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Abstract1 
An efficient method is proposed to consider the process 

variations with spatial correlation, for chip-level 
capacitance extraction based on the window technique. In 
each window, an efficient technique of Hermite polynomial 
collocation (HPC) is presented to extract the statistical 
capacitance. The capacitance covariances between 
windows are then calculated to reflect the spatial 
correlation. The proposed method is practical for 
chip-level extraction task, and the experiments on full-path 
extraction exhibit its high accuracy and efficiency. 

 
 

1. Introduction 
Process variations can be classified into systematic 

variations and random variations [2]. The systematic 
variations are often pattern-dependent and can be modeled 
with some deterministic methods, while the random 
variations need a stochastic modeling methodology for 
parasitic extraction. Some characterization methods for 
pattern dependent variations of parasitic parameters were 
proposed in [1]. For the random-variation-aware 
capacitance extraction, a straight-forward approach is the 
Monte Carlo method, which suffers from huge computing 
time with thousands of stochastic samplings.  

A non-sampling method named FastSies, was proposed 
in [3] to capture the rough surface effect in capacitance 
extraction. Based on a 3-D boundary element method 
(BEM) capacitance solver, a perturbation method was 
proposed in [4] to generate a quadratic model for the 
capacitances. A similar work was recently proposed with a 
spectral stochastic collocation method [5]. Methods in [4, 
5] model the variation as the fluctuation of each panel on 
conductor surface. Although the techniques to reduce the 
random variables are used, the number of random 
variables remains very large for problems with short 
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correlation length. Since the computational time is roughly 
that of running 3-D field solver for k2 times, where k is the 
number of random variables, the advantage of methods in 
[4, 5] over the Monte Carlo method may be limited. 
Methods in [3-5] are only suitable to model the off-chip 
rough surface effect, because they only handle surface 
fluctuation but exclude other variation sources like spacing. 
Also, these methods can only handle small structures. 

In actual chip-level capacitance extraction, only a small 
window of interconnect structure is simulated with a field 
solver or table-lookup method [6]. Then, the distributed 
capacitance model is generated for the following timing 
analysis or circuit simulation. If the total capacitance of a 
critical path is needed, the capacitances obtained within 
the windows related to the critical path need to be summed 
up in some manner [6]. To consider the process variations 
in chip-level capacitance extraction, not only the statistical 
capacitance within the window is needed, but the 
covariance of capacitances from different windows is 
required to reflect the spatial correlation of the parameters. 
Although there are several methods for statistical 
capacitance extraction, none of them considers the 
covariance of capacitances for actual chip-level extraction. 

In this paper, a simple variation model is adopted to 
consider the main variation behavior of on-chip 
interconnects. Based on this model, a technique of Hermite 
polynomial collocation (HPC) is presented, which 
generates a second-order stochastic model for capacitance. 
This method can be implemented on any kind of 
capacitance solver. To capture the capacitance correlation 
among the extraction windows, the formula of capacitance 
covariance is then derived. As an application and 
extension, the statistical method to calculate the full-path 
capacitance is proposed. Experiments are carried out with 
the proposed method and the Monte Carlo method, which 
shows that the former has more than 100× speedup while 
preserving high accuracy. 

2. Preliminary 
2.1 Process Variations with Spatial Correlation 

978-3-9810801-3-1/DATE08 © 2008 EDAA 

 



Multiple variation sources may exist in a practical chip, 
as shown in Fig. 1(a). Each process variation can be 
decomposed by systematic and random part. Therefore, for 
each geometrical parameter F, we have 

0 s rF F F F= + +                        (1) 
where F0, Fs and Fr denote the nominal value, systematic 
variation and random variation of F, respectively. In this 
work, we focus on the effect of random variation. 
Supposing the systematic variation is estimated with some 
technique, the parameter F becomes the sum of a nominal 
value and a zero-mean random variable Fr. 
 For the random variation, an important feature is spatial 
correlation [2]. One model for spatial correlation utilizes a 
set of grid cells superimposed on chip area, as shown in 
Fig. 1(b). The chip is dissected into grid cells of different 
sizes, and the random process variation is considered the 
same within each cell. The way of gridding can be decided 
with the knowledge of manufacturing process. For 
example, Fig. 1(b) shows a gridding scheme, where the 
center grid cells are coarser and less than those at 
boundary. The random variable Fr may have different 
variance at different grid cells. And the joint spatial 
variation of this parameter for all grid cells follows a 
multivariate Gaussian distribution with a correlation 
matrix Ω. A method to evaluate the variance and the 
correlation matrix was proposed in [2]. 

2.2 Homogenous Chaos Expansion 
The homogenous chaos expansion is an efficient way to 

approximate a stochastic function: 

1
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where ξ=(ξ1, …, ξd) is a set of Gaussian random variables, 
and Ψj are Hermite polynomials in ascending order. 
Homogeneous Chaos expansion is guaranteed to converge 
for any Gaussian random process with finite second-order 
moments [7]. Moreover, the Askey principle [8] showed 
that expansion based on Hermite polynomials has the 
optimal convergence rate for a Gaussian random process.  
 Approximation using the homogenous chaos expansion 
needs to truncate the series (2), preserving the first p-order 
terms. The Hermite polynomials below order 3 are: 1 for 
order 0, ξi (i=1, …, d) for order 1, and ξi

2-1 (i=1, …, d), 

ξiξj (i, j=1, …, d, i≠j) for order 2. 
 According to the Galerkin method, the truncation error 
is minimized when  
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where the inner product is defined as 
, ( )X Y E XY< >=  ,                         (4) 

and M is the number of Hermite polynomials Based on the 
orthogonality of Hermite polynomials, the coefficients can 
be determined by 
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3. Efficient Statistical Capacitance Extraction 
 Below an efficient algorithm for statistical capacitance 
extraction is presented.  

3.1 Hermite Polynomial Collocation Method 
 To model capacitance with second-order accuracy, we 
adopt a Hermite polynomial collocation (HPC) method, 
which was proved in [5] to have higher accuracy over the 
Taylor-conversion method in [4]. This method requires no 
conversion and directly represents desired capacitance C 
by homogenous chaos expansion, i. e. (2). Eq. (5) is used 
to calculate the coefficients, where the denominator is a 
fixed value and the numerator is a d-dimensional integral: 

, ( ) ( ) ( )j jC C f dξ ξ ξ ξ< Ψ >= Ψ∫  .          (6) 

Here f(ξ) stands for the probability density function (PDF) 
of ξ. Numerical integration can be used to calculate (6), 
resulting in a weighted sum representation: 
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where ξi is the ith Hermite-Gaussian integral point. 
Once we obtain the C(ξi), the statistical capacitance can 

be calculated with (5) and (7). And C(ξi) can be calculated 
by any existing tool for capacitance extraction without 
modification, since ξi is a known non-statistical quantity. 
This is a prominent advantage of the HPC method. 
 The computing time of the collocation method is mainly 
for doing K times of conventional capacitance extraction, 
where K is the number of collocation points (i.e. integral 
points in (7)). Sparse grid quadrature [9] is used as an 
efficient method to reduce the number of collocation 
points. One-dimensional sparse grid 1

kΘ  equals level k 
Gaussian quadrature, which uses k+1 points to achieve 
degree 2k+1 of exactness. The level k sparse grid for 
d-dimensional quadrature chooses points from set (8): 
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Fig. 1 A practical variation model with (a) multiple 
variation sources, and (b) a grid setting for 
variation and spatial correlation. 

(a)                         (b) 
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| |

d
k i

− 
 − 

 is a combination number and w is the 

weight for corresponding Gaussian points. The level k 
sparse grid has degree 2k+1 of exactness [9]. We further 
prove Theorem 1 as our theoretical basis for choosing the 
sparse grid level. 
Theorem 1 Sparse grid of at least level k is required for an 
order k representation. 
Proof. The approximation contains order k polynomials 
for both C(ξ) and ( )j ξΨ  for some j, so there exists 

( ) ( )jC ξ ξΨ  with order 2k, which requires sparse grid of at 
least level k with degree 2k+1 of exactness. 
 Therefore, level 2 and level 1 sparse grid are required 
for quadratic and linear model, respectively. The number 
of collocation points is about 2d and 2d2 for linear and 
quadratic model. The time cost is about the same as the 
Taylor-conversion method, while keeping the accuracy of 
homogenous chaos expansion.  

We summarize several accelerating techniques as 
follows: 
1. When d is too small, the number of collocation points 

for sparse grid may be larger than that of direct tensor 
product of Gaussian quadrature. For example, if there 
are only 2 variables, the number is 5 and 14 for level 1 
and 2 sparse grid, compared to 4 and 9 for direct tensor 
product. In this case, the sparse grid will not be used. 

2. The set of sparse grid points (8) may contain the same 
points with different weights. For example, the level 2 
sparse grid for 3 variables contain 4 instances of the 
point (0,0,0). Combining these points by summing the 
weights reduces 3 times of capacitance extraction. 

3. If a 3-D capacitance solver employing an iterative linear 
equation solver is used, the process can be accelerated 
by traversing a minimum spanning tree of collocation 
points according to their spatial distance, and then using 
the preceding solution as the initial guess for the next 
capacitance solution [5]. 
After solving the coefficients of the Hermite polynomial 

expansion with (5) and (7), each capacitance Ck inside 
window i can be represented by 
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with mean and variance calculated with 
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3.2 Variable Preprocessing 
Variables that belong to the same variation source but 

located in different variation grid cells are correlated, 
while the collocation method requires a set of uncorrelated 
variables. Therefore, a preprocessing step needs to be 
performed to transform the variables. 

Theorem 2 For a set of Gaussian variables ξ with 
covariance matrix ∆n, If ∆n=LLT, then ξ=Lξ*, where ξ* is 
an independent set of N(0,12). 
Proof. * * * * *cov( ) ( ( ) ) ( )T T TL E L L LE Lξ ξ ξ ξ ξ= =   
            cov( )TLL n ξ= = ∆ =                (12) 
 Cholesky factorization can be performed to decompose 
the covariance matrix, which is always symmetric positive 
semidefinite in nature.  

Therefore, in the preprocessing step, each set of 
variables belonging to the same variation source is 
decomposed using Cholesky factorization, yielding 
lower-triangular matrix Li. Then, the overall 
decomposition matrix L can be formed by diagonally 
aligning each Li as a block-diagonal matrix. 

 
Fig. 2 An example for variable preprocessing. 

Fig.2 gives an example for a simple layout. The 
variation sources are the width of two parallel conductors, 
and the gridding yields three variables. Suppose w1, w2 
have standard deviations σw1 and σw2, ξ1 and ξ2 have 
correlation coefficient ρ. Cholesky decomposition yields: 
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Therefore, the algorithm for statistical capacitance 
extraction within window is as follows: 
Algorithm Intra-Window Capacitance Extraction (Wi) 

1. Preprocess variables inside Wi 
2. Calculate collocation points {pj} 
3.    For each pj 
4.        Solve desired capacitance in Wi at pj 
5.    For each desired capacitance k 
6.      Evaluate capacitance Cki and variance Dki 

4. Chip-Level Capacitance Extraction 
Considering Spatial Correlation 
4.1 Window and Grid Partition 

For chip-level extraction, the window technique is 
necessary to limit the problem size. Only the small 
structure within a window is simulated with a capacitance 
solver. Then, the distributed capacitance elements are 
obtained. For a critical net, the full-path extraction may be 
needed, which utilizes the capacitances from related 
windows to assemble the total and coupling capacitances 



of the whole net. Sophisticated techniques were proposed 
in [6] for window partition and capacitance assembling. 

Since here we focus on the variation-aware capacitance 
extraction, we only consider a simple window technique. 
The windows are partitioned to be non-overlapping, and 
the whole-net capacitance is simply the sum of related 
window capacitances. This assumption does not prevent 
our method from utilizing other windowing techniques. 

The variation grid defines the variation model. The 
spatial correlation of same physical variable in different 
grid cells is usually calculated with the formulae [2]: 

2 2exp( / )rρ η= −                   (15) 
where r is the distance between two spatial positions, and 
η is called correlation length. Large correlation length 
indicates strong correlation between grid cells close to 
each other, and vice versa. Since the variation grid is 
independent from the extraction window, their spatial 
relation can be two kinds, shown in Fig. 3(a) and Fig. 3(b). 
If the windows and grid overlap, the extraction window 
will involve more variables. Otherwise, there are fewer 
variables if their boundaries coincide with each other. 
 
 
 
 

 

 

(a)               (b)    
Fig.3 Two kinds of window and grid configuration. 

4.2 Inter-Window Covariance of Capacitance 
Several methods can be used for the variation-aware 

capacitance extraction in a window, among which the HPC 
in Section 3 is an efficient one. However, the existing 
methods do not consider the relation of intra-window 
statistical capacitances caused by the spatial correlation of 
parameters. The covariance of capacitances of two 
windows is needed. Suppose the intra-window capacitance 
is represented by (10), the covariance of capacitances can 
be evaluated according to the linearity of covariance: 

1 1

cov( , ) cov( ( ), ( ))
ji MM

ki kj kip kjq p q
p q

C C c c ξ ξ
= =

′= Ψ Ψ∑∑  (16) 

where Cki and Ckj stand for capacitances of net k in 
window i and j. They are represented by Mi and Mj 
functionals, respectively. ξ and ξ′ are the variable set in 
windows i and j, respectively. Now, the problem becomes 
calculating the covariance between homogenous chaos 
functionals. 
 The first step is to determine the correlation between ξ 

and ξ′, which can be achieved by reverting them to the 
physical parameters before preprocessing: 

1 * 1 *,i jL Lξ ξ ξ ξ− −′ ′= =                      (17) 

For any two variables ξa∈ξ, ξ′b∈ξ′, correlation exists 
only if they belong to the same variation source. With (17), 

* *cov( , ) cov( , )a b iat t jbr r
t r

l lξ ξ ξ ξ′ ′= ∑ ∑  

* *cov( , )iat jbr t r
t r
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where liat and ljbr are elements of Li
-1 and Lj

-1. * *cov( , )t rξ ξ ′  
can be directly checked out from the correlation matrix. 
 By definition, there are 4 types of functionals ( )ξΨ  
below order 3. The level 0 functional can be neglected 
since it has covariance 0 with any functional. The 
remaining 3 types yield 6 different kinds of covariance 
pairs in (16), which are listed as follows:  
cov( , )a bξ ξ′   (19) 

2 2 2cov( 1, 1) 2cov( , )a b a bξ ξ ξ ξ′ ′− − =   (20) 
2cov( , 1) 2cov( , )cov( , )a c b a b c bξ ξ ξ ξ ξ ξ ξ′ ′ ′− =   (21) 

cov( , )a c b dξ ξ ξ ξ′ ′ =   
   cov( , ) cov( , ) cov( , )cov( , )a b c d a d c bξ ξ ξ ξ ξ ξ ξ ξ′ ′ ′ ′+  (22) 

cov( , ) 0a c bξ ξ ξ′ =  (23) 
2cov( 1, ) 0a bξ ξ′− =   (24) 

We only prove (22), and others can be derived in a 
similar manner. The covariance matrix of the multivariate 
Gaussian distribution (ξa, ξc, ξ′b, ξ′d) has the form 
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Performing Cholesky decomposition yields 
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Therefore, according to Theorem 2, we have 

* * *
11 12 11 21 22 21 22

11 22 12 21

cov( , )

cov( , ( )( ))
cov( , ( ) )

a c b d

a c a c b a c b d

a c a c

P P x P P x x
P P P P

ξ ξ ξ ξ
ξ ξ ξ ξ ξ ξ ξ ξ ξ
ξ ξ ξ ξ

′ ′

′ ′ ′= + + + + +
= +

        cov( , ) cov( , ) cov( , ) cov( , ) (27)a b c d a d c bξ ξ ξ ξ ξ ξ ξ ξ′ ′ ′ ′= +
Due to the independence of variation source, we have: 
Theorem 3 The covariance has non-zero value only if the 
pair satisfies one of the following two conditions: 
a) For (19)-(22), when involved variables are from the 
same variation source;  
b) For (22), when (ξa, ξ′b) and (ξc, ξ′d) are of the same 
variation source respectively, or (ξa, ξ′d) and (ξc, ξ′b) are of 
the same variation source respectively.  

If the number of grid cells overlapped by each window 
is sufficiently small, only O(Mi+Mj) calculations need to 
be performed in (16), and the cost is negligible compared 
to the extraction process. An acceleration technique can be 
used to reduce the number of windows involved. With (15), 
we know that the correlation coefficient decays to about 
10−4 when the distance between two grid cells is 3η. 
Therefore, discarding the window pairs with distance more 
than 3η only results in less than 0.1% error. 



4.3 Full-Path Capacitance Extraction 
A direct application of the inter-window covariance is 

the full-path capacitance extraction. With our simple 
assumption of windowing technique, the mean and 
variance of capacitance of net k is calculated with: 

( ) ( ) ( )k k i k i
i i

E C E C E C= =∑ ∑   

( ) ( ) ( ) 2 cov( , )k k i k i k i kj
i i i j

D C D C D C C C
≠

= = +∑ ∑ ∑    (28) 

Therefore, substituting the covariances calculated with 
(16), we obtain the variance of whole-net capacitance. 
 If the explicit quadratic form or even the PDF of 
capacitance is needed, the decomposition (12) must be 
performed on the covariance matrix for every variation 
source to gain a uniform basis {δ} for all variables: 

,    T
t tl for any tξ δ=                  (29) 

 If variation source v has pv variables, the length of δ is 
Σpv. The principle factor analysis (PFA) can be used to 
reduce the length [4]. Eigen-decomposition on the 
covariance matrix yields: 

1 1,   ( ,  ...,  )T
n nn LL L e eλ λ∆ = =   ,           (30) 

where {λi} are eigenvalues in order of descending 
magnitude, and {ei} are corresponding eigenvectors. PFA 
truncates L using the first K terms. 

The error introduced by PFA may be very small for the 
case with large correlation length. For example, for a line 
crossing 20 grid cells, the error of PFA is only 1% while 
the number of variables reduces to 5, if the correlation 
length is 10 times of size of grid cell. But if the correlation 
length is only two times of that, PFA acts merely as a full 
decomposition, and the low cost Cholesky decomposition 
becomes preferable. 
 Subsituting (29) into (10), we get an expression: 

0
TC C a Aδ δ δ= + +      .          (31) 

Since capacitances for all windows are represented using a 
same basis, the quadratic form of full-path capacitance can 
be calculated by directly summing up (31) for all windows 
without the need to compute covariance. Then, with a 
technique of characteristic function, the PDF of the 
full-path capacitance can be obtained [4]. 

Finally, we give the algorithm for full-path extraction. 
Algorithm Full-Path Capacitance Extraction 
1. Partition windows for capacitance extraction 
2. For each window Wi do 
3.    Run Intra-Window Extraction(Wi) 
4. For each critical net k with related window set Wk 
5. Utilize the capacitances for windows in Wk to 

calculate the full-path capacitance. 

5. Numerical Experiments 
Several interconnect structures with window partition 

are tested with the proposed method for the statistical 
full-path capacitance. A net crossing all windows is 

considered as a critical path, whose capacitances are 
calculated. For simplicity, the capacitances from different 
windows are simply summed up to get the total and 
coupling capacitances. The Monte Carlo (MC) simulation 
with 10000 samples is performed for comparison, as that 
in [4]. The FastCap 2.0 [10] is used to extract the 
capacitances for each window. When calculating the PDF 
of capacitance, the PFA is not used. All experiments are 
carried out on a Sun V880 server with 750 MHz CPU. 

The first case, containing two parallel lines dissected 
into 10 windows, is used to demonstrate the accuracy and 
efficiency of our method. Each line is of 40µm length and 
1µm width and height, and the spacing of line is 2µm. The 
variation sources are line height and width. For each 
window, there are 3 variables, one for height and two for 
width. The standard deviation of variable is set to 0.2µm. 
Spatial correlation exists between same kind of variable in 
different windows, and the correlation length in (15) is set 
to 8µm. The variation grid is assumed to coincide with the 
window boundaries, like that in Fig. 3(b). Both linear and 
quadratic capacitance models are calculated with our 
method, and their errors on the mean and variance of the 
capacitances are listed in Table 1. The computing time for 
each model and the number of collocation points in HPC 
method for extracting each window are also listed. 

Table 1. Efficiency and accuracy of proposed 
method for case with height and width variations 

Total Cap Err. Coupling Cap Err. Model Points Time(s) Mean Std  Mean Std 
Linear 7 9.34 -0.10% -1.00% -0.06% -1.31%

Quadratic 25 33.5 -0.03% -0.66% 0.04% -0.70%

From Table 1, we can see that both linear and quadratic 
models achieve high accuracy. The calculated PDF’s of 
total capacitance are shown in Fig. 4(a), with an enlarged 
peak view shown in Fig. 4(b). The full-path capacitance 
without considering the spatial correlation is also depicted 
in Fig. 4(a), with label of “Direct Sum”. It is obvious that 
the capacitance variance is remarkably underestimated if 
spatial correlation is not considered. 

Since the point number in Table 1 equals to the time of 
invoking FastCap for each window, calculating linear and 
quadratic models need 70 and 250 runs of FastCap, 
respectively. In MC simulation, the total time of invoking 
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FastCap is 100000, which is 400 times of that in the 
proposed method for quadratic model. The actual speed up 
of our method to MC simulation is 396 (the CPU time of 
latter is 13293 seconds), which approaches to the ratio of 
times of invoking FastCap. This is because the computing 
time for other steps in our method is negligible. 

With the same structure, we change the variation grid to 
get the second test case. Now, the grid cells and windows 
overlap each other like that in Fig. 3(a). For this case, the 
number of variables increases to 6 in each window. The 
computational time and accuracy of both linear and 
quadratic models are listed in Table 2. The MC simulation 
time is 14627 seconds. Due to the increase of variable 
number, the computing time of proposed method rises by 
2.0 and 3.8 times for linear and quadratic model, but its 
speedup to MC is still 762 and 116, respectively. 

Table 2. Efficiency and accuracy for case with 
variation grid cells and windows overlapping 

Total Cap Err. Coupling Cap Err. Model Points Time(s) Mean Std  Mean Std 
Linear 13 19.2 -0.12% -0.90% -0.10% -1.74%

Quadratic 85 126 0.06% -0.44% 0.06% -0.32%

In first two test cases, the linear capacitance model 
shows enough accuracy, and is 4 times faster than the 
quadratic model. However, this is not always true. The 
third test is performed on the same parallel-line case, but 
with the line spacing reduced to 1µm and chosen as the 
only variation source. The standard deviation of variable is 
reduced to 0.1µm accordingly. The computational results 
are listed in Table 3. For this case, the superiority of 
quadratic model on accuracy becomes significant. This 
reflects the non-linear relationship between capacitance 
and spacing, and the quadratic model is important for 
densely routed interconnects. 

Table 3. Efficiency and accuracy for the case with 
smaller spacing 

Total Cap Err. Coupling Cap Err. Model Points Time(s) Mean Std  Mean Std 
Linear 2 2.67 0.04% -3.45% 0.08% -3.09%

Quadratic 3 3.97 -0.02% -0.69% -0.07% -0.83%

 
Fig. 5 A practical 3-layer interconnect structure. 

Finally, a practical 3-layer structure shown in Fig. 5 is 
tested. The critical net shifts from the middle layer to the 
upper layer with an orthogonal turn. This structure 
includes 8 normal windows with the critical net lying at 
one layer, and 1 window with the net shifting to the upper 

layer. The whole size of the structure is about 
50µm×50µm. The variation sources are chosen like that 
shown in Fig. 1(a), and the normal and shift window 
includes 6 and 10 variables, respectively. The standard 
deviation is 0.1µm with 8µm correlation length. The 
computational time and accuracy comparison are listed in 
Table 4. From it we can see the high accuracy of our 
method, and its speedup to MC simulation is 718 and 100, 
for linear model and quadratic model respectively. 

Table 4. Efficiency and accuracy for a 3-layer case 

Model Points
(normal)

Points
(shift) Time(s) Speedup 

to MC 
Mean 
Err. Std Err.

Linear 13 21 251 718 0.01% -1.89%
Quadratic 85 221 1803 100 -0.07% -0.83%

6. Conclusion 
 A practical framework for chip-level extraction 
considering spatial correlated variations is proposed. An 
efficient HPC technique is presented for extract the 
statistical capacitances within the extraction window. 
While considering the spatial correlation, the formula for 
the covariance of capacitances from different windows is 
derived. Efficient algorithms are also proposed to calculate 
the statistics of full-path capacitance. Numerical 
experiments show that our method is of high accuracy and 
more than 100× faster than the Monte Carlo simulation. 
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