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ABSTRACT 
In this paper we present a continuous surface model to describe 
the interconnect geometric variation, which improves the 
currently used model for better accuracy while not increasing the 
number of variables. Based on it, efficient techniques are 
presented for chip-level capacitance extraction considering the 
window technique. The sparse-grid-based Hermite polynomial 
chaos combined with a novel weighted principle factor analysis is 
employed for intra-window extraction. Then, the inter-window 
capacitance covariance is calculated through matrix pseudo 
inverse. Numerical results validate the accuracy and efficiency of 
the proposed method, which is more than 50 times faster than the 
Monte-Carlo simulation with 10000 samples. 

Categories and Subject Descriptors 
J.6 [COMPUTER-AIDED ENGINEERING]: Computer-aided 
design (CAD); I.6 [Computing Methodologies]: Simulation and 
Modeling 
General Terms 
Algorithms, Theory, Design 
Keywords 
Geometric variation modeling, Hermite polynomial chaos method, 
quadratic variation model, spatial correlation, variational 
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1. INTRODUCTION 
As technology scales down to the nanometer era, the parasitic 

capacitance is delivering more impact on performance of 
integrated circuits. Delay caused by interconnect parasitics has 
already overtaken gate delay to become the major limiting factor 
of performance. At the same time, the increased mismatch 
between the actual fabricated interconnects and those in design 
brings great challenges to the computational accuracy and 
efficiency of parasitic capacitance extraction. 

Process variations can be classified into systematic variations 
and random variations [1]. The systematic variations are often 
pattern-dependent and can be modeled with some deterministic 
methods [2]. In contrast, the nature of random variations is more 
complicated and a stochastic modeling methodology is needed for 
capacitance extraction. The random variation is mainly due to 
process uncertainty and results in non-smooth geometry surfaces 

of both conductor and dielectric. Another important character of 
on-chip variation is the spatial correlation. Thus, a spatially 
correlated multivariate Gaussian distribution is often assumed for 
the geometry parameter variations [3-9].  

A straight-forward approach for variation-aware capacitance 
extraction is the Monte Carlo method, which suffers from huge 
computing time with thousands of stochastic samplings. Although 
it can be accelerated with the quasi-Monte-Carlo techniques [10], 
the latter only generates the mean and standard deviation of 
capacitance, which is often not sufficient as an accurate model 
required by the subsequent statistical circuit analysis. A non-
Monte-Carlo method was firstly proposed for variation-aware 
capacitance extraction [3-4], which emphasizes on the off-chip 
rough surface effect. The technique can only compute the mean 
and standard deviation of capacitance, but an accurate high-order 
variation model. Based on a 3-D boundary element method (BEM) 
capacitance solver, a perturbation method was proposed in [5] to 
generate a quadratic model for capacitance variation. Two 
efficient methods were then proposed to obtain the quadratic 
variational capacitance with the Hermite polynomial chaos [6, 7]. 
The spectral stochastic collocation method (SSCM) in [6] 
employs the techniques of homogenous chaos expansion and 
sparse grid quadrature to obtain the coefficients in the quadratic 
expression. The method in [7] employs the spectral stochastic 
method, and then solves augmented potential coefficient matrices. 
Considering only the first-order variation of potential coefficients, 
this method is very efficient, but not promising on the accuracy. 
Recently, a method combining the Neumann expansion and 
Hermite expansion was proposed for impedance extraction [8]. 
The computational efficiency is greatly improved for rough-
surface structures with a large number of random variables. 

Although the methods in [5-7] generate quadratic variation 
model of capacitance, which has merit for subsequent statistical 
circuit analysis, they all consider a simplified model of geometric 
variations. The variational geometry is constructed by disturbing 
the panels on nominal conductor surface, which produces an 
incomplete surface. This surface discontinuity obviously deviates 
from the actual situation, and is likely to induce large error for the 
interconnect capacitance under nanometer technology process. 
Another shortage of [5-7] is that they do not consider the actual 
chip-level capacitance extraction. Recently, techniques conside-
ring the window-based chip-level capacitance extraction were 
proposed in [9]. A so-called Hermite polynomial collocation 
(HPC) method is employed to extract the intra-window 
interconnects. And then, the capacitance covariances between 
windows and the statistical full-path capacitance are calculated. 
However, [9] uses an even simpler grid-based variation model 
than [5-7], to avoid the difficulty of random variable reduction. 

In this paper, the variation-aware capacitance extraction for on-
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chip interconnects is considered, where the correlation length of 
variables are not as short as that in the rough-surface structures. 
We firstly present a new geometric variation model, which 
generates continuous surface while not increasing the number of 
variables. Experimental results are also presented to reveal the 
inaccuracy of capacitance caused by the simple geometric model 
in [5-7]. Based on the variation model with continuous surfaces, 
the techniques in [9] are extended for chip-level window-based 
capacitance extraction. A weighted principle factor analysis 
(wPFA) technique is proposed to reduce the random variables 
while considering their different contributions to the resulting 
capacitance. The pseudo inverse of matrix is utilized to derive the 
capacitance covariance between windows. With these techniques, 
both variational intra-window capacitances and full-path 
capacitance cross windows can be computed efficiently. 
Numerical results show that the proposed method is about 50 
times faster than the Monte-Carlo method, while preserving high 
accuracy. 

2. BACKGROUND  

2.1 Statistical Capacitance Extraction 
Random variations are usually modeled with a set of random 

variables �. For interconnect capacitance extraction, we restrict 
the random variables to the geometric parameters of conductor. 
Their variation behavior is often assumed to follow the spatially 
correlated multivariate Gaussian distribution: 
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where ( )� �i
 is the possibility density function (PDF) of the i’th 

variable �i, and �  is the standard derivation (Std). The spatial 
correlation between two variables are reflected by the correlation 
function in (2), where � is called correlation length. �

ir  and �
jr  are 

the spatial positions associated with �i and �j, respectively. There 
are other forms of correlation function, which may be extracted 
through sophisticated techniques using statistical data from actual 
chips [1]. The larger the correlation length, the stronger the 
correlation between variables spatially close to each other is. 

The boundary element method (BEM) is one of the main 3-D 
capacitance extraction approaches for deterministic interconnect 
structures. The surfaces of conductor are firstly dissected into 2-D 
panels, for each of which a uniform charge distribution is 
assumed. With the potential at a panel center expressed as the 
sum of contributions from all panel charges, a linear equation 
system is formed [5-7]: 

�Pq v  .                                                                                    (3) 
Here P is called potential coefficient matrix; v consists of the 
voltages imposed on the conductors; q is the unknown vector of 
panel charges. The capacitances are computed by summing up the 
panel charges on each conductor. 

The main object of accurate statistical capacitance extraction is 
to obtain a high-order capacitance representation with respect to a 
set of random variables. A second order (quadratic) representation 
is sufficient in most applications [8]. For this purpose, the 
methods in [5, 7] firstly expand the matrix entry of P with a 
second-order form of the variables �, like 

� 	 	 �� �T T
ij ij ij ijP P a A� � �  .                                                         (4) 

Then, after matrix conversion, the statistical charge vector �q  and 
further capacitance, can be obtained. The perturbation method 
includes invoking d2 times of deterministic capacitance extraction 
for the quadratic model, where d is the number of independent 
variables. This method may have large error [6] 1 , partially 
because high-order items are truncated at the both stages of 
forming �P and solving for �q . The Hermite polynomial chaos 
method used in [6, 9] has the same order of complexity but higher 
accuracy, and is introduced in the following subsection. 

2.2 Hermite Polynomial Chaos Techniques 
Essentially, the HPC method in [9] is the same as the SSCM of 

[6]. Ref. [9] gives a concise presentation of it and points out a 
distinct advantage that the method can suit to any deterministic 
capacitance solver, even formula-based capacitance solver. Below 
the main techniques in [6] and [9] are briefly introduced. 

The statistical capacitance �C  can be expressed with the 
Hermite polynomial expansion: 
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where 
=(
1, …, 
d) is a set of independent Gaussian random 
variables, and �i

 are the Hermite polynomials of the i’th order. 
Specifically, the Hermite polynomials below order 3 are: 
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where �ij is the Kronecker delta function. The Hermite polynomial 
expansion is guaranteed to converge for any Gaussian random 
process with finite second-order moments [11]. Moreover, the 
Askey principle [12] shows that the expansion has the optimal 
convergence rate. 

The Hermite polynomials can further be labeled consistently to 
simplify (5): 
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where �j is the j’th Hermite polynomials in ascending order. The 
Hermite polynomials satisfy the following orthogonal property: 

( ),  ( ) ,   0� � 
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                                      (8)                         

where �j are constant values, and the subscript � means that the 
variables obey the Gaussian distribution. The inner product in (8) 
is defined as the mathematical expectation of the product of the 
two stochastic functions: 

,  ( )�� � �X Y E XY   .                                                               (9)                         

For quadratic capacitance model, the terms with order larger 
than 2 in (7) are truncated. This approximation of capacitance is 
denoted by ( )C 
 : 

1
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where M is the number of Hermite polynomials, 
2 2 3 2 1� 	 	M d d . The coefficients can be evaluated with: 

1 ( ), ( ) ��
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1 Experiment results in [5] even show a probability density function of 
capacitance with both positive and negative values. 
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According to (9), we need to compute a d-dimensional integral: 
( ), ( ) ( ) ( ) ( )� �� � � � ��j jC C d
 
 
 
 
 
    .                        (12) 

The Gaussian-Hermite quadrature technique can be used, which 
has a form of weighted summation: 

1
( ), ( ) ( ) ( )�

�

� � � � ��
N

i i
j i j

i
C w C
 
 
 
      ,                           (13) 

where i
  is the ith Hermite-Gaussian integral point. Therefore, 
the variational capacitance model can be obtained after solving N 
deterministic structures defined by the geometric parameters i
 .  

To improve the computational efficiency, the number of 
integral points N in (13) can be further reduced with the sparse 
grid quadrature [13]. It is proved in [9], that level-2 sparse grid is 
required for the quadratic capacitance model. This makes N about 
2d2, much less than 3d for the case using the Gaussian-Hermite 
quadrature. The sparse grid based method can be accelerated also 
by combining coincident integral points with different weights, or 
adopting the technique of minimum spanning tree [6] when 
extracting deterministic capacitances with iterative linear equation 
solver. 

3. CONTINUOUS SURFACE MODEL FOR 
GEOMETIRC VARIATIONS 

3.1 Model for One-Direction Variation 
The geometric variation model in [5-7] assumes each 

quadrilateral panel on nominal conductor surface fluctuates along 
the normal direction of surface separately, but keeps its shape 
unchanged. Thus, discontinuous conductor surfaces are generated, 
as that shown in Fig. 1(a). Under this model, the total area of 
conductor surfaces is the same as that of the nominal conductor, 
and the fragmented surface obviously deviates from the actual 
situation. 

 
A straightforward remedy to the simplified model can be made 

by characterizing the fluctuations of vertices of nominal panels 
separately. Since four vertices of a panel may not lie on a same 
plane, the triangular discretization is needed for the variational 
surface. Thus, the modified geometric variation model generates a 
continuous surface (as shown in Fig. 1(b)), where the random 
variables are imposed on the panel vertices. This variational 
surface model converges to a smooth shape as the triangular mesh 
becomes denser. The grid size of triangular mesh in practical use 
depends on the accuracy requirement of BEM capacitance solver 
and the extent of variation. 

For a plane structure, the nominal vertices fluctuate along only 
one direction (normal to the nominal surface). Thus, one variable 
is associated with one nominal vertex, as one variable corresponds 
to one nominal panel in the simplified model. Since the number of 
vertices is about half of the number of panels for the triangular 

discretization, the number of variables will also be half of that in 
the simplified model if both models have same number of panels. 
For BEM capacitance solver, the assumption of same number of 
panels usually implies the comparable result accuracy. 

3.2 Model for Two-Direction Variation 
The above model is suitable for the cases where only one-

direction variation is considered. For actual interconnect wire, 
modeling two-direction variations of height and width is often 
needed. In this case, the model for one-direction variation will 
encounter difficulty. Since surface fluctuation occurs along two 
directions, the projection of top surface on the XOY plane is 
different from the nominal shape. Fig. 2 shows an example of the 
effect of two-direction fluctuation, where the projection of arris is 
not a straight line. So, we do not have a certain nominal shape for 
the top surface and thus cannot construct the variational surface 
through disturbing the nominal vertices.  

 
To model the two-direction variation, we extend the one-

direction model by defining two variables for each discretization 
vertex on the nominal conductor. For each vertex on a wire routed 
along X-axis, random variables z�  and 

y�  are defined to 

represent the fluctuations along Z-axis and Y-axis, respectively 
(see Fig. 2). The variables for two directions form two variable 
sets, each of which obeys a Gaussian distribution with spatial 
correlation. With this model, the continuous variational surface 
can be easily generated. Now the number of variables 
approximates the number of triangular panels. So, if the 
continuous model employs the same number of panels as the 
simplified model, the number of variables will not increase. 

3.3 Comparison Results 
In this subsection, we compare the continuous surface model 

and simplified model in [5-7], through Monte Carlo (MC) 
simulations. For various discretization density, the MC simulation 
with 10000 samples is performed; the capacitances of each 
sample structure are extracted with FastCap 2.0 [14]. 

The first structure is a 1�m�1�m plane. The densest 
discretization mesh includes 800 panels, whose result is regarded 
as golden value. The simulation results for two variation models 
are listed in Table 1. Experimental results on the corresponding 
non-variation plane show that the capacitance error is less than 
1% if the panel number is not less than 242. Table 1 shows that 
the variational capacitance with the continuous surface model has 
the same convergence property. But with the simplified model, a 

Figure 2. A metal wire with two-direction fluctuation, and the 
illustration of nominal shape with two-direction variables. 

x y
z

O

y�
z�

nominal 
shape 

Figure 1. A variational plane generated with: (a) the model 
used in [5-7], (b) the continuous surface model. 

                    (a)                                                (b) 
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comparable panel number corresponds to a nearly 8% error of 
capacitance Std. With denser discretization, simulation results 
show the simplified model still results in large error of Std. 

Table 1. Simulation results for the plane (�=0.2�m, �=1�m) 
 Continuous surface model Simplified model

Num. of panel 800 242 392 256 400 
Mean (10-18F) 41.656 41.235 41.427 41.224 41.411

Std (10-18F) 0.854 0.840 0.854 0.788 0.793
Err. of Mean -- -1.0% -0.5% -1.0% -0.6%

Err. of Std -- -1.6% 0.0% -7.7% -7.1%
The second structure includes two parallel wires (2-bit bus). 

The width, height and length of each wire are 1�m, 1�m and 4�m, 
respectively. The wire spacing is 2�m. The width and height 
variations are assumed to have same Std and correlation length. 
The simulation errors of both models for different discretization 
are listed in Table 2, where the results for 4096-panel discreti-
zation are regarded as golden value. From Table 2, we can see 
that the Std error of total capacitance C11 from the simplified 
model is prominent, just as the simulation results for plane 
structure. 
Table 2. Simulation results for the 2-bit bus (�=0.2�m, �=8�m) 

 Continuous surface model Simplified model
Num. of panel 4096 640 1536 640 1568

Mean -- -1.5% -0.6% -1.1% -0.4%Err. of C11 Std -- 0.3% 1.4% -6.7% -5.0%
Mean -- 2.2% 0.8% 1.7% 0.6%Err. of C12 Std -- -1.2% 1.0% -1.1% -0.5%

Due to variables of both side surfaces are correlated, and the 
wire width is the difference of two N(0, �2) distribution, the Std of 
width in this case is actually 22 (1 exp( 1/ 64))� � � =0.035�m. 
The Std of height is the same small quantity. For larger variance 
of width and height, the error of simplified model would be larger. 

4. VARIATION-AWARE EXTRACTION 
CONSIDERING WINDOW TECHNIQUE 

In this section, the chip-level capacitance extraction in [9] is 
extended to consider the continuous surface model for geometric 
variations. For chip-level extraction, the window technique is 
necessary to limit the problem size. Only the small structures 
within windows are simulated with a BEM solver. Then, the 
capacitance elements from different windows form a distributed 
circuit for further analysis, or are used to assemble the total and 
coupling capacitances of whole critical net. Sophisticated 
techniques for window partition and assembling can be employed 
to guarantee high accuracy [15]. 

With consideration of window technique, the main tasks for 
variational capacitance extraction include the intra-window 
extraction, and the calculation of capacitance covariance between 
windows [9]. Because the continuous surface model involves 
much larger number of random variables than [9], efficient 
variable reduction is needed for the intra-window extraction. 
Since different windows are associated with each other through 
the physical variables, not the variables in capacitance model, 
calculating the capacitance covariance becomes an issue. 

4.1 Intra-Window Extraction and Variable 
Reduction with Weighted PFA 

For intra-window structure, we employ the techniques in 
Section 2.2 to obtain the quadratic capacitance expression (10). 
The computational time is proportional to d2, where d is the 
number of independent variables. Random variable reduction 
must be performed for the proposed geometric variation model. 

The principle factor analysis (PFA) is employed in [5-7] to 
reduce the random variables, which is done by eigen-
decomposition on the covariance matrix �n(�) of geometric 
random variables �. If the first K largest eigenvalues are �1, �2, …, 
�K, and e1, e2, …, eK are the corresponding eigenvectors, the 
variables � can be approximated by the linear combination of K 
dominant variables 
 [5-7]: 

1
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K

i i i
i

� e        .                                                                (14) 

Here {
i} is a set of independent variables with N(0,1) 
distribution, that can be used to form the Hermite polynomial 
chaos (10). Thus, the intra-window extraction includes the 
following main steps: 
1). Perform the eigen-decomposition for the covariance matrix of 

physical variations generated by (2) to obtain the first K 
largest eigenvalues and eigenvectors. 

2). With the technique of sparse grid quadrature, obtain the 
integral points i
  and corresponding weights. 

3). For each i
 , convert it to physical parameters i�  with (14), 
and then generate and extract the deterministic conductor 
structure with continuous surfaces. This step obtains the 
deterministic capacitances ( )iC 
 . 

4). Calculate the coefficients of the quadratic capacitance 
expression with (11) and (13). 

It should be addressed that the number of dominant variables 
required in PFA mainly depends on the correlation function (2) 
and is independent of the BEM discretization. Another comment 
is that, the eigen-decomposition is not very time-consuming, since 
it is performed only once and the dimension of covariance matrix 
for intra-window structure is just moderate. If there are several 
groups of variables and no correlation between any two groups, 
the PFA shall be performed for each group separately. 

The PFA method compares variable parameters one with 
another without considering their different impact on the output 
capacitance. A new variable reduction technique was proposed in 
[16] to take the impact on output performance into account. 
Inspired by [16], we propose a weighted PFA (wPFA) technique 
for better variable reduction. 

If a weight is defined for each physical variable �i to reflect its 
impact on output, then a set of new variables �* are formed: 

� �� �W    ,                                                                              (15) 
where W is a diagonal matrix of weights. The covariance matrix 
�n(�*) of �* includes the weight information, and performing PFA 
based on it makes weighted variable reduction. We have 

( ) ( ( ) ) ( )�� � � �T TE� � � �n W W W n W  ,                              (16) 
and denote its eigenvalues and eigenvectors by *{ }�i  and *{ }ie . 

Then, the variables � can be approximated by the linear 
combination of a set of independent dominant variables 
*: 

1 1 * * *

1

� 
� � �

�
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K

i i i
i

� �W W e    .                                            (17) 

For capacitance extraction, the capacitance value is the sum of 
panel charges, and the charge distribution is not uniform. At 
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different positions, there is charge contribution with different 
significance. Based on this observation, we define the weight for 
variable �i according to the charge density around its position. 
Firstly we perform capacitance extraction on the nominal 
structure to get a charge distribution. Then, the charge density of 
panel is reassigned to its vertices. The charge density qv,i for 
vertex i is: 

, 3�
� ��

j
v i

ji jr panel

q
q

S
          ,                                                        (18) 

where qj and Sj are the charge and area of panel j, respectively. �ir  

stands for the vertex corresponding to variable �i. Finally, the 
weight is calculated as the square ratio of vertex charge density to 
its minimum value: 

2
, 

2
, min( )

� v i
i

v ii

q
w

q
     .                                                                   (19) 

The matrix W is formed with wi as diagonal entries. Except one 
additional extraction of nominal structure, the weighted PFA 
hardly increases computational expense of PFA as W is diagonal. 

4.2 Inter-Window Covariance of Capacitance 
Because the variable parameters belonging to different 

windows may be correlated, the corresponding capacitances from 
these windows have nonzero covariance [9]. After intra-window 
extraction, we suppose the quadratic capacitance expressions for 
the kth capacitance in windows i and j are 

 
, , ,

1
( )�

�

� ��
iM

i k i k p p
p

C c 
    and  
, , ,

1
( )�

�

�� ��
jM

j k j k p p
p

C c 
  ,  

respectively. The covariance of capacitance can be evaluated with: 
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Here �
  and ��
  are dominant variable sets in windows i and j, 
respectively. Thus, the problem becomes calculating the 
covariance between Hermite polynomials. 

We first determine the covariance between a variable *
 a  in 

windows i and a variable *
 �b  in windows j. The relationship 

between �
  and physical variables �  in the weighted PFA (17) 
can be rewritten as 

�� i� 
L  ,                                                                                 (21) 

where Li is a n�K matrix. n is the number of correlated physical 
variables, and K is the number of dominant factors. With the 
concept of pseudo inverse, we derive from (21): 

� � i
 �G , 

where Gi is the pseudo inverse of Li, with dimensions of  K�n: 
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where gi,a,s and gj,b,t represent matrix entries of Gi and Gj, 
respectively. cov( , )� � �s t  can be checked out from the geometric 
variation model. 

With the covariance between two dominant variables from 

different windows, we can calculate the covariance between 
Hermite polynomials as in [9]. For problem with large n, directly 
calculating (23) is time-consuming. Considering the attenuation of 
correlation function (2), we can ignore the covariance item of two 
variables physically far away from each other. This will reduce 
the expense of calculating (23). 

The inter-window covariance of capacitance can be used to 
calculate the full-path capacitance. The mean values of relevant 
intra-window capacitances are assembled to obtain the mean of 
full-path capacitance, with the same manner as non-statistical 
extraction [15]. If considering a simple window technique with 
windows non-overlapping, the capacitance variance (the square of 
Std) of a whole net k can be calculated with [9]: 

( ) ( ) ( ) 2 cov( , )k k i k i k i kj
i i i j

D C D C D C C C
�

� � 	� � �  ,          (24) 

where Cki stands for the related window capacitance, whose 
summation approximates the capacitance Ck for net k. The 
technique to obtain the PDF of capacitance is also available in [9]. 

5. NUMERICAL RESULTS  
The proposed techniques are implemented with MATLAB, 

which generates the deterministic sample structures and calculates 
the statistical capacitances. The sample structures are extracted 
with FastCap 2.0 [14]. For comparison, the MC simulation with 
10000 samples is also performed. For each test case, the 
continuous geometric model with two-direction variation is 
assumed. Since the rough-surface effect is not prominent for on-
chip interconnects, we set the correlation lengths to be 8 to 9 
times of conductor width, like [6]. All experiments are carried out 
on a Linux server with 8 Xeon CPUs with 2.33GHz.  

5.1 Small Cases 
Two small structures are firstly tested. They are 2-bit bus and 

1�1 crossover. The width, height and length of each wire are 1�m, 
1�m and 4�m, respectively. The spacing of wires is 1�m, the 
same for two cases. Each case includes 768 triangular panels. The 
techniques of HPC and that in Section 4.1 are used to calculate 
the statistical capacitances. For both PFA and wPFA, the 
truncation criterion of eigenvalues is 0.1%. 

For the 2-bit bus structure, the correlation lengths for height 
variation and width variation are 8�m and 9�m respectively. The 
variation Std’s for the two directions are 0.15�m and 0.2�m. 
Their computational results are listed in Table 3, along with the 
error to the results of MC simulation. The table shows that both 
HPC techniques have good accuracy. For this case, wPFA reduces 
the number of variables to 9, instead of 11 by PFA. The integral 
points for sparse-grid quadrature are reduce from 276 to 191 
(30% reduction). The speedup of HPC with wPFA to 10000-
times MC simulation is about 10000/191 � 52. 

Table 3. Results for the 2-bit bus (in unit of 10-18F) 

 MC HPC(PFA) Error HPC(wPFA) Error
Mean 172.0 172.0 0.0% 172.0 0.0%C11 Std 1.640 1.609 -1.9% 1.614 -1.6%
Mean -82.4 -82.3 0.1% -82.4 0.0%C12 Std 1.720 1.799 4.6% 1.770 3.0%

For the 1�1 crossover structure, the computational results are 
listed in Table 4. The settings of correlation length and variation 
Std are the same as those for the 2-bit bus. Table 4 also shows the 
accuracy of proposed techniques. For this case, wPFA reduces the 
number of variables to 9, instead of 12 by PFA. The integral 
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points are reduced by 41% with wPFA. The speedup of HPC with 
wPFA to 10000-times MC simulation is about 52. 

Table 4. Results for the 1�1 crossover (in unit of 10-18F) 

 MC HPC(PFA) Error HPC(wPFA) Error
Mean 169.0 169.0 0.0% 169.0 0.0%C11 Std 1.808 1.738 -3.9% 1.783 -1.4%
Mean -81.1 -81.3 -0.2% -81.2 -0.1%C12 Std 1.727 1.774 2.7% 1.746 1.1%

5.2 A Large Case for Full-Path Extraction 
The experiment for a large structure is carried out to validate 

the accuracy and efficiency of the techniques presented in Section 
4.2. This case contains two parallel lines dissected into 10 
windows, and parameter settings are just the same as the first case 
in [9].  The sample geometry of this case is constructed with the 
continuous surface model, rather than the grid-based simple 
model assumed by [9]. According to the correlated multivariate 
Gaussian distribution, 10000 sample structures are generated. For 
each one, the structure is divided into 10 windows for extraction 
and the capacitance results of all windows are summed up to 
obtain the full-path capacitances. The results for 10000 samples 
are then collected to get the MC simulation results. While using 
the proposed techniques, we extract the statistical capacitance 
expressions for each window separately. Then, the statistical full-
path capacitances are calculated with the techniques proposed in 
Section 4.2. The comparison of full-path capacitances are shown 
in Table 5. 
Table 5. Results of the full-path capacitances (in unit of 10-18F) 

 MC HPC(wPFA) Error
Mean 1483 1484 0.1%C11 Std 8.76 8.87 1.3%
Mean -511 -513 -0.4%C12 Std 6.68 7.34 9.8%

From Table 5, we can see the results of proposed techniques 
match those from 10000-times MC simulation. This validates the 
accuracy of the techniques in Section 4.2. It is also found out that 
the mean of C11 has little discrepancy with that in [9], but the Std 
of C11 is much less than the latter (see Fig. 4(a) of [9]). Because 
[9] is based on an over-simplified model, its results obviously 
largely overestimate the capacitance variation. 

For this case, each window includes 1024 triangular panels, 
and the wPFA reduces the variables to 8 dominant factors. The 
HPC solves 154 deterministic structures for each window. The 
speedup to 10000-times MC is expected to be 10000/154 � 64. 
The actual breakdown of computational times is listed in Table 6. 
From the table we see that additional 40.5 seconds are spent on 
calculating the statistical full-path capacitance, mainly devoted to 
calculating the capacitance variance with (23) and (24). And, the 
actual speedup to MC simulation is still as large as 58. 

Table 6. CPU time (in second) of the full-path extraction 

Proposed method MC HPC(wPFA) Full-path variances Total 
Speedup

ratio 
20918 322 40.5 362.5 58 

6. CONCLUSIONS 
The main contributions of this work are as follows: 
1) A continuous surface model is proposed for the geometric 

variations of on-chip interconnects. Compared with the currently 

used model, the new model does not increase number of variables 
and guarantees accurate modeling of capacitance variance. 

 2) Based on the continuous surface model, efficient techniques 
for chip-level extraction of variational capacitance are presented, 
including the HPC technique for intra-window extraction and the 
calculation of inter-window capacitance covariance. 

3) A weighted PFA technique for capacitance extraction is 
proposed to reduce the random variables. Its advantages over the 
original PFA are preliminarily demonstrated by experiments. 
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