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Abstract

A complete multiple reciprocity method (CMRM), usually employed for the eigenvalue analysis of Helmholtz equation, is applied to

impedance calculation of 3D electric structures for multiple frequency points. Based on a recently proposed boundary integral

formulations for impedance calculation, the CMRM is used to separate the boundary integrals into the frequency-dependent and

frequency-independent portions so as to accelerate the computation for multiple frequency points. A set of approaches is proposed to

handle the severe numerical problems induced by the large varieties of distance r and frequency-dependent k, when applying the CMRM

to impedance calculation. As a result, the near-field integrals are calculated with the inner product of a frequency-independent sequence

and a frequency-dependent sequence, while the far-field integrals are calculated with an efficient approximate formula. Since the majority

of the calculation for generating the overall linear equation system becomes reusable, the impedance extraction with multiple frequency

points is greatly accelerated. Several typical structures of interconnects are calculated with the boundary element method combined with

CMRM. Numerical results verify the accuracy and efficiency of the proposed methods.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The boundary element method (BEM) has been em-
ployed to solve various partial differential equations,
including the Laplace equation, Poisson equation, and
Helmholtz equation, in scientific and engineering applica-
tions. For the Helmholtz equation r2uþ k2u ¼ 0 in a
bounded domain, the conventional BEM formulation uses
the complex-valued fundamental solution of the Helmholtz
equation, which includes the wave number k [1]. This
formulation is straightforward, but the k-dependent
integral kernel leads to large computational time in
applications where the boundary integrals need to be
recomputed for different k values. The problem of
eigenvalue analysis is such a case. And the similar situation
is encountered in the impedance calculation (extraction) of
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interconnect structures with multiple frequency points,
which is the object of this paper.
The Helmholtz equation can also be transformed into

several other kinds of BEM formulation, which do not
employ the k-dependent complex-valued fundamental
solution. The simplest one is to apply the real-valued
fundamental solution of the Laplace equation, which only
includes the distance r in the integral kernel. However, this
formulation produces an additional domain integral due to
the second term in the Helmholtz equation. Therefore,
directly using it loses the spirit of BEM and is not efficient.
A dual reciprocity method (DRM) was proposed to
remedy this drawback, with the help of an additional
application of Green’s identity [2]. The DRM requires a
special influence-type interpolation function to approx-
imate the unknown function inside the domain and some
internal points besides the boundary nodes [3,4]. The
multiple reciprocity method (MRM), proposed by Nowak
and Brebbia [5,6], employs a series of real-valued higher-
order fundamental solutions of the Laplace equation
instead of the Helmholtz fundamental solution. The main
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advantage of this method is that k can be left outside the
boundary integral, which makes it convenient for recom-
puting the integrals for different k values.

However, directly using the MRM formulation may
cause the spurious eigenvalue problem. Chen and Wong
found out this phenomenon in one-dimensional (1D) and
two-dimensional (2D) problems [7,8], and combined both
singular and hypersingular equations for MRM to resolve
it [7]. In Refs. [9,10], it was revealed that the kernels of the
MRM are the real parts of the kernels in the complex-
valued formulation of Helmholtz equation. Yeih et al. [11]
then proved a clearer and more exact relationship between
the MRM formulation and the complex-valued formula-
tion, and proposed a complete MRM (CMRM), which is
equivalent to the complex-valued formulation but
holds the advantage of the original MRM. The CMRM
solved the spurious eigenvalue problem perfectly, and was
recently applied to 1D Helmholtz equation of semi-infinite
domain [12].

Fast three-dimensional (3D) electro-magnetic simulation
is increasingly important in the area of on-chip inter-
connect analysis, packaging, and microwave/RF engineer-
ing [13]. Fast and accurate computation of impedance
(including inductance and resistance) of interconnect
structures has become a research focus as the operating
frequency of integrated circuits exceeds several giga-Hz
(GHz, 109 Hz). To calculate the impedance, we need to
know the current flowing through the conductor under a
given bias voltage setting. A method introduced in [14],
which discretizes the conductor volume, has gained the
most popularity for the impedance extraction problem.
However, the volume discretization method has to use very
fine grids to handle problems with high frequency because
some electro-magnetic effects induce a very irregular
distribution of current in the conductor body. This makes
the volume method very costly. Recently, a boundary
integral equation (BIE) method was proposed for 3D
impedance extraction [15,16], which overcomes the short-
comings of the volume-based method and is suitable for a
wide-band simulation. Further numerical improvements
were then proposed for this boundary integral formula-
tion [17].

On the other hand, since the impedance is frequency-
dependent, the values of impedance for multiple frequency
points (within a frequency range) are usually needed,
especially for the modeling of inductor components in RF
circuits. The BEM for impedance extraction in [16],
although with high efficiency for a single frequency, is still
costly for the problem with multiple frequency points. It
just converts the governing Helmholtz equations of the
electro-magnetic field, into the conventional BEM for-
mulation. Therefore, the k-dependent boundary integrals
need to be recomputed for each different frequency; here k

is a function of frequency f.
In this paper, the CMRM is applied to the area of

impedance extraction of 3D structures, and combined with
the BEM in [16] to accelerate the computation with
multiple frequency points. In theory, this is the application
of CMRM to a boundary value problem (BVP) of the
Helmholtz equation. While solving the vector Helmholtz
equation of electric field E

!
in [16], the CMRM formula-

tion is adopted to replace the conventional complex-valued
formulation such that the computation of frequency-
independent integrals can be reused. However, in the
problems of impedance extraction, the distance r usually
varies from several tens of nanometer (10�9 m) to several
millimeters (10�3 m), and the frequency f varies for several
magnitudes, up to 100GHz. The large varieties of r and k,
which were not encountered in existing literatures on
MRM or CMRM, bring severe numerical difficulty to the
CMRM formulation. To solve the problem induced by
large variety of r, an average distance ravg is introduced to
make the CMRM formulation easily computed. Like the
ill-conditioned series

PN
j¼0 ð�xÞj=j!, handling the series of

fundamental solutions in CMRM also suffers from the
severe numerical cancelation. For this problem, a window
technique is proposed to divide the CMRM integrals into
near-field integrals and far-field integrals. The near-field
integrals can be calculated as the partial summation of
series in CMRM safely; the far-field integrals are calculated
with a proposed efficient approximate formula, due to the
equivalence of CMRM kernel to the complex-valued
Helmholtz kernel. The criterion of the window is also
proposed with physical meaning.
In numerical experiments, several interconnect structures

are calculated with the BEM combined with the CMRM.
Numerical results show that our method exhibits great
speedup for 3D impedance extraction with many frequency
points, while preserving high accuracy.
2. Review of the MRM and CMRM

In this section, we will briefly summarize the MRM and
CMRM formulation of the 3D Helmholtz equation

r2uþ k2u ¼ 0 in O, (1)

where u is the field variable defined in a 3D closed domain
O surrounded by the boundary G, and k is the wave
number. If employing the complex-valued fundamental
solution of the Helmholtz equation, Eq. (1) can be
transformed into the following BIE with respect to a
source point s on G [1]:

csus þ

Z
G
ðuq�H � qu�H ÞdG ¼ 0, (2)

where us denotes the value of field variable on source point
s, cs is a constant depending on the geometry of boundary
at s. q ¼ qu=qn is the normal derivative of u on the
boundary; here n denotes the outward normal direction of
the boundary. The complex fundamental solution of the
Helmholtz equation u�H is e�ikr=4pr, where r is the distance
between a field point and source point s. q�H is defined
as qu�H=qn.
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Instead, if only applying the fundamental solution of the
Laplace equation u�0 ¼ 1=4pr and q�0 ¼ qu�0=qn, one can
obtain the integral equation as follows:

csus þ

Z
G
ðuq�0 � qu�0ÞdG ¼ k2

Z
O

uu�0 dO. (3)

The MRM formulation further adopts the higher-order
fundamental solutions of the Laplace equation:

r2u�jþ1 ¼ u�j ¼
1

4pr

r2j

ð2jÞ!
; q�j ¼

qu�j

qn
; j ¼ 0; 1; 2; . . . , (4)

to transform the right side domain integral in Eq. (3).
Substituting Eq. (4) with j ¼ 0 into the right-hand side of
Eq. (3), using the Green’s identity, one obtainsZ
O

uu�0 dO ¼
Z
G
ðuq�1 � qu�1ÞdG� k2

Z
O

uu�1 dO. (5)

Therefore, Eq. (3) can be rewritten as

csus þ

Z
G
ðuq�0 � qu�0ÞdG� k2

Z
G
ðuq�1 � qu�1ÞdG

¼ k2
ð�k2
Þ

Z
O

uu�1 dO. ð6Þ

Then, N similar transformations lead to

csus þ
XN

j¼0

ð�k2
Þ
j

Z
G
ðuq�j � qu�j ÞdG

� �

¼ ð�1ÞNðk2
Þ
Nþ1

Z
O

uu�N dO � 0. ð7Þ

If r and k are bounded, for sufficiently large N, the domain
integral in Eq. (7) becomes negligible and can be dropped
[5,6,18]. This is the basic formulation of the MRM.

The MRM, in which both u�j and q�j are real-valued, may
encounter the spurious eigenvalue problem [7,8]. Besides, it
cannot be used to solve the Helmholtz equation with an
infinite domain directly. To solve these problems, an
appropriate complex constant is introduced into the
zeroth-order fundamental solution in Eq. (4). The derived
formulation is called CMRM. The jth-order fundamental
solution in the CMRM is [11]1:

u�j ¼
1

4p
1

r

r2j

ð2jÞ!
� ik

r2j

ð2j þ 1Þ!

� �
; j ¼ 0; 1; 2; . . . . (8)

With the similar derivation to that for MRM, the
integral equation of CMRM is obtained:

csus þ

Z
G
ðuq� � qu�ÞdG ¼ 0, (9)

where

u� ¼
XN

j¼0

ð�k2
Þ
ju�j ; q� ¼

XN

j¼0

ð�k2
Þ
jq�j , (10)
1There is a typo in Ref. [11], which loses a k in the imaginary term.
and q�j ¼ qu�j =qn. The series in Eq. (10) simply converges to
the corresponding kernel in the complex-valued formula-
tion of Helmholtz equation [11].

3. BEM for 3D impedance extraction

Fig. 1 shows a 3D structure including M interconnect
conductors. The impedance of this system of conductors is
defined as a Z matrix, which fulfills ZI ¼ V . Here, I and V

are the vectors of current through the conductor and
voltage between two ends (contacts) of conductor, respec-
tively. To calculate the frequency-dependent impedance
matrix, a set of sinusoidal voltages V at frequency f is
imposed on the conductors, with one of them being
complex 1V and the others 0. Then, the problem of
impedance extraction becomes to compute the current in
each conductor by solving the electro-magnetic equations.
Once the currents are obtained, we denote them as a
column vector, say I1. Then, changing the conductor
voltage setting and computing corresponding currents of
conductors repeatedly, one can obtain the current vectors
I2; . . . ; IM . Finally, with the obtained current matrix
I ¼ ½I1; I2; . . . ; IM �, we have ZI ¼ 1, where 1 is the identity
matrix. So, the impedance matrix becomes [14–16]:

Z ¼ I�1 and R ¼ realðZÞ; L ¼ imagðZÞ=io.

R and L are the resistance and inductance matrix,
respectively. And o is the angular frequency, o ¼ 2pf .
Now, the key problem of impedance extraction is how to
compute the currents in conductors for a given voltage set.
Ref. [16] proposed a set of surface integral formulae for

3D impedance extraction under magneto-quasistatic
(MQS), electro-magneto-quasistatic (EMQS) assumption
and even full-wave analysis. For simplicity, we only discuss
the MQS simulation in this paper and list the differential
equations and corresponding BIEs in Table 1. In this table,

E
!

is electric field vector, j is electric potential, E
!

t denotes

tangential component of E
!

. J
!

is current density vector,

and A
!

is magnetic vector potential. The vector Helmholtz
equation in Table 1:

r2 E
!
� iomsE

!
¼ 0 (11)

is the most important, which can be decomposed into three
scalar Helmholtz equations under the Cartesian coordinate
system. In the Helmholtz equations, m and s are the
Fig. 1. Multi-conductor structure for impedance extraction [16].



ARTICLE IN PRESS

Table 1

Differential and boundary integral formulations for 3D impedance extraction under MQS assumption [16]

Governing differential equations Boundary integral equations

For domain in each conductor r2 E
!
� iomsE

!
¼ 0

!
R

G1ðx; yÞ
q E
!
ðyÞ

qny
dy�

R qG1ðx;yÞ
qny

E
!
ðyÞdy ¼ 1

2
E
!
ðxÞ

r � E
!
¼ 0 !

R
c

EtðxÞ � ð n!ðxÞ � l
!
ðxÞÞdx�

R
a
qEnðyÞ
qny

dy ¼ 0

For medium domain r2 E
!
¼ iom J

!

�rj ¼ E
!
þ ioA
!

A
!
¼
R
mG0ðx; yÞ J

!
ðyÞdy

9>>>=
>>>;

!
R

s
G0ðx; yÞ

q E
!
ðyÞ

qny
dy�

R
s
qG0ðx;yÞ

qny
E
!
ðyÞdyþrjðxÞ ¼ 0

On noncontact surface En ¼ 0

On contact surface jðxÞ ¼ constant
qEnðxÞ
qnx
¼ 0

(

�4�1 �3�2

�5
�6 �7 �8

�12�11�10�9

∂n
E1 ,

∂ E1

∂n
E2 ,

∂ E2

∂n
E4 ,

∂ E4

∂n
E5 ,

∂ E5

∂n
E3 ,

∂ E3

∂n
E6 ,

∂ E6

Fig. 2. The discretization of conductor surface.
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permeability and conductivity of material, respectively, and
both are constant. The complex-valued fundamental
solution of Helmholtz equation was adopted to transform
the Helmholtz equation into the BIE, in [16]. This
fundamental solution is denoted by G1ðx; yÞ in Table 1,
where x is source point, and y is field point for integration.
G0ðx; yÞ is the Laplace fundamental solution.

To solve the equations in Table 1, the conductor surfaces
are discretized into panels with constant interpolation
function. Then, evaluating the discretized BIE at every
collocation point, one for an panel, one can get the
corresponding linear equations. With other discretizing
techniques, the whole equations inn Table 1 are considered
and coupled with each other to form an overall linear
equation system Ax ¼ b. In this linear equation system, the

E
!

and qE
!
=qn on panel, and j on vertex are the unknowns

to be solved. Fig. 2 shows a surface discretization with six
panels, and the discretized unknowns are labeled in it.

To set up the matrix A, the major work is computing
the coefficients in the discretized BIE transformed from
Eq. (11):

P1ða; bÞ ¼
R

panelb

e�ikrðxa;yÞ

4prðxa; yÞ
dy;

D1ða; bÞ ¼
R

panelb

q
qny

e�ikrðxa;yÞ

4prðxa; yÞ

� �
dy;

8>>><
>>>:

(12)
where a; b are the global indexes of the panels, panelb is the
bth panel, and k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�i2pf ms

p
. xa stands for the colloca-

tion point in the ath panel, and the operator rð; Þ calculates
the distance between two points.
Since this formulation includes the frequency-dependent

integral kernel, it becomes inefficient for impedance
extraction with multiple frequency points. Both MRM
and CMRM seems applicable for this BVP of Helmholtz
equation with finite domain, to make the f outside the
integral so as to accelerate the computation with multiple
frequencies. However, it is found out that only CMRM is
practical for the application in this paper, which will be
explained in Section 4.4.
When applying the CMRM, we can replace the P1 and

D1 in (12) with P� and D�, respectively:

P�ða; bÞ ¼

Z
panelb

u� dy; D�ða; bÞ ¼

Z
panelb

q� dy, (13)

where u� and q� are defined in Eq. (10). Therefore, with
removing the frequency f from the integral and choosing an
appropriate truncation number N, the boundary integrals
become frequency-independent and can be reused for
different frequency values.

4. Applying the CMRM to 3D impedance extraction

When applying CMRM to the impedance extraction of
3D interconnects within a frequency range, the wide
varieties of frequency f and distance r bring difficulties to
the computation of the integrals of CMRM series. Below,
we will discuss the difficulties in detail and propose a set of
approaches to resolve them with reasonable efficiency.

4.1. Introducing an average distance to the formula

When calculating the coefficients P�ða; bÞ and D�ða; bÞ in
(13) with the CMRM formulation of (8) and (10), severe
numerical difficulties will occur. Below, we consider the
first part of u�j in (8) as an example, without loss of
generality. When it is substituted into Eqs. (10) and (13),
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we get the following integral for computation:

P�1ða; bÞ

¼

Z
panelb

XN

j¼0

ð�k2
Þ
j 1

4prðxa; yÞ
�

rðxa; yÞ
2j

ð2jÞ!

� �
dy

¼
XN

j¼0

ð�k2
Þ
j

Z
panelb

1

4prðxa; yÞ
�

rðxa; yÞ
2j

ð2jÞ!

� �
dy. ð14Þ

To separate the frequency-dependent and frequency-
independent portions, P�1ða; bÞ is not directly calculated
by (14). In fact, it is divided into two sequences as follows:

P�1k;j ¼ ð�k2
Þ
j , (15)

P�1r;jða; bÞ ¼

Z
panelb

1

4prðxa; yÞ
�

rðxa; yÞ
2j

ð2jÞ!
dy. (16)

The frequency-independent sequence (16) including the
arduous integral operator can be computed and saved in
advance. Then, one obtains P�1ða; bÞ by the following inner
product:

P�1ða; bÞ ¼
XN

j¼0

P�1k;j � P
�
1r;jða; bÞ. (17)

In sequence P�1r;j, the power term r2j will cause a
numerical problem. For example, for the interconnect
structures in integrated circuits, the value of r is not only
very small but with a large variety. In the unit of meter, the
value of r may vary from about 10�7 to 10�4. Directly
computing the term rðxa; yÞ

2j in P�1r;jða; bÞ will cause the
underflow problem even while j is not very large. This is
greatly different from the applications of MRM or CMRM
in existing literatures, where r was about 1.0.

To solve the problem induced by the value of r only, we
introduce an average distance ravg to modify the CMRM
formulation. Therefore, the formula (14) will be trans-
formed into

P�1ða; bÞ

¼
XN

j¼0

ð�1ÞjðkravgÞ
2j

Z
panelb

1

4prðxa; yÞ
�

rrelðxa; yÞ
2j

ð2jÞ!
dy, ð18Þ

where rrelðxa; yÞ ¼ rðxa; yÞ=ravg. This ravg is chosen to be the
average of the distances between all vertexes of the integral
panel and the collocation point:

ravgða; bÞ ¼
1

Nb

XNb

t¼1

rðxa; yb;tÞ, (19)

where xa is the collocation point on panel a, yb;t is the tth
vertex of panel b, Nb is the number of vertices on the panel
b. Therefore, the rrelðxa; yÞ becomes near to 1, and thus

P�01r;jða; bÞ ¼

Z
panelb

1

4prðxa; yÞ
�

rrelðxa; yÞ
2j

ð2jÞ!
dy (20)

can be calculated with much less difficulty within a small
truncation number N of series. Note that ravgða; bÞ is a
matrix indeed in our program implementation. We
compute these average distances among any two panels,
and then store them in a matrix.
4.2. A window technique to separate the near-field integral

and far-field integral

With the introduction of ravg, the formula we use to
compute P�1ða; bÞ becomes

P�1ða; bÞ ¼
XN

j¼0

P�
0

1k;jða; bÞ � P
�0

1r;jða; bÞ, (21)

where

P�
0

1k;jða; bÞ ¼ ð�1Þ
j
½kravgða; bÞ�

2j (22)

and the definition of P�
0

1r;jða; bÞ is given as Eq. (20). Now,
P�
0

1r;jða; bÞ can be calculated accurately. But the numerical
difficulty still exist because of the large variety of P�

0

1k;jða; bÞ.
For on-chip structures, usually copper is used as inter-
connect wire with conductivity s ¼ 5:8� 107 S=m. And the
magnetic permeability in Eq. (11) has the value
m ¼ 12:57� 10�7 H=m. For a wide-band simulation, the
frequency f usually varies for several magnitudes, say, from
104 to 1011 Hz (100GHz). Therefore, the norm of k

(¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�i2pf ms

p
) in our consideration varies from about

103 to 106. The norm of kravg still varies from about 10�3 to
102. If the norm of kravg is large enough, say larger than 10,
directly computing P�1ða; bÞ with (21) will suffer from the
numerical cancelation and cannot produce an accurate
result. This is similar to the famous numerical problem of
calculating e�x with

e�x ¼ lim
N!þ1

XN

j¼0

ð�xÞj

j!
,

when x is a large positive number [19,20]. In other words,
the summation of N þ 1 terms in (21) would not be
computed with sufficient accuracy, unless the norm of kravg

is small.
Our solution for this problem is a window technique to

divide the integrals in (13) into near-field integrals and far-
field integrals, and compute them with different methods,
respectively. For a specified k, the near-field integral
denotes the integrals in (13) with appropriate panel
position such that kkravgða; bÞkoW holds. The left integrals
on other panels are called the far-field integral. Here W is a
threshold value, with the meaning of window size. Because
the restriction of kravg’s value can effectively reduce the
numerical problem induced mainly by P�

0

1k;j, the near-field
integrals can then be computed accurately with the CMRM
formulation. While for the far-field integrals, the CMRM
formulation cannot be applied in practice, we propose
another efficient approach and discuss it in Section 4.4.
Below, we will reveal some physical meaning of

kravgða; bÞ. For the impedance extraction under MQS
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assumption, k ¼ ð1� iÞkreal and

kreal ¼

ffiffiffiffiffiffiffiffiffi
oms
2

r
¼

1

d
,

where d is the skin depth characterizing the high-frequency
effect, therefore,

kravg ¼
ffiffiffi
2
p ravg

d
. (23)

It is related with the ratio of the average distance between
the integral panel and the source point to the skin depth,
which is a nondimensional quantity.

In practice, if we let W ¼ 2p, the cancelation problem in
computing (21) will be negligible and an accurate result can
be obtained with N ¼ 11. The electro-magnetic wave
theory shows that the amplitude attenuation becomes less
than 1% where the field point is five times skin depth away
from the source [21]. Therefore, with W ¼ 2p, the far-field
integral could be computed in a coarse way since the
electro-magnetic field there, due to the source, becomes
very weak.

4.3. Computing the near-field integral

To calculate the integral of (13) accurately, a 2D
Gauss–Legendre integration scheme is employed, which
converts the problem to evaluating the integral kernel at
some Gauss points. For the near-field integral, we use a
recursive formula of the CMRM series instead of comput-
ing it directly. Taking the integrand of (20) as an example,
the recursive formulation is

F1r;j ¼
1

4pr
�

r
2j
rel

ð2jÞ!
¼

r2rel

ð2jÞð2j � 1Þ
� F1r;j�1

and F1r;0 ¼ 1=4pr.
Moreover, in order to accelerate the computation, the

coefficient 1=ð2jÞð2j � 1Þ can be computed and saved in a
table. Finally, when computing on a Gauss point, only two
additional multiplication operations are needed for each
term of the series. This technique greatly reduces the
computational time for calculating the near field integrals
of the CMRM series.

Besides, when the source point lies in the integrated

panel, both
R

panelb
ū�1 dy and

R
panelb

q̄�1 dy for computing

P�ða; bÞ and D�ða; bÞ in (13) involve singular integrals.
Special treatments for singular integrals are adopted to
guarantee accuracy [22].

In above discussions, only the first part of CMRM
formula (8) is considered as an example. While considering
the second part of (8) together, the problems encountered
are almost the same and this technique is still valid.

4.4. Computing the far-field integral

As mentioned in Section 4.2, the far-field integral could
be computed in a coarse way. This is accomplished by the
following direct approximation to the integral of complex-
valued Helmholtz kernel:

P�ða; bÞ ¼
1

4p

Z
panelb

e�ikrðxa;yÞ

rðxa; yÞ
dy

� e�ikravgða;bÞ

Z
panelb

1

4prðxa; yÞ
dy

¼ e�ikravgða;bÞP�1r;0ða; bÞ. ð24Þ

Notice that this approximate formulation includes the
arduous e�ikravgða;bÞ, but it is computed once for distance
ravgða; bÞ, not for all Gauss points as needed in computing
P�ða; bÞ accurately with the direct method. Moreover, the
P�1r;0ða; bÞ is right the first term of the series P�1r;jða; bÞ,
therefore no additional integral computation is needed. So,
this approximating formula has very high computational
efficiency.
In the same manner, we obtain the approximation to

D�ða; bÞ:

D�ða; bÞ ¼
qP�ða; bÞ

qn

� e�ikravgða;bÞ �
qP�1r;0ða; bÞ

qn

¼ e�ikravgða;bÞ �D�1r;0ða; bÞ, ð25Þ

where D�1r;0ða; bÞ ¼ ðq=qnÞ
R

panelb
1=4prðxa; yÞdy.

To reveal the rationality of above approximate formulae
for far-field integral, let us consider the integrand in
P�ða; bÞ:

1

4p
�
e�ikrðxa;yÞ

rðxa; yÞ
¼

e�ð1þiÞkreal rðxa;yÞ

4prðxa; yÞ

¼
e�kreal rðxa;yÞe�ikreal rðxa;yÞ

4prðxa; yÞ
, ð26Þ

where kreal is a positive number. If two panels a; b satisfy
kkravgða; bÞk4W , then krealrðxa; yÞ4W 0 and W 0 is a
positive number near W=

ffiffiffi
2
p

, for most Gauss points y.
The attenuation term e�kreal rðxa;yÞ in (26) makes the P�ða; bÞ
of far-field integral much smaller than the near-field
integral. Therefore, this approximate formulas (24) and
(25) are reasonable, especially for a suitable value of W.
On the other hand, the MRM formulation does not hold

the above feature. For example, the corresponding P�ða; bÞ,
with MRM formulation of (4), will become [10]:

u� ¼
XN

j¼0

ð�k2
Þ
ju�j !

1

4p
cosðkrðxa; yÞÞ

rðxa; yÞ
.

With the increase of r, cosðkrðxa; yÞÞ=rðxa; yÞ dose not
approach to zero because the k here used is a complex
number. Numerical experiments also show that the P�ða; bÞ
of far field is even larger than the one of near field, if using
the MRM formulation.
The conventional MRM is not suitable for 3D impe-

dance extraction of VLSI interconnects, because it still
holds the same numerical difficulties of CMRM discussed
in Sections 4.1 and 4.2, and there is no efficient approach
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for far-field integrals of MRM by now. This answers the
question why we choose the CMRM in this paper.
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Fig. 4. Inductance.

0.26
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5. Numerical results

The proposed method based on the CMRM and the
original direct BEM [16] for impedance extraction are both
implemented in C++ language. In our experiments, the
former is denoted by the CMRM and the latter by the
ODBEM. For the ODBEM and CMRM, the generated
linear systems are both solved with the Matlab backslash
operator. In the experiments, two interconnect structures
are extracted for the frequency-dependent impedances. The
conductor surfaces are discretized into constant rectangu-
lar panels, with collocation point located in the center of
each panel. To guarantee the accuracy of near singular
integrals, a 2D Gauss–Legendre integral scheme with 20�
20 Gauss points is used.

In the CMRM, we set W ¼ 2p and the series length
N ¼ 12. All programs are run on a PC with a Intel Pentium
IV 1.8GHz CPU.
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5.1. A single wire

The dimensions of the first example are 1mm� 1 mm�
8mm (mm ¼ 10�6 m), and the surface of this conductor is
discretized into 160 panels as shown in Fig. 3, where the red
panels surrounding the two ends are for summing up the
conductor current with the approach for high frequency
[16]. The impedance of the wire is calculated with the
ODBEM, CMRM, and FastHenry [23], a famous proto-
type of MIT using the volume discretization method, for
the frequency range from 104 to 1011 Hz. The computa-
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Fig. 3. A single rectangle wire.
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Frequency (Hz)

Fig. 5. Resistance.
tional results are shown in Figs. 4 and 5. The results of
FastHenry with two different discretization are shown. For
example, we use ‘‘FH512’’ to denote the FastHenry’s result
with the discretization of 512 filaments.
From Fig. 4, we can see that the inductances obtained by

the CMRM and ODBEM coincide with each other very
well on the whole frequency range, and the difference of
results from CMRM and FastHenry is less than 3.6%.
While for the resistance, the results of CMRM are also
close with those from other methods except the maximum
relative discrepancy is about 15%, which occurs at the
highest frequency f ¼ 100GHz (see Fig. 5). If frequency is
100GHz, the threshold distance distinguishing the near-
field and far-field integrals becomes rw ¼ 0:93mm. This
distance is not sufficient to guarantee the accuracy of far-
field integrals, and causes the large error in computing the
resistance. However, the operating frequency of the VLSI
circuit seems impossible to rise to 100GHz in the near
future. Besides, we have simulated the structure with
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f ¼ 15GHz, the results match with other methods very
well. Therefore, the CMRM is reliable and fulfills the
requirements in current VLSI designs.

For speed comparison, the total CPU times of the
CMRM and ODBEM are plotted in Fig. 6, versus the
number of sampling frequency points. As shown in Fig. 6,
the CMRM shows a very gentle increase in computing time
compared with the ODBEM, as the number of frequency
points increases. Besides, even for the first frequency point,
the CMRM is a little faster than ODBEM, because of the
efficient far-field integral formulation and computation of
the CMRM series with the recursive formula. In this
example, the frequency extends from 104 to 1011 Hz,
including eight sample points, and the CMRM finally
exhibits about three times speedup to the ODBEM.

In order to compare the speed of the ODBEM and
CMRM in detail, we firstly list the main steps of both
methods as follows:
(i)
T
ot

al
 T

im
e 

(S
ec

on
d)
Calculate the integrals related with the Laplace
fundamental solution, i.e. the G0ðx; yÞ in Table 1.
(ii)
 Calculate the integrals related with the Helmholtz
fundamental solution, i.e. the G1ðx; yÞ in Table 1.
(iii)
 Generate an overall linear equation system.

(iv)
 Solve the linear equation system, and calculate the

impedance.
The difference between the ODBEM and CMRM only lies
in step (ii). The ODBEM directly computes the numerical
integrals of complex-valued fundamental solutions. In
contrast, the CMRM calculates the far-field integrals with
approximate formulae (24) and (25), while dividing the
near-field integrals into the following three steps:
(i)
 Compute the ravg matrix.

(ii)
 Calculate and save the frequency-independent series,

such as the P�
0

1r;jða; bÞ in (20).
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Fig. 6. CPU time comparison.
(iii)
Tabl

CPU

ODB

CMR
Sum up the frequency-independent series with the
frequency-dependent coefficients, as (21).
In the CMRM, only the third step above is needed to
repeat for different frequencies, besides the far-field
integrals. While with the ODBEM, the whole step (ii)
needs to run repeatedly for different frequency.
To illustrate this point more clearly, the CPU time of

each step for calculating impedance for a single frequency
point is listed in Table 2, where the symbol asterisk
indicates the step that should be recomputed for every
different frequency point. From Table 2, we can see that
the time of calculating the Helmholtz integrals is about
seven times (11.141 s/1.766 s) of that for the Laplace
integrals. This is due to the more complexity of the kernel
e�ikr=r than 1=r. Specially, from the second frequency
point, the CPU time of the Helmholtz integrals in CMRM
is only 0.156 s for reusing the integrals among different
frequencies, while the ODBEM still needs 11.141 s. This
shows the reason why the CMRM is faster than the
ODBEM on the extraction of multiple frequency points.
5.2. A 1� 1 crossover

The second example is a 1� 1 crossover structure shown
in Fig. 7. The numbers of panels and unknowns involved
are 320 and 2244, respectively. We set frequency
f ¼ 15GHz, and run CMRM with different values of W

and N to investigate the relationship between the computa-
tional accuracy and the two parameters. The self-induc-
tances and resistances of a conductor are listed in Table 3.
Taking the ODBEMs result as the standard, the relative
errors of R and L are also listed for different settings of W

and N.
From Table 3, we can see that at this high frequency of

15GHz, even if N ¼ 5, the inductance computed by
CMRM can hold the relative error less than 3%. With
this small value of N, the CMRM spends much less
memory than the situation in Section 5.1. On the other
hand, the resistance is more sensitive to the value of W than
inductance. Anyway, with W ¼ 2p and N ¼ 9, both R and
L have relative errors less than 3%, which are sufficient for
the VLSI simulation.
For the calculation of this structure at many frequency

points, a large speedup ratio of CMRM to ODBEM is also
revealed, just like that for the first example.
e 2

time of the single wire example (s)

Laplace

integral

Helmholtz integral Generate

Ax ¼ b

Solve

Ax ¼ b

EM 11:141�

1.766 ravg Series Sum up 0:125� 2:766�

M 0.000 9.234 0:156�
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Table 3

The computational results of self-inductance and resistance for the 1� 1

crossover with different values of ðN;W Þ

ðN;W Þ R ðOÞ Error (%) L ð10�12 HÞ Error (%)

(12, 2p) 0.143694 �0.0 4.21306 �0.0

(9, 2p) 0.147152 2.4 4.18193 �0.8

(7, p) 0.157814 9.8 4.31280 2.3

(6, p) 0.157947 9.9 4.31319 2.4

(5, p) 0.158561 10.3 4.30941 2.3

ODBEM 0.143738 – 4.21392 –

C. Yan et al. / Engineering Analysis with Boundary Elements 30 (2006) 640–649648
6. Conclusions

The 3D impedance extraction with multiple frequency
points has become an important issue for the VLSI or
microwave/RF engineering. Based on a recently proposed
boundary integral formulation for wide-band impedance
extraction, the CMRM is applied to greatly reduce the
computational expense in generating the overall linear
systems for multiple frequency points. To solve the severe
numerical problems induced by the large varieties of r and
k, which are not mentioned in existing literatures of the
MRM or CMRM, a set of approaches is proposed. The
boundary integrals are divided into the near-field integrals
and far-field integrals. The near-field integrals are calcu-
lated with the CMRM formulae in the power series form
safely, while the far-field integrals are calculated with an
efficient approximate formula. In numerical experiments,
the efficiency of proposed approaches is verified. Com-
pared with the original BEM, which simply repeats the
computation for different frequency points, the proposed
CMRM has gained a large speedup while preserving
desirable accuracy.
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