRW algorithm
is enhanced through the distributed parallel computing. With an
efficient and adaptive task allocation scheme, the communication
among different computer nodes is largely reduced. A distributed
algorithm for accelerating the space management is also proposed.
They have been implemented with Message Passing Interface (MPI)
and applied to the high-precision capacitance simulation for touch-
screen design and the interconnect capacitance extraction of VLSI
circuits. Experiments on a computer cluster show that the proposed
techniques achieve up to 114X speedup while using 120 cores, and
build up the space management structure for a VLSI case includ-
ing two million conductor blocks in just 22 seconds (37X parallel
speedup on 60 cores).
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1 INTRODUCTION
Capacitance extraction and simulation is a fundamental topic of
computer-aided design (CAD) [4, 11]. For accurate validation of the
delay, signal integrity, and other performance metrics, the intercon-
nect capacitances should be accurately extracted while designing
nanometer integrated circuits. Another relevant scenario is during
the design of touchscreen. For validating its functionality, simu-
lating the capacitances of the touch sensor structures becomes an
important and frequent task. The geometry complexity in touch-
screen design and high-accuracy demand for coupling capacitance
pose a challenge to the existing capacitance simulation techniques
[9].
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High-precision capacitance simulation needs three-dimensional
(3-D) field-solver methods. They can be classified into the following
categories [11]: domain descretization method, including the finite
difference methods (FDM) and the finite element methods (FEM),
boundary element method, and the floating random work (FRW)
method [1, 3, 7, 12]. The FRW method is more stable in accuracy
and scalable to very large case, due to its nature of a discretization-
free method. And as it is based on the Monte Carlo method, the
FRW method has better parallelism, and becomes favorable nowa-
days due to the population of parallel computing infrastructures.
A lot of work has been devoted to the FRW method to improve
its efficiency and extend its ability [3, 9, 10, 13–15]. Most of them
only consider the single-thread or multi-thread implementation on
a single computer.

To tackle very large computing task, the parallel computing us-
ing GPU or multiple computers should be considered [1, 8, 9, 13]. In
[1, 13], GPU accelerated FRW algorithms were proposed showing
several tens times speedup over the FRW algorithm with serial-
computing. Although the parallel computing on GPU is generally
more energy-efficient, implementing a GPU-friendly FRW algo-
rithm requires much algorithmic change, and thus induces much
labor on software development and maintenance. And, due to the
workload divergence among different walk paths, parallelizing FRW
on GPU is not easy, or can hardly achieve high parallel speedup [13].
In contrast, the distributed parallel FRW algorithm on computer
cluster or the cloud is more feasible. This has been evidenced by in-
dustrial practice for multi-net or full-chip extraction tasks. Its basic
idea is to assign subsets of nets to each machine and then collect
their results on a hostmachine [8]. Thismethodwith coarse-grained
workload distribution can cause large workload unbalance, and is
not suitable for the extraction of a single net. In [9], a distributed
parallel FRW algorithm was proposed to speed up the single-net
computation for obtaining accurate coupling capacitances in the
touchscreen design. It distributes the random walk procedure to
the computers in a cluster, and achieves 67X speedup at most using
120 CPU cores. This method has two major drawbacks: 1) There is
still much inter-machine communication which leads to not high
enough parallel speedup. 2) It does not distribute the construction
of the space management structure among the machines, which
makes it inefficient while handling cases with a large number of
conductors.

In this work, we focus on fine-grained workload distribution
during the FRW based capacitance simulation, which results in an
efficient parallel FRW algorithm on computer cluster. We propose
an adaptive task allocation scheme and a distributed construction
algorithm for the grid-based spatial structure, to minimize the com-
munication cost. They accelerate the random walk procedure and
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the space management step respectively, without loss of accuracy.
With this distributed parallel FRW algorithm, we have tested struc-
tures from touchscreen design and VLSI design. The experiments
on a cluster show that the parallel speedup is up to 4.9X larger than
that of the algorithm in [9]. And, with 60 cores the space manage-
ment structure can be built in 22 seconds for a VLSI case including
two million conductor blocks. It corresponds to a 37X speedup on
the space management construction step.

2 PRELIMINARIES
The FRWmethod for capacitance extraction is based on the integral
formula for electric potential [7, 12]:

ϕ (r ) =

∮
S
P(r ,r (1))ϕ(r (1))dr (1), (1)

where ϕ(r ) is the potential of point r and P(r ,r (1)) is called surface
Green’s function. The domain enclosed by S is called transition
domain, which includes r . P(r ,r (1)) can be regarded as a probability
density function (PDF). With the Monte Carlo method, ϕ (r ) can be
estimated as the statistical mean of ϕ(r (1)).

When computing the capacitances related to a master conductor
i , one should first construct a Gaussian surface Gi enclosing it (see
Fig. 1). According to the Gauss theorem, the charge of conductor i
is:

Qi =
∮
Gi

F (r )д
∮
S (1) ω(r ,r

(1))P̃(r ,r (1))ϕ(r (1))dr (1)dr , (2)

where F (r ) is the dielectric permittivity at point r , P̃(r ,r (1)) is the
PDF for sampling on S(1) which may be different from P(r ,r (1)),
and ω(r ,r (1)) is the weight value [7, 12]. Thus,Qi can be estimated
as the statistical mean of sampled values onGi , which is further the
mean of sampled potentials on S(1) multiplying the weight value. If
the potential of a sample point r (1) is unknown, Eq. (1) is substituted
into (2) recursively. The computation can be decribed as a floating
random walk (FRW) procedure. The walk starts from the Gaussian
surface, and repeatedly jumps from a transition domain’s center to
its surface, until reaching conductor surface. After performing a
number of walks, the statistical mean of the weight values for the
walks terminating at conductor j approximates the capacitance Ci j
between conductors i and j.

Gaussian surface

master

Figure 1: Two examples of randomwalk in the FRWmethod
for capacitance extraction (a 2-D top view).

The cubic transition domain is widely adopted because it fits well
the Manhattan-shaped interconnects in VLSI circuit. This means
larger probability for terminating a walk earlier. The sampling prob-
ability and weight value for a cube domain can be pre-calculated
and tabulated, so as to accelerate the sampling operation.

Another key is the space management techniques [14], which
are useful for quickly finding the nearest conductor for constructing
the transition cube, especially for simulating a case including thou-
sands of conductor blocks. A grid-Octree hybrid spatial structure

was proposed in [14], which enables better efficiency of conductor
inquiry than existing grid or Octree based structures. In [15], a
multi-thread parallel algorithm was proposed for constructing the
Octree structure. On a machine with 8 cores it achieves 4.5X parallel
speedup.

The flowchart of the distributed parallel FRW algorithm in [9] is
shown in Fig. 2. Its focus is on accelerating the randomwalk process
without paying attention to the construction of the space manage-
ment structure. However, a block-level or chip-level VLSI structure
can involve more than a million conductor blocks. Constructing
the spatial structure for such large case can be much more costly
than running the FRW procedure to extract a net’s capacitances.

suit any dielectric configuration. If the actual permittivity ratio r 
of two adjacent dielectrics is between two sampled values: ri and 
ri+1, linear interpolation is employed. For example, let Vr denote 
the sampling probabilities of a two-dielectric configuration r. 
Then, 
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This approach overcomes the shortage of the approaches in [10, 
14], and avoids the large error caused by dielectric 
homogenization [11]. Although there are over 100 MB of pre-
characterized data, not all of this is loaded to the memory while 
calculating a given structure. For example, if the structure 
includes dielectrics with permittivities (4, 3.2, 4, 1), 
corresponding to the permittivity ratios 0.8 and 0.25, we only 
need load data corresponding to dielectric configurations (1.0, 
0.790), (1.0, 0.805), (1.0, 0.235) and (1.0, 0.250), which is only 
about 11 MB. This is an advantage over the dielectric 
homogenization method. 

The only drawback of the proposed method is the 
computational speed, which is essentially the same as the FRW 
method in [10]. To reduce the runtime, an idea is to combine the 
dielectric homogenization method (with s=0.5) and our proposed 
idea to trade off running speed, memory and accuracy. We 
generate the data for both pre-characterization methods. While 
performing FRW, we use the homogenization method to allow 
making the large hop as long as possible. Otherwise, there is a 
permittivity ratio exceeding 2 within the four equal-thickness 
dielectrics, and we use the two-dielectric transition cube pre-
characterized by the proposed method. This mixed approach 
improves memory/runtime tradeoff. However, it may still induce 
significant error because dielectric homogenization is employed. 
We will show this in the section on numerical experiments. 
3.3 Massively Parallel Simulation on a 
Computer Cluster 

The computational time of the FRW algorithm is inversely 
propositional to the square root of number of walks. This means 
its runtime increases substantially with greater accuracy. For 
calculating capacitances during the touchscreen design, highly 
accurate coupling capacitances are required. But, there is not an 
efficient way to accelerate the calculation of coupling 
capacitances [13]. So, a feasible way may be leveraging its 
potential for straightforward parallelization. To this aim, we 
implement the parallel FRW algorithm on a Cluster Environment 
with MPI. Fig. 7 shows the flowchart of this algorithm. Each 
process executes the random walk procedure independently and 

all processes except the master process will send intermediate data 
to the master every m walks (m=1000). Then, the master process 
updates the capacitance value, we check the program termination 
criteria via total number of walks or estimated error. If it is 
satisfied, the master process broadcasts the finish flag to all other 
processes to terminate the computation. This is the classic 
master/worker parallel paradigm. 

4. EXPERIMENTAL RESULTS 
We have implemented the FRW method and the proposed 

techniques in C++. With the TechGFT program in [10], we have 
pre-calculated the sampling probabilities and weight values (i.e. 
GFTs and WVTs) for handling multi-dielectric structures. Three 
multi-dielectric touchscreen structures are tested. They include 
non-Manhattan conductor blocks. Some details are as follows. 

Case 1: This case contains 1423 conductor blocks in two metal 
layers. The dielectric layers have relative permittivity of 4.0, 3.2, 
4.0, 1.0. The metal heights in the two layers are 70nm and 220nm. 

Case 2: This case is a small structure with 11 conductor blocks 
in two metal layers. The dielectric layers have relative permittivity 
of 4.0, 3.5, 7.0. The heights of the two metal layer are both 100nm. 
The top-view of one layer is similar to that shown in Fig. 3(b). 

Case 3: This case contains 808 conductor blocks in four metal 
layers. The dielectric layers have relative permittivity of 3.9, 6.5, 
3.5, 6.5, 4.2, 3.2, 4.0, 1.0. The heights of the four metal layers are 
340nm, 220nm, 400nm and 70nm, respectively. The metal layout 
include the geometry patterns shown in Fig. 3(c)(d). 

We first validate the accuracy of the proposed techniques with 
Raphael [6], which employs FDM with dense discretization. Then, 
we compare different approaches of dielectric pre-characterization. 
The experiments in Section 4.1 are carried out on a Linux server 
with Intel Xeon E5-2650 2.0GHz CPU with the termination 
criterion set to 0.5% 1 error on the self-capacitance. In Section 
4.2, we carry out the parallel-computing experiment on a High-
Performance Computing Cluster which consists 740 nodes with 
Intel Xeon X5670 2.93GHz CPU and InfiniBand QDR network. 
4.1 Accuracy Validation and Comparisons 

Because RWCap in [10] is not able to handle non-Manhattan 
shapes, we cannot compare our algorithms with it. Instead, 
following the strategy treating multiple dielectrics in [10], we 
obtain an algorithm called FRW-2 for our non-Manhattan 
touchscreen structures. The FRW algorithms including the 
proposed unified dielectric pre-characterization method in Section 
3.2 are denoted by FRW-2unify and FRW-mixed, corresponding 
to the strategy only using two-dielectric transition cubes and the 
strategy combining it and the dielectric homogenization approach, 
respectively. The results of FRW-2 with Raphael are listed in 
Table 2. Note that the results for Case 3 are not listed, because 
Raphael runs out of memory for it. We see that the results of 
FRW-2 are well correlated with those of Raphael even though 
they employ different methods and boundary assumptions. The 
results of coupling capacitances are also compared, which show 
similar correlation. This validate the accuracy of the techniques 
proposed in Section 3.1.  
Table 2. The computational results of FRW-2 and Raphael 
(Capacitance in unit of 10-12F, Memory in unit of MB) 
Case Cself (Raphael) Cself (FRW-2) Mem. (FRW-2) Error (%) 

1 621.0 600.1 96.0 +3.4 
2 78.4 78.7 56.9 +0.4 
Now, regarding FRW-2 as the standard, we evaluate the 

approaches in FRW-2unify and FRW-mixed for handling multiple 
dielectrics. We run the both for 3000 times for each case and use 
the mean value as the capacitance value extracted. For Case 1 and 
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Figure 2: The Flowchart of the distributed parallel FRW al-
gorithm in [9].

3 EFFICIENT DISTRIBUTED PARALLEL FRW
ALGORITHM

3.1 Basic Idea
To speed up the FRWalgorithm in dealingwith both VLSI and touch-
screen design problems, many techniques have been adopted, such
as spacemanagement techniques [11, 15], dielectric pre-characterization
method [9], etc. However, for high-accuracy and/or large-scale sim-
ulation, the cost of FRW algorithm is still expensive.

Distributed parallel computing is a crucial technique to solve
the large and high-accuracy capacitance calculation problems. For
large circuit with many conductor blocks, the construction of space
management is slow relatively compared with the random walk
procedure. Notice that more conductors usually mean faster conver-
gence of the random walk procedure. For touchscreen design, the
randomwalk procedure needs more walks to achieve the demanded
high accuracy, so it becomes the bottleneck. In these scenarios,
we need a distributed parallel FRW algorithm with fine-grained
workload distribution, where efficiently parallelizing both the space
management construction and the randomwalk procedure becomes
crucial.

3.2 Distributed Parallel RandomWalk
Procedure

The random walk procedure of the FRW algorithm is suitable for
parallelization naturally, since each random walk is independent to
each other. In [12], the parallel FRW algorithm is implemented with
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pthread APIs. However, the speedup is limited by the condition of
a single machine and the number of CPU cores. To achieve higher
speedup, in [9], a parallel FRW algorithm was implemented on
a Cluster Environment with MPI (see Fig. 2). First, the algorithm
initializes each process including parsing input file and loading
GFT/WVT tables. After that, each process starts to execute the
random walk procedure independently and all processes send in-
termediate data to the master process every m walks (typically
m = 1000). Process 0 serves as master process and is responsible
for collecting the intermediate data from other processes. Once the
termination criteria is satisfied, the master process broadcasts the
finish flag to all other processes to terminate the whole computation.
Because all processes except master process need to send interme-
diate result to the master process frequently, the communication
overhead is large. If the simulation needs a plenty of random walks,
the parallel speedup of this scheme will become disappointing. For
tackling the problem, we figure out a new parallel random walk
algorithm to reduce the communication overhead.

From [11], we can derive that the estimated error of capacitance
err is inversely propositional to the square root of number of walks
nwalk as follows,

err ∝
1

√
nwalk

, (3)

where nwalk means the total number of walks. For a given termi-
nation criterion of the FRW algorithm ϵ , the program stops when
err ≤ ϵ is satisfied. If we havemprocess processes, each process
should be assigned nwalk

mprocess
walks to balance workload. According

to Eq. (3), we can derive the error of capacitance achieved with the
random walk performed on each process, which corresponds to a
FRW procedure set the following termination criterion:

ϵ ′ =
√
mprocess . · ϵ . (4)

This means we just set the termination criterion in Eq. (4) to each
process at the beginning, and then no more communication among
processes is needed during the FRW procedure.

Figure 3: Flowchart of the proposed distributed parallel
FRW procedure.

With this idea, we propose a distributed parallel FRW procedure
which is shown in Fig. 3. It avoids the communication during the
FRW procedure. After every process finishes their work, they send
result data to the master process. On the master process the final
capacitance result is calculated. Obviously, this method has little
communication overhead.

The proposed walk assignment strategy attempts to divide the
whole task into independent equal small tasks. However, its basis,
Eq. (3) holds approximately. Therefore, if all processes terminates
after reaching the condition in (4) sometimes the final capacitance
cannot satisfy the error criterion ϵ . To overcome this drawback, a
trick is setting the distributed termination criterion a little stricter
than the result of Eq. (4). This is empirically proven an effective
way to guarantee the accuracy of final result.

The above treatment is based on an assumption that the per-
formance of different machines in the cluster is the same, but it is
not always true. When it comes to the fact that the performance
of machines are different, an adaptive allocation scheme should
be conducted. Before we start our task, we run a quick and stan-
dard random walk program to measure actual performance of each
machine. Assuming that the runtime for the testing procedure on
computing node j is tj and we havem computing nodes each cor-
responding to a MPI process, we should allocate

n
(j)
walk =

1
tj∑m
i=1

1
ti

· nwalk (5)

random walks to process j . Based on Eq. (3), we then should set the
termination criterion ϵ ′j for process j:

ϵ ′j =

√√√∑m
i=1

1
ti

1
tj

· ϵ . (6)

This will achieve the best balance of workload, and results in the
shortest runtime of the whole distributed parallel computing.

3.3 Distributed Parallel Space Management
In order to improve the procedure of building space management,
parallelization is a key technique. There are several spatial data
structures, such as uniform grid and Octree. Octree is applied in
[12, 15], while for parallel application, sending partial information
of Octree between processes and rebuilding thewhole data structure
are more complex than those of uniform grid. And, as shown in [11],
the grid with candidate list has similar performance to the Octree
structure, and they both are slightly inferior to the grid-Octree
hybrid spatial structure. As the grid structure is more suitable for
parallel computing, we choose the grid-based approach to develop
the distributed parallel FRW algorithm.

Fig. 4 shows the grid with candidate list structure. Every grid
cell contains a list of candidate list that consists of the conductor
blocks which can be the nearest to the points in the grid cell. Gen-
erating these candidate lists are the major work of construction of
this grid spatial structure. During construction, conductor blocks
nearby should be inserted into the candidate list according to the
judgment of domination relationship. Because the candidate lists of
different grid cells are independent to each other, the grid cells can
be assigned to different processes or threads without conflict. After
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all processes finish the candidate list generation for assigned cells,
the information sent among processes simply includes conductor
IDs and grid cell IDs and they are enough to rebuild the whole
spatial structure for the further computation. For the cell with too
long candidate list, it can be divided as a second-level grid structure.

Second- 
level grid B 

Figure 4: A two-level grid structure. The neighbor cells of
conductor B are outlined with the blue dashed line [11].

The flowchart of the proposed distributed parallel space man-
agement is shown in Fig. 5. Firstly, we split the whole grid cells
into cell sets, then assign them to different processes separately and
subsequently calculate the candidate list for each cell. Finally, we
can gather all information together to build the complete spatial
data structure.

Figure 5: Flowchart of the proposed algorithm on parallel
space management construction.

It should be pointed out that the communication cost between
processes is not negligible. A well-designed communication scheme
benefit the speedup and vice versa. There are two issues. One is
how to communicate between processes and the other is what to
send.

For the first issue, it is common to use send/receive pairs, which
means to useMPI_ISend andMPI_IRecv functions inMPI.MPI_ISend
and MPI_IRecv are similar to MPI_Send and MPI_Recv, and the dif-
ference between them is that the former functions are non-blocking
[6]. If we use MPI_ISend and MPI_IRecv functions, all themprocess
processes broadcast the message to all the other processes and they
sendmprocess (mprocess − 1) messages totally (see Fig. 6(a)). This
makes too many messages occupy the channel. And, synchroniza-
tion delay becomes prominent when the number of processes is

large. So, it is time-consuming and not efficient. We propose to use
collective communication in MPI, which is MPI_Allgather function.
It gathers data from all tasks and then distributes the combined data
to all tasks (see Fig. 6(b)) [2, 5]. Compared with simple send/receive
pairs, collective communication performs better. The programmer
should allocate sufficient size of receiving buffer to avoid overflow-
ing. The required size of receiving buffer depends on the actual case
and how the space management construction task is allocated. Too
large and too small receiving buffer both cause problem. For this
reason, we cannot allocate a constant-size receiving buffer prior to
the computation and the buffer should be dynamically allocated.
Actually, for a given case, no matter how many processes are set,
the sum of lengths of candidate lists is constant if the grid parti-
tion is set. So, the size of receiving buffer does not increase as the
number of processes increases. We can calculate its upper bound
according to the maximum length of messages. Before each process
sends the message of the candidate lists, we let them firstly send
the length of messages so that we can find out the maximum length.
Therefore, we can set and allocate a sufficiently large receiving
buffer. As shown in Fig. 6(b), the receiving buffer can be treated as a
two-dimensional array where each row stores all the candidate lists
from one single process. Because MPI_Allgather does not return the
length of message, we should also set a finish flag to mark the end
of each receiving message. This communication scheme is efficient
both on storage and latency.

(a) Send/receive (b) Allgather

Figure 6: Two communication mechanisms.

For the second issue, a trivial way is to send a type of struc-
ture that contains conductor block ID and grid cell ID, which are
both represented as integer. The rebuilding step is inserting the
conductor block into the corresponding cell according to the grid
cell ID. However, it is obvious that some information is redundant
because blocks in the same grid cell share the same grid cell ID.
Inspired by sparse matrix storage format, we design a compressed
grid cell format that we combine all conductor block IDs in the
same cell together along with grid cell ID and use a division flag to
distinguish blocks from each other. Each process is responsible to a
cell set which includes the grid cells requesting the generation of
candidate list. Suppose sizemax is the maximum total number of
candidate conductors in a cell set, andmprocess is the number of
processes. The trivial way needs at most

Bu f f er_size1 = 8mprocess · sizemax (7)

bytes storage for the receiving buffer. In contrast, the compressed
one only needs at most

Bu f f er_size2 = 4mprocess · sizemax + 4ncell (8)
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bytes for the receiving buffer, where ncell is the number of grid
cells. Noticemprocess · sizemax is multiplies of the number of all
conductor blocks in the problem, and the number of all conductor
blocks is much larger than ncell (e.g., ncell = 2048 in our exper-
iments). Therefore, the compressed message format can almost
reduce the size of sent messages and the buffer size to the half.

4 EXPERIMENTAL RESULTS
The proposed FRW methods are all implemented in C++ with MPI.
They are tested with structures from both touchscreen design and
VLSI design. If not explicitly stated otherwise, all experiments are
carried out on a computer cluster where each node includes 12-
core Intel Xeon X5670 CPU at 2.93GHz and nodes are connected
with the infiniband QDR network. Half of the computing nodes are
equipped with 32GB memory and half 48GB.

Five structures are tested. The first three are from real touch-
screen design [9], and the last two are from VLSI design. Their
details are listed as follows.

Case 1: This case contains 1423 conductor blocks in two metal
layers. The dielectric layers have relative permittivity of 4.0, 3.2,
4.0, 1.0. The metal heights in the two layers are 70nm and 220nm.

Case 2: This case is a small structure with 11 conductor blocks
in two metal layers. The dielectric layers have relative permittivity
of 4.0, 3.5, 7.0. The heights of the two metal layers are both 100nm.

Case 3: This case contains 808 conductor blocks in four metal
layers. The dielectric layers have relative permittivity of 3.9, 6.5,
3.5, 6.5, 4.2, 3.2, 4.0, 1.0. The heights of the four metal layers are
340nm, 220nm, 400nm and 70nm, respectively.

Case 4: This case contains 484,441 conductor blocks forming
12,149 nets. Different from the former cases with non-Manhattan
shape generally, the latter two cases are mostly Manhattan shape.

Case 5: This case contains 2,302,995 conductor blocks forming
1,163,751 nets.

4.1 Test Cases from Touchscreeen Design
The first three cases are tested with the distributed parallel FRW
algorithm. Because these cases do not include many conductors,
the multi-process parallel space management construction is not
applied. We have also implemented the algorithm in [9] for compar-
ison. To obtain accurate coupling capacitances, the FRW algorithms
are run with 0.1% 1-σ error criterion on the self-capacitance. The
parallel runtime of the algorithm in [9] and the proposed algorithm
are listed in Table 1, with different number of processes.

Because of the communication and synchronization costs among
different processes, the speedup of the algorithm in [9] is far from
the ideal situation. The best speedup is only 67.1X with 120 pro-
cesses and the worst is 23.4X. In contrast, the proposed algorithm
with task assignment based on estimated error reduces the com-
munication cost significantly. It achieves up to 114X speedup for
Case 2 with 120 processes, which is about 4.9X larger that of the
algorithm in [9]. For Case 2, the FRW algorithms consumes as many
as 5,000,000 random walks, ten times larger than that for Case 3. Be-
cause the proposed method minimizes the communication during
the random walk procedure, it performs best for Case 2.

Table 1: The parallel runtime of the algorithm in [9] and the
proposed FRW algorithm.

mprocess
Case 1 Case 2 Case 3

[9](s) ours(s) [9](s) ours(s) [9](s) ours(s)
1 3661 3668 12904 12838 7452 5937
12 363 321 1425 1074 644 621
24 217 162 905 554 349 307
36 163 107 747 362 259 205
48 144 81 678 278 200 157
60 124 65 676 221 170 125
72 111 55 647 187 150 106
84 108 47 590 158 138 91
96 102 41 588 141 129 80
108 99 37 516 124 152 72
120 96 33 551 113 111 65
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(a) The method in [9]
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Figure 7: The parallel speedup vs. number of processes for
Cases 1-3.

The comparison between two algorithms is also illustrated in Fig.
7. It is apparent that the proposed method achieves better perfor-
mance. Moreover, the trick guaranteeing that the given termination
criterion ϵ is satisfied involves a relatively small runtime cost, but
ensures the accuracy.

An experiment is also carried out to evaluate the proposed adap-
tive workload distribution scheme. We test the parallel FRW al-
gorithms with the uniformly distributed criterion Eq. (4) and the
nonuniformly distributed criterion Eq. (6) respectively, on a cluster
with two machines. One machine is equipped with Intel Xeon E5-
2630 2.3GHz CPU with 24 cores, and the other is with Xeon E5-2630
2.4GHz CPU with 32 cores. The experimental results show that in
32 processes, the parallel FRW algorithm with the nonuniformly
distributed criterion further reduces the runtime from 13.32 sec-
onds to 10.32 seconds by 22.5% compared with the algorithm with
uniformly distributed criterion. This validates the effectiveness of
the proposed technique.

4.2 Test Cases from VLSI Design
We use Case 4 and 5 to test the distributed parallel grid-based space
management construction technique. As we have introduced, the
space management construction may dominate the overall runtime
in those cases with a large number of conductor blocks and just a
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Table 2: The results on space management construction for
two large VLSI cases.

mprocess
Case 4 Case 5

time(s) speedup time(s) speedup
1 52.12 1.00 824.11 1.00
12 6.55 7.96 76.72 10.74
24 3.90 13.36 42.55 19.37
36 3.15 16.55 29.91 27.55
48 2.58 20.20 23.75 34.70
60 2.27 22.96 22.05 37.37
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Figure 8: The parallel speedup on space management con-
struction vs. the number of processes.

few of nets for extraction. The experimental results on the VLSI
design cases are listed in Table 2.

The parallel speedup of the space management construction is
also shown in Fig. 8. For Case 5, with 60 processes the runtime for
building the grid with candidate list is reduced from 824.11 seconds
in serial computing to 22.05 seconds, which means a 37.4X speedup.
For this larger case with two million conductor blocks the proposed
algorithm demonstrates satisfied performance. Notice for Case 4,
the construction time has been reduced to just 2 seconds.

The runtime breakdown for exacting a single net with the pro-
posed algorithm is listed in Table 3. It is for Case 5, with 0.5% 1-σ
error criterion on self-capacitance. tsp and twalk denotes the run-
time for space management construction and the random walk
procedure, respectively. Accordingly, speedupsp and speedupwalk
are the parallel speedup for the both parts. tpre denotes the prepa-
ration time in the FRW algorithm that contains all the work done
before starting the random walk procedure, including parsing input
file, loading GFT/WVT tables and space management construction.
With 60 processes, the parallel speedup of space management con-
struction is 37.4X, while that of random walk reaches 38.8X. The
total runtime equals to tpre + twalk , which is 41.3 seconds. Notice
there is about 12 seconds for parsing the input file including two
million conductors, which is serially executed.

For Case 5, the maximum number of conductor blocks sizemax
equals to 60,850 in 60 processes. According to Eq. (7) and (8), the
trivial message format needs 27.85MB receiving buffer for each
process, while the proposed message format only needs 13.94MB.
It reveals that the memory overhead is well acceptable.

5 CONCLUSIONS
Parallelization is crucial for capacitance calculation problems when
high-accuracy demand and/or a large number of conductors are

Table 3: The runtime breakdown of the proposed algorithm
for Case 5.

mprocess tsp (s) tpre (s) twalk (s) speedupsp speedupwalk

1 824.11 836.73 189.47 1.00 1.00
12 76.72 90.06 18.59 10.74 10.19
24 42.55 57.11 9.87 19.37 19.20
36 29.91 43.89 6.73 27.55 28.15
48 23.75 38.83 5.13 34.70 36.93
60 22.05 36.41 4.89 37.37 38.75

involved. With an adaptive task allocation scheme and a grid-based
distributed space management construction technique, we propose
an efficient FRW algorithm suitable for large computer cluster
environment. The experiments validate the effectiveness and ad-
vantages of the proposed algorithm, with comparison with existing
techniques.
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