

Parallel Statistical Capacitance Extraction of On-Chip Interconnects with an Improved Geometric Variation Model

¹Wenjian Yu, ¹Chao Hu, ²Wangyan<mark>g Zhang</mark>

¹Dept. Computer Science & Technology Tsinghua University, Beijing, China ²Dept. Electrical & Computer Engineering Carnegie Mellon University, USA

- Background
- Geometric Variation Models
- Experiments with Different Geometric Models

- A Parallel Statistical Capacitance Solver and Numerical Results
- Conclusions

Background

- Parasitic (R, C) extraction
 - Crucial for interconnect modeling and accurate circuit analysis
 - In capacitance extraction, the field solver algorithms are important
- Process variations in nano-scale tech.
 - Geometric variations
 - Surface roughness, spatial correlation

Flowchart of LPE

Background

- Statistical C extraction
 - Systematic variations, random variations
 - Need stochastic modeling method to generate statistical distribution of C
- Challenges
 - Accuracy: statistical model, geometric variation model
 geometric parameters obey a spatially correlated multivariate
 Gaussian distribution

4/20

 Efficiency: computational expense is thousands of times larger than the non-statistical extraction

Background

- State-of-the-art
 - Monte-Carlo / Quasi-Monte-Carlo: suffers from huge computational time, or not sufficient for the subsequent SCA

- Perturbation method [ICCAD'05]: quadratic model of C, Taylor's expansion, suitable for small-magnitude variation
- Spectral stochastic collocation method [DATE'07]: computationally more efficient, a simple geometric model
- Chip-level HPC method [DATE'08]: considers chip-level extraction problem, with simpler geometric model
- Continuous-surface method [DAC'09]: continuoussurface geometric model, weighted PFA for acceleration
- A good geometric model should be established to reflect the actual variations, prior to the statistical extraction

- Background
- Geometric Variation Models
- Experiments with Different Geometric Models

- A Parallel Statistical Capacitance Solver and Numerical Results
- Conclusions

- Existing geometric variation models
 - Discontinuous surface variation (DSV): panels fluctuate along surface's normal direction, keeping shape unchanged

- Continuous surface variation (CSV): vertices of panels fluctuate differently, and form a continuous surface with triangular panels
- Variation as a whole (VAW): the nominal surface fluctuates as a whole

- Existing geometric variation models
 - VAW does not consider the detailed variations, used for sensitivity calculation, or simplified 2-D structure

8/20

side

AFT.

- DSV generates incomplete surface, obviously deviates from the actual situation
- The CSV model proposed in [DAC'09], seems more reasonable than the other two. However, it's not trivial to depict actual 3-D wire with both width and thickness variations
- If top and side surfaces fluctuate independently, the shape becomes incomplete or irregular around the arris

We shall consider more on variable setting and grouping

• The existing CSV model [DAC'09]

std

- To avoid the irregularity around arris, two random variables are set for each vertex
- All the variables are divided into two groups: ξ_y and ξ_z. Each includes correlated variables with same "+" direction
- The shortages: redundant variables; unreasonably large surface variation for moderate width/thickness variation

9/20

nominal shape

$$\xi_{W} = \xi_{y,B} + wid - \xi_{y,A} \implies \operatorname{std}(\xi_{W}) = \sqrt{E(\xi_{W}^{2}) - E^{2}(\xi_{W})} = \sqrt{E(\xi_{y,B}^{2}) + E(\xi_{y,A}^{2}) - 2\operatorname{cov}(\xi_{y,B},\xi_{y,A})} \approx \sigma_{y} \cdot \frac{\sqrt{2} \cdot wid}{\eta_{y}} = \int_{Wid}^{Z} \int_{Wid}^{Z} \int_{Wid}^{Wid} \int_{Wid}^{Z} \int_{Wid}^{Wid} \int_{Wid}^{W$$

- Improved CSV (ICSV) model
 - New scheme of variable setting and grouping
 - Set only 1 independent random variable for each vertex, along outer normal
 - Tangential displacement of vertex (called derived variable ξ^{*}) produced by interpolating two variables at edge
 - This guarantees regular shape around arris ⁵/₂
 - 4 groups of variables: top, bottom, left-side, and right-side

10/20

 $\xi_{u,\sigma}$

wid

Calculate the width variation again:

 $\xi_{W} = \xi_{y,B} + wid + \xi_{y,A} \implies \operatorname{std}(\xi_{W}) = \sqrt{2}\sigma_{v}$

Can set reasonable σ_y/σ_z to model width/thick variation

- Background
- Geometric Variation Models
- Experiments with Different Geometric Models

- A Parallel Statistical Capacitance Solver and Numerical Results
- Conclusions

Comparison Experiments

- Experimental settings
 - A typical pattern-library structure^h
 - 65nm tech., t=h1=h2=0.2μm,
 w=0.1μm, wire length L=1μm

- h1 and h2 are two random variables; random surface variation is considered in both width and thickness
- Variation Std σ=10%; change the correlation length η from 0.5µm to 2µm (L/η: 0.5~2)

Comparison Experiments

- The errors of VAW and DSV models

 - Errors of VAW and DSV in Std of capacitances with L/η changed (s=0.1 and 0.2µm)
 - Error of VAW $\propto L/\eta$, error of DSV is always about -20%

14/20

Comparison Experiments

- The statistical distribution of C
 - Std > 5% of mean for C11,⁷⁰⁰
 and >10% for C12
 - Skewed distribution
 suggests quadratic model
- Three observations
 - **OB1**: DSV model underestimates^{(a) C₁₁} $(b) C_{12}$ the Std of total/coupling capacitances, with ≥20% error.

 - OB3: For structures with Std of the geometric variation to be 10%, the statistical capacitance has skewed distribution requiring quadratic stochastic model.

- Background
- Geometric Variation Models
- Experiments with Different Geometric Models

- A Parallel Statistical Capacitance Solver and Numerical Results
- Conclusions

Statistical Capacitance Extraction

- A new statistical capacitance solver statCap
 - Based on the ICSV model
 - Employ the HPC [DATE'08] for quadratic model

$$\tilde{C}(\boldsymbol{\zeta}) = a_0 \Psi^0 + \sum_{i_1=1}^d a_{i_1} \Psi^1(\boldsymbol{\zeta}_{i_1}) + \sum_{i_1=1}^d \sum_{i_2=1}^{i_1} a_{i_1i_2} \Psi^2(\boldsymbol{\zeta}_{i_1}, \boldsymbol{\zeta}_{i_2})$$

- Employ the wPFA [DAC'09] for variable reduction
- Employ parallel computing for acceleration

Statistical Capacitance Extraction

• Numerical results

- η=0.5, 0.8, 1, 1.5μm; s=0.1μm
- The results of statCap validate the accuracy of wPFA
- Efficiency comparisons
- wPFA reduce 22% time
- 7x speedup achieved on an 8-core machine
- Speedup of statCap to MC-10000 varies from 9.8 to 42

The errors of the "HPC+wPFA" method for the four test cases

17/20

η (μm)		0.5	0.8	1	1.5
Error	mean	0.2%	0.3%	0.0%	0.2%
for C ₁₁	Std	-0.6%	1.1%	-0.9%	0.4%
Error	mean	0.1%	0.4%	0.0%	0.4%
for C ₁₂	Std	-1.6%	0.5%	-1.6%	0.0%

The computational results of "HPC+wPFA" and MC simulation

η (μπ	0.5	0.8	1	1.5	
The L/η	2	1.25	1	0.67	
DEA	#variable	26	16	14	10
FIA	#sample	1431	561	435	231
TT DEA	#variable	22	14	10	10
WFFA	#sample	1036	436	232	232
Reduction b	28%	22%	47%	0%	
Time of MC	serial	14501	14500	14477	14518
simulation (s)	parallel	1966	1966	1958	1962
Time of	serial	1473.7	610.9	333.2	331
HPC+wPFA(s)	parallel	200.4	88.4	47.6	46.8
Sp. of "HPC+w	9.8	22	41	42	

Statistical Capacitance Extraction

- Three observations from this experiment
 - OB4: The weighted PFA for statistical capacitance extraction can achieve up to 47% efficiency improvement over the normal PFA, without loss of accuracy.
 - **OB5**: The HPC-based method can be easily parallelized, and achieves 7X speedup on an 8-core machine.

- Background
- Geometric Variation Models
- Experiments with Different Geometric Models

- A Parallel Statistical Capacitance Solver and Numerical Results
- Conclusions

Conclusions

- The contributions of this work
 - An improved continuous surface variation (ICSV) model is proposed to accurately imitate the random geometric variation of on-chip interconnects

- An efficient parallel statistical capacitance solver
- With the experiments on a typical 65nm-technology structure, several criteria are drawn regarding the trade-offs of geometric models and statistical methods

Thank you! Yu-wj@tsinghua.edu.cn

