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Abstract-A quasi-multiple medium (QMM) method is proposed to accelerate the boundary 
element method (BEM) for the 3-D parasitic capacitance calculation. In the QMM method, a ho- 
mogeneous dielectric is decomposed into a number of fictitious medium blocks, each with the same 
permittivity of original medium. By the localization character of BEM, the QMM method makes 
great sparsity to the coefficient matrix of the overall discretized BEM equations. Then, using storing 
technique of sparse matrix and iterative equation solvers, the sparsity is explored to greatly reduce 
CPU time and memory usage of BEM computation. The computational complexity of the QMM 
accelerated BEM for a single-medium model problem is analyzed, and it is concluded as O(N), if 
the number of iterations is bounded. Numerical results verify the theoretical analysis and show the 
accelerating efficiency of the QMM method for calculation of 3-D parasitic capacitance. @ 2003 
Elsevier Science Ltd. All rights reserved. 

Keywords-Quasi-multiple medium, Boundary element method, Laplace equation, 3-D parasitic 
capacitance calculation. 

1. INTRODUCTION 
Efficient and precise solution of the Laplace equation is of great significance in scientific and 
engineering computation because the behavior of many physical systems is governed by it. The 
direct boundary element method (BEM), based on the direct boundary integral formulation [l], 
has been widely employed for solving the Laplace equation because of its ability to reduce the 
dimensionality of problems. The iterative solution of the discrete integral equations with N 
boundary variables generally takes operation of 0(N2), when efficient Krylov subspace iterative 
solvers with preconditioning are used. For large values of N, this is also extremely expensive. 

Since the mid-1980s, several rapid solution approaches [2-6] to integral equations from the 

classical potential theory and scattering theory have been proposed. At the same time, many 

hierarchical algorithms [7-91 were developed for rapid evaluation of Coulombic interaction in 
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large-scale particle assembly. Because of the similarity between the N-body simulation and 
boundary element solution, the hierarchical techniques developed for particle simulation are also 
applied to fast computation of dense matrix-vector product arising in BEM [lo]. Recently, the 
famous multipole algorithm proposed by Rokhlin [2] continued to be improved [ll-131, and some 
parallel versions [14,15] were presented. 

In addition, we should emphasize the multizone boundary element technique whose early idea 
was briefly introduced by Kane and Kumar [16] and has been used for significantly extending 
the range of model shapes and optimizing shape in the design sensitivity analysis [17-191. At 
the same time, the sparsity in the coefficient matrix of the discrete linear system produced by 
the multizone technique was attended and exploited for getting higher computational efficiency 
in [17,19]. But, it seems that the multizone boundary element analysis has not been treated as 
a fast solution to the direct boundary element method. In fact, the fast quasi-multiple medium 
(QMM) method proposed in this paper is similar to the multizone boundary element method, 
though their backgrounds are not the same. But in the QMM method, we utilize the boundary 
element analysis for multiple mediums and the iterative equation solver for large-scale computa- 
tion, and are concerned with how a single medium should be decomposed so that computational 
speed-up can be obtained. In the application of parasitic capacitance extraction, the QMM 
method has shown its efficiency in reducing computing time and memory usage. 

Today, in the deep submicron very large-scale integration (VLSI) circuits, the parasitic capac- 
itance of interconnect conductors is becoming dominant in governing circuit performances such 
as time delay, power consumption, etc. Many rapid solutions mentioned above were successfully 
used to accelerate the boundary element evaluation of the parasitic capacitance [10,15,20]. But, it 
should be pointed out that all these algorithms were almost implemented in the indirect BEM and 
will encounter a lot of difficulties while extending them to the problem with multiple dielectrics 
and finite domain. Compared with the indirect BEM, the direct BEM is more convenient to 
treat the problems with the mixed Neumann and Dirichlet boundary conditions, because there 
are two variables of electrical potential and its normal derivative in the direct boundary integral 
equation (BIE) [1,19]. 

In this paper, a quasi-multiple medium (QMM) method is proposed to accelerate the direct 
BEM computation. It utilizes the localization character of direct BEM to transfer the coefficient 
matrix into a very sparse one. With the technique of storing sparse block matrix and the Krylov 
iterative solvers, the QMM method reduces the computing time and memory usage greatly. With 
a simplified model problem, the computational complexity of the QMM accelerated BEM is 
analyzed, and is concluded as a nearly linear relationship with the number of boundary elements. 
Two numerical experiments are presented. The first one is designed to verify the analysis of 
computational complexity, and the second one demonstrates the efficiency of the QMM method 
for the calculation of actual 3-D VLSI parasitic capacitance. 

The rest of this paper is organized as follows. Section 2 outlines the direct BEM for calculation 
of parasitic capacitance. The QMM method and the analysis of its computational complexity 
are presented in Section 3. In Section 4, some numerical results are shown to demonstrate the 
performances of the QMM method. Finally, we give conclusions in Section 5. 

2. DIRECT BEM CALCULATION 
OF PARASITIC CAPACITANCE 

The formulations of direct BEM are reviewed for a potential problem, the calculation of VLSI 
parasitic capacitance. The parasitic capacitance can be obtained through the computation of 
normal electrical field intensity on surfaces of conductors (20). In the three-dimensional domain 0 
of a parasitic capacitor with single dielectric, electrical potential u fulfills the Laplace equation 
with mixed boundary conditions 
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v2u = 2 + !$ + $ = 0, in R, 

u = uo, (1) 

where E is the permittivity of the dielectric. lYu. is the surface of conductors, where u is known and 
determined by bias voltages; I’q is the Neumann boundary (outer boundary of the dielectric), 
where normal electrical field intensity q is supposed to be zero. n stands for the unit vector 
outward normal to the boundary. Xl = rU U I’, is the boundary surrounding the domain 0, 
which is filled by the dielectric. 

With the fundamental solution u* of the Laplace equation as weight function, the Laplace 
equation in (1) is transformed into following direct BIE by the Green’s formula [l]: 

GUS + 
J 

q* udr = J u* qdl?, (2) 
an a0 

where u, is the electrical potential at source point s, c, is a constant dependent on boundary 
geometry near the point s, and q* is the derivative of u* along the outward normal direction of 
boundary 80. 

Employing constant quadrilateral elements, we obtain the discretized BIE. By evaluating it at 
every collocation point k, one for an element, the whole discretized BIEs are obtained as 

where N is the number of boundary elements, and Pj is the j th element. With a certain setting 
of bias voltages, the discretized BIEs can be written as 

Ax=f, (4) 

where vector x includes all discretized variables, the unknowns of electrical potential on the outer 
dielectric surfaces, and normal electrical field intensity on the conductor surfaces. 

For a large-scale 3-D problem, the coefficient matrix A is a large nonsymmetric matrix. The 
Krylov iterative solvers with preconditioning are usually efficient to solve this kind of equa- 
tion [21]. A GMRES algorithm [22] with diagonal preconditioning is used in this paper. Then, 
the parasitic capacitance can be evaluated by the integral of normal electrical field intensity on 
the conductor surfaces [20]. 

For a problem with multimedium domains R = UC& (i = 1,. . . , M), where M is the number of 
mediums, the electrical potential u and its normal derivative q need to fulfill the compatibility 
equations along the interfaces l?I of two adjacent mediums a and b, 

f%Z dub 
‘%a dn, = -Eb dnbt % = ub, on rI, (5) 

where E, and &b stand for the permittivities of medium a and b. The u and q on the interfaces 
are both unknown. Thus, the boundary of each medium in the multimedium system is the 
combination of three kinds of boundary, including l?%, r4, and II. 

Equation (3) for each medium can be put together utilizing the compatibility equations (5). 
Then, a coupled system of linear equations with the same form of (4) is obtained, where x involves 
all kinds of discretized variables, including the unknowns of u and q on the interfaces. 
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3. QUASI-MULTIPLE MEDIUM METHOD 

3.1. Localization Character of Direct BEM 

From formulas (3) and (5) we can see that in each discretized BIE all the discretized variables 
are on boundary elements of one dielectric region. So, for a problem with multiple mediums, 
there are direct interactions among the boundary elements in the same medium, which result in 
nonzero coefficients in the overall equation (4). We call this the localization character of direct 
BEM. 

In the linear system (4), coefficient matrix A reflects the distribution of interactions among all 
boundary elements. If there is the direct interaction between two elements, nonzero entries are 
formed by the integrals in (3), which are taken on one of the elements with the source point on the 
other. Otherwise, when the source point and the discrete variables avn the elements without 
direct interaction, i.e., not involved in a same medium, zero entries are formed in the matrix. For 
a problem with multiple mediums, the localization of direct BEM makes matrix A sparse, from 
which we could benefit while solving the system of algebraic equations (4). In Figure 1, we show 
a typical capacitor with two mediums and the corresponding matrix A generated by the direct 
BEM, where the nonzero entries and the owners of discrete variables are indicated. 

YMedium 1 
Medl Med2 Interface 

(a) A two-dimensional problem with two mediums. 

Figure 1. 

(b) The corresponding 
coefficient matrix A, where 
the gray blocks stand for 
nonzero entries. 

3.2. Quasi-Multiple Medium Method 

The QMM method takes full advantage of the localization character of direct BEM. A single 
medium with permittivity E is regarded as a composition of Q fictitious medium blocks, whose 
permittivities are all the same as E, as shown in Figure 2. Thus, the problem with single medium 
is transferred into a problem with some fictitious mediums. Because of the localization character, 
the dense coefficient matrix for a single-medium problem is converted into a sparse one for the 
problem with multiple mediums. 

With suitable decomposition of the single medium, the resulting coefficient matrix A will 
become one with much sparsity so that computational speed-up is available. With the storage 
technique of sparse blocked matrix and iterative equation solvers such as the GMRES algorithm, 
the computing time and memory usage for the original single medium problem will be greatly 
reduced. We call this the quasi-multiple medium (QMM) method. The QMM method is not 
only useful for single-medium problems, but also for multimedium problems, because the idea of 
decomposing each medium is also applicable to problems with multiple mediums. 

Therefore, the QMM method includes the following three main points. First, a single medium 
is regarded as a composition of some fictitious mediums. Second, a suitable strategy of decom- 
position is considered to make the resulting BEM coefficient matrix with much sparsity. Last, 
the technique of storing sparse matrix and iterative equation solver are used to benefit from the 
matrix sparsity. 
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Figure 2. A single dielectric with Cartesian coordinate system is cut into Q = 
&I Qy . Qz fictitious mediums. 

It should be pointed out that the QMM method adds some unknowns to the overall prob- 
lem, which are introduced on the additional fictitious interfaces of quasi-multiple mediums. For 
the calculation of parasitic capacitance, these unknowns account for a little percentage of to- 
tal unknowns since most boundary elements are located on the conductor surfaces, generally. 
So, the advantage taken from the sparsity of the coefficient matrix might greatly outweigh the 
disadvantage of adding some unknowns. 

3.3. Analysis of Computational Complexity 

In this section, we first discuss the importance of the number of the nonzero matrix entries for 
large-scale BEM computation. Then, the computational complexity of QMM method is analyzed 
for the optimal situation. 

The total CPU time used in large-scale BEM computation can be expressed as follows: 

t = tgen + tso1 + ta,,, (‘3 

where tgen is the time spent in generation of the coefficients in equation (4), tsar is the time spent 
in solution of equation (4), and t aux stands for the time spent in other supplementary procedures, 
including input of structure data and partition of boundary elements, etc. Generally speaking, 
the sum of tgen and tsol accounts for most part of the total CPU time t. Using the iterative 
equation solvers such as GMBES [22], we can then get the following nearly linear relationships: 

&en m z, ho1 m Zl, (7) 

where Z stands for the number of nonzero entries of matrix A, and 1 stands for the number of 
iterations. 

For a large 3-D problem, the coefficient matrix A is a nonsymmetric matrix with a large order. 
The GMBES algorithm is suitable for this kind of equation, and a good preconditioning matrix 
should also be selected to quicken its convergence [21]. When organizing the discretized BIEs, 
we make the order of the source points consistent with that of the discretized unknowns, so that 
the diagonal entries of the matrix are obtained by the singular integrals, in which the source 
point is within the element where the integral is taken. Because the singular integral results in 
a nonzero entry with very large absolute value, the diagonal preconditioner is adopted to bring 
quick convergence. So, the number of iterations is much less than the parameter Z in (7). 

If we ignore the influence oft,,, and assume the 1 does not change much while using the QMM 
method, the speed-up ratio of the BEM computation with QMM acceleration to that without 
QMM acceleration is 

&peed-up = $ ~3 $, (8) 
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where 2 and 2’ stand for the number of nonzero entries of matrix A in these two situations, 
respectively. This expression reveals that the ratio of numbers of nonzero matrix entries approx- 
imately equals the speed-up ratio of the QMM method. 

Below, we analyze the number of nonzero entries in &MM computation, and compare it with 
that in the original single medium (SM) computation. Because of much difficulty in analyzing 
the general complex situation, a simplified model problem is discussed. 

We suppose that there are N, boundary elements uniformly distributed in the original single 
medium domain s1, ; on each element, there is only discretized unknown. For simplicity, the 
configuration of the N, boundary elements in the original single medium situation is not changed 
in the implementation of QMM. Hence, there are N,/Q first kind boundary elements (on each 
one of which there is only one unknown) within each fictitious medium block, that is denoted by 

The number of interface surfaces is different for the Q fictitious medium blocks. For example, 
there are only three interfaces in the block located at eight vertices of the original rectangular 
parallelepiped, while six in the central blocks (see Figure 2). For simplicity, we conservatively 
assume that all the fictitious medium blocks have six interfaces, and the number of boundary 
elements on six interfaces is b. On each of these elements, there are two discretized unknowns. 
We call the boundary element with two unknowns the second kind of boundary element. So, the 
following expression is obtained: 

IEk”l = b, k= l,...,Q. (10) 

According to formula (3) and the constant collocation method, the following number of nonzero 
entries is produced in the matrix A for each fictitious medium: 

a=e= (%+b) (2+2b), k=l,..., Q. 

Then, the total number of nonzero entries in the QMM computation is 

N,” Zg=Q.e=Q+3Nsb+2Qb2. (12) 

We use Z, to denote the number of the nonzero entries of coefficient matrix A in the original 
single-medium computation and have Z, = N,“. Therefore, the speed-up ratio R brought by the 
QMM method is 

ZS 1 
R = z, = l/Q + 3(6/N,) + 2(b/Ns)2Q’ (13) 

Letting c = b/N,, formula (13) can be rewritten as 

R= 
1 

l/Q + 3c + 2c2Q ’ 

An optimal value of Q can be derived by 

+ 3c + 2c2Q = 0, 

and is obtained as 

2c 2b 

(14) 

(15) 

(16) 



A Fast Quasi-Multiple Medium Method 1889 

When the optimal 0 is used in the QMM computation, a maximal R can be obtained as follows: 

R 
1 1 N, 

max= 2&+3c = (3+2Jz) b’ 
(17) 

Because N, is much larger than b, R,, is much larger than one. So, substantial computational 
speed-up is available. 

From formulae (12) and (16), the minimal value of ZQ, the number of nonzero entries of the 
coefficient matrix A in QMM computation, is obtained as“‘ 

ZQ,min = [(2h+3) b] Ns. 08) 

Fixing the value of parameter c, formula (17) presents the maximal computational speed-up ratio 
of the QMM method to the SM computation. Furthermore, if the number of iterations in GMRES 
is bounded, we can see the linear relationship between CPU time of QMM computation and the 
number of boundary elements in the problem from formula (18). In addition, the number of 
boundary elements on the fictitious interfaces influences the value of parameter c, so it is very 
important for balancing the computational accuracy and speed of the QMM method. 

4. NUMERICAL RESULTS 

In this section, two experiments are carried out to demonstrate the efficiency of the QMM 
method. In the first experiment, a single-medium structure is designed to verify the analysis 
of the computational complexity of the QMM method. Actual parasitic capacitors with three 
dielectrics and crossover conductors are calculated with QMM accelerated BEM in the second 
experiment. Numerical results show that the QMM method greatly accelerates the direct BEM 
computation for parasitic capacitance, and the memory usage is reduced at the same time. The 
problems are run on a Sun-Ultra Enterprise 450 Server, and the stopping criteria of the GMRES 
is set to be 1.0 x 10m4. In all data tables the unit of time is seconds, and the unit of capacitance 
is lo-l8 farad. The unit of memory is megabytes. 

4.1. k x k x k Metal Cuboids Embedded in a Dielectric 

Capacitors with k x k x k (k = 2-8) metal cuboids distributed uniformly in a dielectric are 
used for the numerical experiment. The size of each metal cuboid is 0.4 x 0.4 x 0.4 (unit in pm), 
and the size of the dielectric is k x k x k (unit in pm). The relative permittivity of the dielectric 
is 3.9. The spacing between any two adjacent metal blocks is 0.6 pm. The capacitor with 2 x 2 x 2 
metal cuboids is shown in Figure 3a. 

In the capacitors, one of the k x k x k metal blocks is specified as the master conductor (whose 
bias voltage is 1 V), while the others are the environment conductors (whose bias voltages are 
all OV). We need to calculate the capacitance between the master and all environment conductors. 

These structures can be calculated by direct BEM for single medium, which is called the 
SM computation. In the SM computation, there are four boundary elements on each surface 
of environment conductors, and nine elements on each surface of the master conductor. On 
each outer boundary surface of the dielectric with the size of k x kpm2, 2k x 2k boundary 
elements are partitioned. On each of these boundary surfaces, boundary elements are partitioned 
uniformly. Using the idea of QMM method, these single-medium structures are decomposed into 
some fictitious medium blocks like Figure 2. We assume there are four boundary elements on 
each fictitious interface, and then the parameter b in (10) is 24. With the formula (16), we can get 
the theoretical optimal value of the number of fictitious mediums in QMM computation. They 
are denoted by ok (k = 2-8) and listed in Table 1. According to the symmetry of these 3-D 
structures, the numbers of fictitious medium blocks along directions of the X-, Y-, and Z-axis 
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(a) A capacitor with 2 x 2 x 2 metal cuboids, (b) The capacitor shown in (a) is divided into 
where the dark cuboid is the master conductor. 2 x 2 x 2 fictitious medium blocks. 

Figure 3. 

Table 1. Theoretical and actually adopted numbers of fictitious medium blocks along 
each axis for capacitor k (k = 2-8). 

N-BE Theoretical Theoretical Actual 
kxkxk 

in SMa Value ok Value 6 N-FMBEAb 

2X2X2 318 9.37 2.1 2 

3X3X3 894 26.34 3.0 3 

4X4X4 1950 57.45 3.9 4 

5X5X5 3630 106.95 4.7 5 

6X6X6 6078 179.08 5.6 6 

7X7X7 9438 278.07 6.5 7 

8X8X8 13854 408.18 7.4 8 

aN-BE in SM-number of boundary elements in SM computation 

bN-FMBEA-number of fictitious medium blocks along each axis. 

are all the cube root of &. They are also listed in Table 1, with the actually adopted numbers 
of fictitious medium blocks along each axis. 

In our experiment, these optimal fictitious block numbers ok are used to construct quasi- 
multiple medium structures. Except for the case with 8 x 8 x 8 metal cuboids, we let the number 
of fictitious medium blocks along each direction be eight, in order to avoid processing complex 
boundary geometry. 

Now, in this experiment the capacitor with k x k x k metal cuboids is uniformly divided 
into k x k x k fictitious blocks for QMM computation. Corresponding quasi-multiple medium 
structure of the capacitor with 2 x 2 x 2 metal cuboids is shown in Figure 3b. In the QMM 
computation, the distribution of elements in the original SM computation is not changed. And, 
on each fictitious interface of mediums, four elements are added. The results of SM computation 
and QMM computation for these cases are listed in Table 2. 

Table 2 shows the number of iterations, capacitance, and CPU time in the QMM computations 
compared with those in the SM computations. The QMM computation is at most about 50 
times faster than SM computation. The discrepancies between the results obtained with SM 
computation and QMM computation are within 3%. The GMRJXS iterations increase for several 
steps in the QMM computations than in SM computations. This weakens the efficiency of the 
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Table 2. Comparison of the results between QMM computation and SM computation 
for capacitors with k x k x k metal cuboids. 

SM QMM 
kxkxk 

N-BE8 Iterationb Cap.= Time N-BE’ Iterationb Time 
sp~~~~p Dis.d (%) 

2X2X2 318 7 94.6 1.2 366 13 0.4 3.0 2.5 
3X3X3 894 9 117.1 8.9 1110 17 1.5 5.9 2.2 
4X4X4 1950 10 148.3 41.1 2526 18 3.7 11.1 1.4 

5X5X5 3630 12 148.3 152.5 4830 18 8.2 18.6 1.4 
6X6X6 6078 13 148.3 405.6 8238 19 14.3 28.4 1.4 
7X7X7 9438 14 148.3 1071.5 12966 19 24.4 43.9 1.4 

8X8X8 13854 16 148.3 2214.2 19230 19 40.4 54.8 1.5 

aN-BE-number of boundary elements. 

bIteration-the required number of iterations. 

CCap.--capacitance value, unit is lo-‘*f. 

dDis.-the discrepancy of results by SM and QMM computations 

200 1000 10000 20000 

Number of boundary element (SM) 

Figure 4. The log-log graph of the CPU time versus number of the boundary elements 
for a clear comparison of the computational complexity between the QMM and SM 
computations. 

QMM method. From these results, it is clear to see that the bigger problem size is, the larger 
computational speed-up the QMM has. 

We depict the relationship between the CPU time and size of simulated problem, which is 
represented by the number of boundary elements in SM computation, in a log-log graph (see 
Figure 4). From it, the power law for CPU time versus the number of boundary elements is 
found to be 

CPU time 0: iV2.00 

CPU time 0: Nr21 

(SM computation), 

(QMM computation). 

This means the QMM algorithm has an approximately linear computational complexity, while 
the computational complexity of the SM computation is quadric. 
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Figure 5. A structure with 6 x 6 crossovers. 

Y 
w 

Figure 6. A 4 x 4 QMM cutting is performed on the structure of 2 x 2 crossovers. 

4.2. k x k Crossovers Embedded in Three-Layered Dielectrics 

The structures with k x k (k = 2,4,6) bus-crossing conductors embedded in three dielectric 
layers with a ground plane at the very bottom are calculated by BEM with QMM acceleration 
and BEM without QMM. Figure 5 shows the first structure, with 6 x 6 crossovers. The structure 
parameters are as follows. The height of each dielectric layer is 5 pm. Each metal line is a 3 x 3 x 28 
cube (unit in pm). The space between two adjacent metal lines on the same layer is 2/.~m. The 
distance between the outmost metal line and the outer boundary of dielectric is 1 pm. Every 
metal line touches the bottom of the dielectric which surrounds it. The relative permittivities are 
all chosen to be 1.0 for the sake of simplicity. Removal of conductor 1, 6, 7, and 12 produces the 
second structure with 4 x 4 crossovers. And, removal of conductor 2, 5, 8, and 11 again produces 
the third structure with 2 x 2 crossovers. The capacitance between master conductor 3 and the 
other conductors is calculated. 
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Because the actual structures involve multiple dielectrics, the BEM without QMM for them 
uses multimedium BEM analysis in Section 2. For these cases, the analysis of optimal QMM in 
Section 3.3 is not applicable. A simple strategy of decomposing each dielectric layer is adopted in 
this experiment. Each dielectric layer is uniformly cut perpendicularly to the X-axis and Y-axis. 
Thus, in the top view of these structures, each layer is decomposed into an array of m x n 
fictitious medium blocks. Figure 6 shows the third structure is performed with 4 x 4 cutting. In 
the QMM computations of our experiment, each dielectric layer is decomposed into 6 x 6, 6 x 6, 
and 4 x 4 fictitious blocks for the three cases, respectively. The boundary element partition of 
these structures is using a strategy of nonuniform density partitioning to achieve high accuracy 
with fewer elements. So, it is hard and not necessary to describe the element partition in detail. 

Table 3 shows the numbers of nonzero entries in matrix A and the number of iterations in 
the two methods. From it, we can see that BEM with QMM acceleration generates much fewer 
nonzero coefficients than that without QMM, so high speed-up ratio can be expected. Table 3 
also shows that the number of iterations increases in the BEM with QMM acceleration. 

Table 3. Comparison of the number of nonaero matrix entries and iterations for k x k 
crossover problem. 

BEM without QMM BEM with QMM 
Ratio of 

kxk Nonzero Entry Iteration Nonsero Entry Iteration Nonzero Entry 

6x6 14559975 21 1191738 27 12.2 

4x4 9529903 20 993038 30 9.6 

2x2 5237647 21 964454 34 5.4 

Table 4 shows the capacitance, CPU time, and memory usage of both methods. For the given 
strategies of QMM decomposing, the BEM with QMM is about 4-10 times faster than that 
without QMM with the difference in the results less than 3%. And using the QMM method, the 
memory usage is about 2-4 times less than that not using it. The increase of iteration number 
shown in Table 3 should account for the difference between the actual speed-up ratio and the 
expected one. 

Table 4. Comparison of CPU time and capacitance for k x k crossover problem. 

BEM without QMM BEM with QMM 

k x k N-BE Memory Cap. Time N-BE Memory Cap. Dis. (%) Time Speed-Up 

6x6 5547 62 1699 161.4 6822 17 1738 2.3 16.6 9.7 

4x4 4475 42 1636 104.2 5630 15 1673 2.3 14.6 7.1 

2x2 3238 25 1157 56.1 3644 11 1180 2.0 13.4 4.2 

5. CONCLUSIONS 

Fast and accurate extraction of the parasitic interconnect capacitance from the deep submicron 
VLSI circuits is becoming an important and difficult task for the design of integrated circuits 
with high performance. A fast QMM method based on the localization of direct BEM is proposed 
to accelerate the BEM computation of the parasitic capacitance. The QMM method utilizes the 
Krylov iterative solver and takes full advantage of the localization of direct BEM. For a simplified 
single-medium model, an optimal Q value is analyzed, which brings the largest computational 
speed-up to BEM without QMM. Furthermore, the computational complexity of the QMM ac- 
celerated BEM is analyzed and concluded as an approximate linear relationship between the 
computational time and the number of boundary elements. The application of the QMM method 
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to the calculation of actual parasitic capacitance also reveals the CPU time and memory usage 
is greatly reduced like that for the simplified model problem. 

There are some additional boundary elements partitioned on the interfaces of fictitious mediums 
in QMM computation, which increases the number of unknowns in the overall BEM equations. 
But for the problems, in which the number of unknowns on fictitious interfaces for a small 
percentage of the number of all unknowns, the matrix sparsity brought by the QMM method can 
greatly overwhelm the influence of fictitious interfaces. Otherwise, for the other problems, the 
QMM method may not be effective. So, the QMM method is a good choice to greatly accelerate 
BEM computation for the problems with most of boundary elements not related to the fictitious 
interfaces, like in the VLSI parasitic capacitor. 

The optimal number of fictitious mediums for a single-medium problem is analyzed in this 
paper. The situations for some multimedium problems are much more complicated, and the 
optimal strategy of QMM decomposing for these problems will be discussed further in the future 
works 
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