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Abstract

For fast 3D electric simulation, the multi-zone collocation boundary element analysis (BEA) with iterative solver like GMRES algorithm

is required. In this paper, we present a scheme of equation assembly with ordering unknowns and collocation points, and a matrix storing

structure. A group of easily computed preconditioners based on the mesh neighbor method are then proposed to remarkably quicken the

convergence of GMRES iteration, and demonstrate at least 30% time reduction than using the diagonal preconditioner. Compared with the

equation assembly in Merkel et al. [Engng Anal Bound Elem 22 (1998) 183], where two unknowns on same interfacial node are arranged

subsequently, and two storing schemes in Li et al. and Araujo et al. [Sys Engng Electron 21 (1999) 10; J Chin Inst Engrs 23 (2000) 269], the

proposed method generates fewest non-zero blocks and facilitates the matrix–vector multiplication remarkably. Numerical experiments

verify the analysis and show a fast iterative multi-zone BEA simulator for actual very large-scale integration interconnects with a large

amount of zones.

q 2004 Published by Elsevier Ltd.
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1. Introduction

The boundary element method (BEM), based on the direct

boundary integral equation (BIE) [1], has been widely

employed to solve the Laplace or Poisson equation in

scientific and engineering problems, because of its ability to

reduce the dimensionality of problem. For a problem defined

over a region which is only piecewise homogeneous, the

multi-zone boundary element analysis (BEA) is usually used.

The multi-zone BEA refers to the techniques of dividing the

whole region into a series of homogeneous subregions

(zones) and then discretizing boundary of each zone with

elements (panels). Using the conditions of continuity and

compatibility at nodes of the elements shared by two or more

zones, the discretized BIEs of all zones can be coupled up,

producing an overall system matrix that has a blocked and

sparse character. The multi-zone collocation BEA strategy

was briefly introduced in Ref. [1], and then developed by

Kane and other authors [2–7].

A direct matrix block triangular factorization process,

which exploits the substantial block sparsity present in

multi-zone BEA, was described for equation solution in

Refs. [2,3]. Kane and his colleagues developed an arbitrary

condensation multi-zone approach, which is very suitable to

many iterative-type problems with localized effects, such as

the shape optimization analysis [4]. These works showed

that the multi-zone collocation techniques could signifi-

cantly extend the range of model shapes and substantively

improve the computational efficiency in the overall analysis

process. And for some problems, the multi-zone solution

has shown its superiority to the solution of an equivalent

single-zone problem [3–6].

Besides the direct solutions mentioned above, the

Krylov iterative solvers were also investigated for

multi-zone BEA, with different preconditioning

techniques [3,6,7]. Since the 2D problems of elasticity

area or stress analysis were mainly dealt with, and a

relative error norm of 1026 was used for high accuracy,

the iterative solvers did not show dominating superiority

to the direct solution in Refs. [3,6,7].

Fast 3D electric simulation is increasingly important in

the area of very large-scale integration (VLSI) interconnects
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and micro-electro-mechanical system (MEMS), under the

current deep submicron technology. For example, the

parasitic capacitance and resistance of the interconnect

metal lines need to be computed with high speed and

accuracy for verification of circuit performance, such as

time delay, power consumption, etc. [8–11]. In the electric

simulation, BEM is employed to solve the electrostatic

Laplace equation and the constant discontinuous element is

often used for required accuracy [9–11]. This avoids the

usual difficulties associated with corners and multi-zone

formulation. And in the existing solutions, the Krylov

iterative solvers were used with a relative error norm of

1022 or 1023 as convergence criterion. The iterative solvers

have shown fast convergence rate, and become indispen-

sable in the 3D electric simulation.

For large-scale BEA with iterative solver, a quasi-

multiple medium (QMM) technology was proposed

recently, which was analyzed to have a nearly linear

computational complexity for a simplified single-medium

problem [12]. The QMM technology fully exploits the

matrix sparsity present in the multi-zone BEA by

decomposing the homogeneous dielectric into some

fictitious subregions, and as the result, improves the

computational efficiency for the original problem. The

QMM has greatly reduced the CPU time and memory

usage in the 3D electric analysis (10 £ speed-up for

large cases) [11]. However, the QMM strategy leads to a

large amount of zones (sometimes more than 100), and

this causes some difficulty to the organization and

solution of the discretized BIEs.

Since the orders of unknowns and collocation points in

the discretized BlEs correspond to the arrangement of

columns and rows in the system matrix, respectively, they

determine the distribution of non-zero matrix entries and are

the main concern in organizing the multi-zone BEA

equations. While using a direct equation solver, the equation

assembly is important to the computational time and

memory due to the ‘fill-in’ phenomenon, and an ordering

was proposed to make non-zero matrix blocks as close as

possible to the main diagonal, minimizing the fill-in [2–5].

This order is formed by first simply listing all permutations

of two zones, for a three-zone problem which is:

11 12 13 21p 22 23 31p 32p 33: ð1Þ

For permutations where two digits are the same,

unknowns merely in one zone are related; otherwise, two

kind of unknowns on the interface between zone i and zone j

are related with ij and jip; respectively [3]. Different from the

multi-zone BEA with direct solution, the impact of equation

assembly on computational efficiency of iterative solution is

rarely investigated, except for Refs. [13–15]. In Ref. [13], it

was observed that to order the unknowns and collocation

points consistently can bring fast convergence rate for the

iterative solver with the diagonal (Jacobi) or block diagonal

preconditioner. And for multi-zone problem, subsequent

numbers were assigned to the two kinds of unknowns on

a same interfacial node. Li et al. [14] used almost the same

disciplines as Merkel et al. [13] in 3D capacitance

computation of VLSI interconnects. In Ref. [15], the

equation assembly was not actually discussed; only a sparse

storage of ‘work vector’ was used for the system matrix of

multi-zone BEA, and its emphasis was to demonstrate the

advantage of iterative solver with a Lanczos process to the

direct solver using the condensation technique.

In this paper, the techniques related to equation organiz-

ation of multi-zone BEA are firstly discussed according to its

effect to computational performance of iterative solution,

especially under the situation with many zones. It is found

that the disordered system matrix, produced by an equation

assembly without serious consideration, would bring

difficulty in storing the matrix effectively, and cause a lot

of additional CPU time for locating non-zero entries in each

matrix–vector multiplication.

Based on the permutation method of ordering unknowns

in the direct multi-zone BEA [3], we present a scheme of

equation assembly for the iterative multi-zone BEA, in which

the unknowns and the collocation points are also arranged

consistently and an efficient storing structure of length-

varied 2D array is employed. This scheme produces a

regular-structured system matrix with very fewer non-zero

blocks, and can then greatly reduce the auxiliary manipula-

tions in matrix–vector multiplication. Analysis and numeri-

cal results both show that our equation assembly is superior to

other related approaches in Refs. [13–15], and is most

suitable for the iterative BEA with a lot of zones. According

to the structure of the sparse system matrix, a group of

preconditioners based on the mesh neighbor (MN) method

[17] are then proposed for the GMRES solver [16].

Computational results show these preconditioners have

stable performance to reduce the iteration number, and

outperform the Jacobi preconditioner by at least 30%

reduction of the equation solution time. Finally our

approaches make up of a fast solution scheme for the very

sparse linear equation system in the multi-zone BEA with

many zones, and have served as an important role in the 3D

electric simulation using the QMM technology.

The rest of this paper is organized as follows. Section 2

outlines the multi-zone BEA for 3D electric problems.

In Section 3, the efficient organization of the BEM equations

is presented, compared with other existing approaches.

The preconditioners for the GMRES solver are proposed in

Section 4. The numerical results of 3D electric simulation are

given in Section 5, demonstrating the advantage of the

proposed approaches. Finally, conclusions are drawn in

Section 6.

2. Multi-zone BEA for the 3D electric simulation

Fig. 1 shows a typical 3D structure of multi-layered

interconnect conductors over a grounded substrate.

There are five dielectric layers; the embedded conductors
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touch dielectric interface with bottom. The simulated region

is bounded by Neumann boundaries, and the electric

potential on conductor surface is known, determined by

the bias voltages. To calculate the coupling capacitances

between the master conductor and others, the charge on each

conductor must be obtained by solving the electrostatic

field. With the QMM technology, each layer is cut into 3 £ 2

subregions, and there are totally 30 subregions (see Fig. 1).

The whole simulated region is composed of piecewise

homogeneous subregions, which is generally bounded by

the Neumann boundary, conductor surface (Dirichlet

boundary) and subregion interface. Within each subregion,

the electrical potential u fulfills the Laplace equation. With

the direct BEM, the Laplace equation is converted into the

following collocation formula of BIE [1,3]:

cðjÞuðjÞ þ
ð
›Vi

qpðj; xÞuðxÞdGðxÞ ¼
ð
›Vi

upðj; xÞqðxÞdGðxÞ;

ð2Þ

where ›Vi stands for the boundary of the ith subregion, and

q ¼ ›u=›n is the normal electrical intensity. cðjÞ is a

constant dependent on boundary geometry near to the

collocation point j: upðj; xÞ stands for the fundamental

solution to Laplace equation, and qp is the derivative of up

along the outward normal direction of boundary ›Vi: Fig. 2

shows a subregion of the structure in Fig. 1, whose boundary

is partitioned into quadrilateral elements.

Employing constant quadrilateral elements (of trapezoid

shape generally), and evaluating the direct BIE (2) at

collocation points, one for an element, the discretized BIEs

for the ith subregion are got:

ckuk þ
XNi

j¼1

ð
Gj

qp
kðxÞdGðxÞ

 !
uj

¼
XNi

j¼1

ð
Gj

up
kðxÞdGðxÞ

 !
qj; ðk ¼ 1;…;NiÞ ð3Þ

where Ni is the number of elements on boundary of

subregion i; and Gj is the jth element. The evaluation of

integrals in Eq. (3) is a time-consuming part of boundary

element algorithms, in particular for 3D analysis.

Classified as three types (singular, near singular and non-

singular) and handled with different methods, respectively,

these boundary integrals can be calculated with both

high-speed and high-accuracy [11].

Since constant discontinuous elements are employed,

each node on interface only belongs to two zones. With the

compatibility and equilibrium conditions at the interfacial

node, the series of discretized BIEs of all subregions can be

coupled up, resulting in an overall linear equation system.

Substituting the Dirichlet and Neumann conditions, we can

reorder the global linear system to become:

Ax ¼ f; ð4Þ

where x is a vector comprising all discretized unknowns of u

and q: The coefficient matrix A is a large unsymmetric one

(usually has degree of more than 1000). A GMRES

algorithm [16] with preconditioning is usually used to

solve the linear system [9–11].

3. Organizing the equations in iterative multi-zone BEA

An efficient scheme of equation assembly is firstly

presented. Then, comparison and discussion are given to

show its advantage.

3.1. Efficient scheme for organizing and storing the BEM

equations

Inheriting the above formulas for electric problem, we

notate all discretized unknowns as the following three

groups:

(1) Unknowns on the boundary except zone interface,

denoted by vii ði ¼ 1;…;MÞ:

(2) u on the interface of zone i and zone j; denoted by uij

(i; j ¼ l;…;M; and i , j).

(3) q on the interface of zone i and zone j; denoted by qji

(i; j ¼ l;…;M; and i , j).

where M is the number of zones. These groups of

unknowns correspond to all permutations of two zones,

Fig. 1. A 3D multi-layered structure with interconnect conductors

embedded in dielectrics, where the coupling capacitances between the

master and others need to be computed.

Fig. 2. A subregion on the third layer of the structure in Fig. 1 (indicated by

a dashed circle), whose boundary is partitioned into quadrilateral elements.
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shown as Eq. (1) for 3-zone problem. Moreover, the order of

permutations determines the order of the unknowns groups.

For the ordering of matrix rows, we first arrange

collocation points in the first zone, then the second zone,

until the Mth zone. In each zone the order of collocation

points is consistent with that of unknowns, i.e. the

collocation point and unknown of same no. is on the

same boundary element. Therefore, the main diagonal

entries of the matrix are the singular boundary integral

(taken on the boundary element containing the colloca-

tion point) or the constant ck in Eq. (3). Since they make

the matrix diagonal entries have a large absolute value,

the resulting equation (4) exhibits a good convergence

behavior when using the simple Jacobi preconditioner

[13,14].

With above arrangement, the matrix population for the

five-dielectric-zone problem in Fig. 1 (without QMM

cutting) is shown in Fig. 3. In Fig 3, the gray blocks stand

for non-zero entries. And the types of unknowns are signed

beside the corresponding columns. On the left of matrix

rows, the types of collocation points are signed (‘CP’ means

collocation point), which has the consistent subscript to that

of unknowns. It should be pointed out, since some types of

unknowns like u13 and u24; etc. do not exist due to the

inexistent interfaces, they are not signed in the Figure.

For a problem involving 12 zones (2 £ 2 QMM cutting

performed on a three-layered structure), the matrix

population is shown in Fig. 4.

From Figs. 3 and 4, it is found out that the non-zero

coefficients are located the diagonal block, or some parallel

strips. Only the non-zero matrix entries need to be stored, and

we use a length-varied 2D array (see Fig. 5). This storing

structure has M rows, and the cells in the ith row are one more

than the interfaces related to zone i: Each cell is called

MAT_BLOCK, corresponding to a non-zero matrix block.

In the MAT_BLOCK, the position information of a non-

zero block and a 2D array to store its coefficients are

included. This structure is also a variation of the block

compressed row storage (BCRS), an efficient storage format

for blocked sparse matrix [22].

The above arrangement of equations and storing

structure are suitable for any problem with arbitrary

complex topologic relationship of zones. And for a problem

with M zones, the number of non-zero blocks (MAT_-

BLOCK) produced by the above method is:

Nnb ¼
XM
i¼1

ð1 þ Ninter;iÞ ¼ M þ 2Ninter; ð5Þ

where Ninter;i means the number of interfaces in the zone i;

and Ninter is the total number of interfaces.

At the same time, we have:

Ninter ¼
1

2

XM
i¼1

Ninter;i: ð6Þ

For the capacitance problem with stratified layers and

zones distributed regularly after QMM decomposition (like

that in Fig. 1, and M ¼ mx·my·mz), Eq. (5) can be

transformed into:

Nnb ¼ M þ 2½mx·my·ðmz 2 1Þ þ my·mz·ðmx 2 1Þ

þ mz·mx·ðmy 2 1Þ�

¼ 7M 2 2ðmx·my þ my·mz þ mz·mxÞ; ð7Þ

where mxmy and mz are the number of zones along x-, y-,

z-axes, respectively.

3.2. Comparison and discussion

In Ref. [13], to deal with the multi-zone situation,

subsequent numbers are assigned to the u and q unknowns

Fig. 3. Matrix population for a problem including five zones.

Fig. 4. Matrix population for a problem including 2 £ 2 £ 3 zones.

Fig. 5. Storing structure of the blocked sparse matrix.
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on a same interfacial node, in order to make all singular

integrals adjacent to the main diagonal. Obeying this

consideration and ordering the collocation points consist-

ently, the matrix population can be drawn as Fig. 6, for the

five-dielectric problem from Figs. 1 and 3.

In Fig. 6, the types of unknowns and collocation points

are signed beside the matrix columns and rows, respect-

ively. Since the unknowns u; q of same interface element are

arranged sequently, we use Iij to denote all unknowns on

interface between zone i and j: To keep consistent order, two

collocation points at an interfacial node are also performed

one after another. Therefore, some matrix block in Fig. 6

(of downward diagonal pattern) is not fully non-zero, but

interlined (with non-zero row and zero row one after

another).

The number of non-zero matrix blocks under this

arrangement is:

N 0
nb ¼

XM
i¼1

ð1 þ Ninter;iÞ þ
X

1#i,j#M;Iijexist

ð2 þ Ninter;i

þ Ninter;j 2 1Þ

¼ ðM þ 2NinterÞ þ Ninter þ
XM
i¼1

ðNinter;i £ Ninter;iÞ

¼ M þ 3Ninter þ
XM
i¼1

ðNinter;iÞ
2
; ð8Þ

where on the right hand of equal sign, the first item stands

for non-zero blocks produced when the collocation points

are not on interfaces, and the second item is associated with

the collocation points on interfaces (see Fig. 6).

Comparing Figs. 3 and 6, we find the former includes

much fewer non-zero blocks than the latter. More

comparisons of the number of non-zero blocks are listed

in Table 1 (calculated with Eqs. (7) and (8)). For the

problem with 12 zones corresponding to Fig. 4, the equation

assembly of Ref. [13] generates 208 non-zero blocks, much

larger than 52 by our method.

Because the unknowns on a zone interface is divided into

two categories (of type uij and type qji), and they are

arranged separately, all collocation points for a same zone

can be arranged together to persist a consistent order with

unknowns. This makes the regular-shaped matrix in our

method have the fewest non-zero blocks, and is the main

difference between the equation assembly in Section 3.1 and

that in Refs. [13,14]. Furthermore, the existence of not fully

non-zero blocks (see Fig. 6) makes the latter worse,

producing a very disordered matrix population for problem

with a large amount of zones. It also forbids the use of the

efficient BCRS format.

Ref. [14] adopts almost the same discipline as Ref. [13],

except that the arrangement of elements or unknowns is

according to the input of 3D objects (conductor and

dielectric), whereas zones and interfaces, such that a bit

more non-zero blocks are resulted in. In its implementation,

six arrays with multiple dimensions are used to store the

non-zero entries, which are named by MtoM, MtoI_u,

MtoI_q, ItoM, ItoI_u and ItoI_q. Under this organization,

a transformation is necessary to give the global position of a

non-zero matrix entry from its local position. Therefore, the

shifting between local arrays (whose quantity is very huge)

and locating the non-zero entries bring much more auxiliary

manipulations, in a matrix–vector multiplication.

Alternative storing scheme for the disordered sparse

matrix is the compressed row storage (CRS), which is

the most general format [22], and was adopted in Ref.

[15]. Fig. 7 shows this format as a length-varied 2D

array. The CRS format is not very efficient, needing an

indirect addressing step for locating each matrix entry, in

a matrix–vector product [22]. In contrast, the BCRS in

Section 3.1 is modification of the CRS to exploit

Table 1

Comparison of the number of non-zero matrix blocks produced by the two

kinds of equation assembly

Nnb N 0
nb

The five-dielectric problem (5 zones) 13 31

The three-dielectric problem with 2 £ 2 QMM cutting

(12 zones)

52 208

The five-dielectric problem with 3 £ 2 QMM cutting

(30 zones)

148 682

The five-dielectric problem with 7 £ 3 QMM cutting

(105 zones)

593 3175

Fig. 7. A CRS format for storing the sparse matrix.

Fig. 6. Matrix population produced by an equation assembly obeying the

rules in Ref. [13].
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the block patterns, which saves memory for storing

locations and reduces the time for indirect addressing

[22], because the global position of a non-zero entry can

be easily obtained by adding its local position to a fixed

offset.

Additionally, to merge each diagonal blocks with its

adjoined left or right non-zero blocks may reduce the Nnb

further (see Fig. 3), in our equation assembly in Section 3.1.

However, this merging is of less meaning and not generally

available even by ordering the zone numbers (such as for the

structure corresponding to Fig. 4). Thus, it is not considered

in Table 1 and the following discussion.

4. Preconditioners for the GMRES Solution

in multi-zone BEA

4.1. A brief overview

The GMRES algorithm is one of the most efficient

iterative solutions for large-scale unsymmetric system of

linear equations. In each step of iteration, its main

manipulation is one product of matrix and vector.

When dealing with sparse matrix, the advantage of

GMRES over direct solution is more remarkable, since the

zero entries can be omitted and the ‘fill-in’ need not be

considered. For GMRES algorithm, the right precondition-

ing is always used to quicken the convergence rather than

other preconditioning strategy, because it is found to be the

most effective and provides the residual of the original

equation directly for convergence criterion [3]. With the

right preconditioning, solving Eq. (4) is equivalent to using

GMRES to solve APy ¼ f for the unknown vector y; from

which the original unknown x is computed by x ¼ Py:

For iteration with k steps, the preconditioned GMRES adds

k þ 2 multiplications of P and vector, besides constructing

the matrix P:

The convergence of GMRES is governed by eigenvalues

or pseudo-eigenvalues [13,18]. Therefore, a good precondi-

tioner for GMRES should at first improve the distribution of

eigenvalues. On the other hand, the expense on constructing

P and multiplying it with a vector should be controlled not

to overwhelm the benefit from the improvement of

convergence rate. So, P has to be a sparse matrix explicitly

or implicitly.

Some literatures are concerned with the preconditioning

for boundary element analysis. In Refs. [17,19,20], a lot of

preconditioning methods for the dense linear system derived

from BEA were discussed, and classified into three types:

operator splitting preconditioner (OSP), least squares

approximate inverse (LSAI) and diagonal block approxi-

mate inverse (DBAI). Among them, OSP methods can

cluster the eigenvalues of the original matrix, but maybe do

not approximate the inverse well; the LSAI’s effectiveness

lies in a knowledge of a dominate sparsity pattern of the true

inverse; DBAI methods have not a clear theoretic support,

but many experiments show they often employ the

advantages both of LSAI and OSP [20]. The diagonal

(Jacobi), blocked diagonal preconditioners and the pre-

conditioner based on incomplete LU decomposition (ILUD)

were used in Refs. [3,6,7,13] for the multi-zone BEA, to

perform comparison with the direct solvers.

Compared with the multi-zone problems discussed in

Refs. [3,6,7,13], the GMRES iterative steps are fewer in the

3D electric problems. Furthermore, the coefficient matrix

involved is very sparse because of using the QMM

technology. Thus, the simplicity of preconditioner is very

important for our concern. The existing preconditioner

(except the Jacobi) for multi-zone analysis are relatively

expensive, involving LU decomposition of BEM equations

for each zone, and are not applicable to the electric problems.

In the existing literatures, only the Jacobi perconditioner has

high overall efficiency for the electric multi-zone BEA [11].

Below, we propose a group of easily computed precondi-

tioners based on the mesh neighbor (MN) method [17], which

is superior to the Jacobi perconditioner.

4.2. Mesh neighbor method [17]

Each row of preconditioner P is generated separately.

Let the ith column of PT be denoted by pi; i.e.

PT ¼ ðp1;p2;…;pNÞ: Ideally, we would like to have:

PA ¼ I , ATpi ¼ ei; ð9Þ

where ei is the ith column of the identity matrix. Note that

each column (or row of matrix A corresponds to a

discretized unknown (or collocation point), and further to

a boundary element. Therefore, we use the no. of row or

column as the index of its corresponding collocation point,

unknown and element. With some strategy we may

determine a small set L of indices drawn from

{1; 2;…;N}; which denotes the unknowns having intensive

impact on the current unknown i: Then, Eq. (9) can be

reduced to

�AT �pi ¼ �ei; ð10Þ

where the bars over the variables indicate that all the rows

and columns except those in L are deleted. After solving

Eq. (10), we expand �pi back to the corresponding entries in

the ith row of P: Repeating the above procedure for all rows;

we get the whole sparse matrix P: In each row of P; there are

only several non-zero entries, whose number is the same as

the order of the corresponding set L.

For example, if the set L has three indices, and the first

one is the current row i (i.e. I1 ¼ i), then Eq. (10) becomes:

al1l1
al2l1

al3l1

al1l2
al2l2

al3l2

al1l3
al2l3

al3l3

0
BB@

1
CCA

pil1

pil2

pil3

0
BB@

1
CCA ¼

1

0

0

0
BB@

1
CCA; ð11Þ
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where aij and pij means the entry on the position of ith row

and jth column in A and P; respectively.

4.3. Extended Jacobi and MN(n) preconditioner

Two strategies for selecting the set L are proposed to

construct our preconditioners. The first one is called

extended Jacobi (EJ) preconditioner. Actually, the Jacobi

preconditioner using the L ¼ {i} for each row can also be

attributed to the MN method. However, in the Jacobi

preconditioner, not all singular integrals in multi-zone BEA

is considered. For a node jI on the interface between zone i

and j, the two unknowns on it are denoted by uijðjIÞ and

qjiðjIÞ: Note that the collocation point on jI presents twice in

the matrix A; for the discrete BIE of zone i and zone j,

respectively. Therefore, there are four singular integrals

(or the constant ck) related to the element containing jI ;

existing in the matrix A (for example, the circles in Fig. 5

denote the four occurrences). Two of them are not on the

main diagonal. The EJ preconditioner originates from the

above observation. In it, L contains two indices of the row

itself and the other occurrence of the collocation point, for a

row corresponding to an interfacial node; otherwise, L only

contains the index of the current row. The EJ preconditioner

is a small extension to the Jacobi (for some rows, a 2 £ 2

equation is solved), but it accelerates the convergence

remarkably.

In the EJ preconditioner, no ‘neighbor’ boundary element

is considered. To bring more faster convergence to GMRES

iteration, the MN(n) preconditioner is then proposed, where

n stands for the number of selected neighbor elements. The

geometry distance of two elements need not to calculate,

since the matrix A is stored explicitly and its entry value can

be used to judge the neighborhood. In a matrix row, the

absolute value of an entry reflects the interaction between

two related elements. We use the maximum absolute value of

entries for same element (two entries are related with an

interface element) to measure neighborhood of the element

to current collocation point. Thus, we can select n elements

that have the maximum neighboring measurement by

comparing all non-zero entries in row i: These n elements

are then considered as the neighbors to row i’s source

element, and the indices of their unknowns are added to L.

Because the index for the current element must be selected

and one element may contain two unknowns, the L has

2ðn þ 1Þ items at most in the MN(n) preconditioner.

Only manipulation of comparing float digits is needed to

generate the set L; which is of the complexity OðnNnon-zeroÞ

where Nnon-zero is the number of non-zero matrix entries.

The construction of P includes solving N reduced Eq. (10),

whose degree varies from ðn þ 1Þ to 2ðn þ 1Þ:

The difference of our MN(n) preconditioner to the

existing MN-type preconditioners (such as that in

Ref. [17]) is that we used the explicitly stored matrix

entries to judge the neighborhood to avoid calculating the

3D spatial distance between elements, which involves

relatively complex manipulations such as multiplication

and evaluation of square root. So, our method has less

computational consumption for a little n and adapts well

to the 3D electric multi-zone BEA.

In the iterative multi-zone BEA, another large part of

memory is used for the orthogonal basis vectors in GMRES

algorithm, besides the memory for storing the coefficient

matrix. Since this memory usage is proportional to the

number of iterations, the total memory usage can therefore

be reduced while using a better preconditioning technology.

5. Numerical results

The experiments for electric multi-zone BEA are all

carried on a SUN Ultra Enterprise 450 Server with 248 MHz.

The program is written with Cþþ language, and

compiled with an ‘-O’ (optimal) option. The stop criterion

1 ¼ kf 2 Axjk=kfk in the GMRES solver is set to be 1023.

5.1. Experiments for the equation assembly approach

Two cases from actual VLSI layout are simulated for

capacitance. The first one is the structure shown in Fig. 1.

The simulation region is about 10.7 £ 4.3 £ 5.8 (in mm).

The second case is larger, with the dimensions of

11.3 £ l4.2 £ 5.1 (in mm), and there are 16 conductors

embedded in five dielectric layers. These structures with

different QMM decomposition are analyzed, while using

three approaches of equation organization. The first one

uses our approach described in Section 3.1. The second

approach obeys the equation assembly of Ref. [13], and

stores the matrix in many multiple-dimensional arrays as

that in Ref. [14]. Although this implementation is not the

best among those obeying the rules in Ref. [13], it is still

valid for comparison with the first approach. The third

approach uses the general CRS format to store the matrix

[15], which is suitable to any arrangement of BEA

equations. The related computational results are shown in

Table 2.

In all computations, the Jacobi preconditioner is used.

(QMM a £ b) stands for imposing a £ b QMM cutting. For

these structures a strategy of non-uniform density partition-

ing is used to achieve high accuracy with fewer elements,

and more details can be found in Ref. [11]. The column of

‘FDM’ is the capacitance results of RAPHAEL, a famous

commercial software for parasitic capacitance extraction

employing a finite difference solver with advanced non-

uniform meshing. The results of RAPHAEL under very

dense mesh are listed as standard values, to show the

accuracy of our electric BEA.

Compared with approach 2, the first approach shows

remarkable time reduction in the matrix–vector multipli-

cation, as well as the whole solution phase. For two cases

where 100 or more zones are involved, the CPU time of

solving the equation with the approach 1 is even less than
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half of that for the second approach. This is because a lot of

auxiliary time for dealing with the very disordered matrix by

the equation assembly of Ref. [13] is involved. The third

approach performs better than the second approach for

problem with many zones. But it is still not as good as the

first approach. Furthermore, more memory for storing

positions and more manipulations for organizing the non-

zero coefficients are needed for the CRS format, compared

with the BCRS format used in the first approach.

It should also be pointed out, that the computational

results are the same for different equation organization,

because their corresponding coefficient matrix can be

transformed to each other by symmetric transpositions of

rows and columns, which do not influence the procedure of

GMRES iteration except for the order of unknowns in the

result vector. Compared with RAPHAEL, the BEAs with

three approaches all give results with error less than 3%.

In Table 2, the number of non-zero matrix entries

Nnon-zero in each computation is listed, as well as the number

of iterations k: For these six computations, Fig. 8 shows

GMRES solution time versus the product of Nnon-zero and k,

while using the approach 1 for equation organization. From

it, we can see a nearly linear relationship:

Tsol / Nnon-zero·k ð12Þ

where Tsol stands for the CPU time of equation solution. It

demonstrates that the approach 1 is suitable for the multi-

zone BEA with many zones, and ensures a very efficient

solution phase for the sparse coefficient matrix. By the way,

the equation solution time accounts for about 32–46% of

the whole BEA time while using approach 1.

5.2. Experiments for GMRES preconditioners

The computational results of three capacitance problems

and one resistance problem, with four preconditioners, are

listed in Table 3. Two capacitance problems are the same as

that used in Table 2, and with different QMM cutting. The

last capacitance problem includes complex conformal

dielectrics in some layers, and the original structure

involves 11 dielectric layers (with 3 £ 3 QMM cutting,

the zone number increases to 99). The resistance problem is

shown in Fig. 9, where the resistances between one 1 V port

to other 0 V ports are to be computed. Since the potential in

conductor body is also determined by the Laplace equation

[21], the resistance problem is analogous to the capacitance

problem except that the electric current penetrating the port

is wanted instead of electric charge on conductor. With

suitable QMM cutting, the resistance problem includes 25

zones. In the following computations, the proposed scheme

of equation assembly of Section 3.1 is used.

For each case, the iteration number decreases gradually

for the preconditioners in order: Jacobi, EJ, MN(1) and

MN(2). The EJ shows much reduction in iteration number,

compared with the Jacobi. At the same time, the CPU time

spent in the whole solution phase has been reduced by about

30%. Because more time is spent in construction and

multiplication of the preconditioner, the MN(1) and MN(2)

show no advantage to the EJ for the first two capacitance

problems. While for problem 3 with 3 £ 3 QMM cutting and

the resistance problem, the MN(1) and MN(2) perform

better because these problems converge slower than others,

so that the iteration reduction brought by them shows more

important effect. In Table 3, the memory usages of whole

computation are also listed. From it we can see that EJ and

MN(1) preconditioner reduce the memory us age markedly,

Table 2

Comparisons of CPU time of each matrix–vector multiplication and whole solution phase, for different equation organization approaches

Case No. of

zones

No. of

elements

No. of non-

zero entries

Iterative

number

CPU time (s) BEM, cap.a FDM, cap.a

Approach 1 Approach 2 Approach 3

MV.b Solution MV.b Solution MV.b Solution

1 5 1800 132.5 £ 104 22 0.11 2.54 0.13 3.25 0.17 4.06 795 800

1 (QMM3 £ 2) 30 2080 47.7 £ 104 24 0.04 1.21 0.06 1.76 0.06 1.67 797 800

1 (QMM7 £ 3) 105 2528 27.5 £ 104 24 0.03 0.83 0.10 2.73 0.04 0.98 814 800

2 5 2574 297.8 £ 104 25 0.24 6.41 0.30 8.21 0.40 10.45 1597 1637

2(QMM3 £ 3) 45 2810 88.6 £ 104 29 0.07 2.49 0.12 3.98 0.12 3.61 1618 1637

2(QMM4 £ 5) 100 3399 58.6 £ 104 32 0.05 2.26 0.16 5.76 0.08 2.86 1635 1637

a Cap., capacitance value (unit in 10218 farad).
b MV., one matrix–vector multiplication.

Fig. 8. CPU time of the GMRES solution versus the product of the number

of non-zero matrix entries and the iterative number.
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although the reduction is often a little because the

memory for storing the orthogonal basis vectors dose not

accounts for a dominative part in the whole memory

consumption.

More than 100 structures of VLSI interconnects have

been computed. The four preconditioners demonstrate

gradual decrease in the iteration number for all tested

cases. With respect to the total computational time

involving construction of the preconditioner, the EJ and

MN(1) perform the best, which reduce about 30% or more

solution time than the Jacobi, on average. For the problem

with larger order (10,000 or more), more experiments show

that MN(1) have better performance than EJ.

6. Conclusions

The impact of equation organization on iterative solution

of multi-zone BEA is discussed, which is of special

prominence for fast solution of large-scale problem with

many zones, It should be the most complete investigation on

this topic. Because the involved many zones lead to much

disordering or much more non-zero blocks in the system

matrix, a non-serious organization would make the matrix–

vector product inefficient, spending much time on locating

the non-zero matrix entries. Analysis and experiments

have shown the presented equation assembly based on

the ordering in Ref. [3] is most efficient for the iterative

multi-zone BEA. Thanks to the particularity of fast electric

simulation, i.e. the preconditioner must not be complex, a

group of preconditioners based on the mesh neighbor

method [17] are proposed. Among them, the EJ, MN(1) and

MN(2) preconditioners all show gradual reduction in

iteration number of GMRES algorithm, in comparison

with the Jacobi preconditioner. While in respect to the total

CPU time including constructing the preconditioner, EJ and

MN(1) both have demonstrated at least 30% reduction than

the Jacobi preconditioner. On the aspects of equation

assembly, storage and solution, here we have presented an

efficient scheme for the iterative multi-zone BEA,

especially suitable for the fast 3D electric simulation of

VLSI interconnects.
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