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Abstract In this paper, we present a novel method for

statistical inductance extraction and modeling for inter-

connects considering process variations. The new method,

called statHenry, is based on the collocation-based spectral

stochastic method where orthogonal polynomials are used

to represent the statistical processes. The coefficients of the

partial inductance orthogonal polynomial are computed via

the collocation method where a fast multi-dimensional

Gaussian quadrature method is applied with sparse grids.

To further improve the efficiency of the proposed method,

a random variable reduction scheme is used. Given the

interconnect wire variation parameters, the resulting

method can derive the parameterized closed form of the

inductance value. We show that both partial and loop

inductance variations can be significant given the width

and height variations. This new approach can work with

any existing inductance extraction tool to extract the var-

iational partial and loop inductance or impedance. Exper-

imental results show that our method is orders of

magnitude faster than the Monte Carlo method for several

practical interconnect structures.

Keywords Inductance extraction � Statistical � Spatial

correlation � Process variation

1 Introduction

It is well accepted that process-induced variations have a

huge impact on circuit performance in sub-100 nm VLSI

technologies [2, 3]. A significant portion of these variations

are purely random in nature [4]. As a result, variation-aware

design methodologies and statistical computer-aided design

(CAD) tools are widely believed to be the key to mitigate this

grand challenge for 45 nm technologies and beyond [3, 4].

Variational considerations have to be incorporated into every

step of the design and verification process to ensure reliable

chips and profitable manufacturing yields.

In this paper, we investigate the impact of geometric

variations on the extracted inductance values (partial or

loop). Parasitic extraction algorithms have been intensively

studied in the past to estimate the resistance, capacitance,

inductance, and susceptance of 3-D interconnects [5–8].

Many efficient algorithms like the FastCap [7], FastHenry

[6] and FastImp [8] were proposed based on the boundary

element method (BEM) or volume discretization methods

(for partial element equivalent circuit (PEEC) based

inductance extraction [5]). In the nanometer regime, circuit

layout will have significant variations, both systematic and

random, coming from the fabrication process. Some recent

research works have been proposed using different varia-

tional models for capacitance extraction while considering

process variations [9–12]. However, less research has been

done on variational inductance extraction in the past.

This paper is an extended version of the SM2ACD 2010 workshop

paper [1].
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We propose a new statistical inductance extraction

method, called statHenry, based on a spectral stochastic

collocation scheme. This approach is based on the Hermite

orthogonal polynomial representation of the variational

inductance. StatHenry applies the collocation idea where

the inductance extraction process is performed many times

in pre-determined sampling positions so that the coeffi-

cients of the orthogonal polynomials can be computed

using the weighted least square method. The number of

samplings is O(m2), where m is the number of variables for

the second order Hermite polynomials. If m is large, the

approach will lose its efficiency compared to the Monte

Carlo method. To mitigate this problem, a weighted prin-

ciple factor analysis method is performed to reduce the

number of variables by exploiting the spatial correlations

of variational parameters. Experimental results show that

the new method is orders of magnitudes faster than the

Monte Carlo method with very small errors for several

practical interconnect structures. We also show that typical

variation for the width and height of wires (10–30%) can

cause significant variations to both partial and loop

inductance.

The rest of this paper is organized as follows: Sect. 2

presents the statistical inductance extraction problem, Sect. 3

reviews the orthogonal polynomial chaos based stochastic

sampling methods, and Sect. 4 presents our new statistical

inductance extraction method. Then in Sect. 5 we present the

experimental results and Sect. 6 concludes this paper.

2 Problem formulation

For a system with m conductors, we first divide all con-

ductors into b filaments. The resistance and inductance of

all filaments are respectively stored in matrices Rb9b and

Lb9b, each with dimensions b 9 b. R is a diagonal matrix

with its diagonal element

Rii ¼
li

rai
ð1Þ

where li is the length of filament i, r is conductivity and ai

is the area of the cross section of filament i. L is a dense

matrix, Lij can be represented as in [6]:

Lij ¼
l

4paiaj

Z
Vi

Z
Vj

lilj
kr� r0k dVidVj ð2Þ

where l is permeability, li and lj are unit vectors of the

lengthwise direction of filaments i and j, r is an arbitrary point

in the filament, and Vi and Vj are the volumes of filaments i and

j, respectively. Assuming magnetoquasistatic electric fields,

the inductance extraction problem is then finding the solution

to the discretized integral equation:

li
r

� �
Ii þ jx

Xb

j¼1

l
4paiaj

Z
Vi

Z
Vj

lilj
kr� r0k dVidVj

 !
Ij

¼ 1

ai

Z
ai

ðUA � UBÞdA

ð3Þ

where Ii and Ij are the currents inside the filaments i and

j, x is the angular frequency, and UA and UB are the

potentials at the end faces of the filament. Equation 3 can

be written in the matrix format as

ðRþ jxLÞIb ¼ Vb ð4Þ

where Ib 2 Cb is the vector of b filament currents, Vb is a

vector of dimension b containing the filament voltages. We

will first solve for the inductance between one conductor,

which we will call the primary conductor, and all others,

which we will call the environmental conductors. To do

this, we set the voltages of filaments in our primary

conductor to unit voltage and voltages of all other filaments

to zero. Therefore Ib can be calculated by solving a system

of linear equations. Together with the current conservation

(Kirchhoff’s current law) equation

MIb ¼ Im ð5Þ

on all the filaments, where M is an adjacent matrix for the

filaments and Im is the currents of all m conductors. By

repeating this process with each of the m conductors as the

primary conductor, we can obtain Im;i; i ¼ ½1; . . .m� vectors

which form a m 9 m matrix Ip ¼ ½Im;1; Im;2; . . .; Im;m�: Since

the voltages of all primary conductors have been set to unit

voltage previously, the resistance and inductance can be

achieved respectively from the real part and the imaginary

part of the inverse matrix of Ip. The authors in [6] proposed

a hierarchical multipole algorithm FastHenry to solve (4)

(5). The FastHenry is efficient as it is proved to be one

order of magnitude faster than solving (4) (5) using tradi-

tion methods and retain the same accuracy. Since our

proposed statHenry is sampling based, we run the Fast-

Henry package [13] to obtain the extracted inductance

value on each sample.

Process variations affecting conductor geometry are

reflected by changes in the width and height of the con-

ductors. We ignore the length of the wires as the variations

are typically insignificant compared to its magnitude.

These variations will make each element in the inductance

matrix follow some kinds of random distributions. Solving

this problem is done by deriving the random distribution

and then effectively computing the mean and variance of

the inductances with the given geometric randomness

parameters. In this paper, we assume that width and height

in each filament i are disturbed by random variables Dnw;i

and Dnh;i; which gives us:
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wi
0 ¼ wi þ Dnw;i ð6Þ

hi
0 ¼ hi þ Dnh;i ð7Þ

where the size of Dxi is a Gaussian distribution

jDxij �Nð0; r2Þ: The correlation between random

perturbations on each wire’s width and height are

governed by an empirical formulation such as the widely

used exponential model

cðrÞ ¼ e�r2=g2 ð8Þ

where r is the distance between two panel centers and g is

the correlation length. The most straightforward method is

to use a Monte Carlo(MC) based simulation to obtain

distribution, mean, and variance of all those inductances.

Unfortunately, the MC method will be extremely time

consuming and more efficient statistical approaches are

needed.

3 Review of spectral stochastic based methods

In this section, we briefly review the spectral stochastic and

orthogonal polynomial chaos (PC) based stochastic analy-

sis methods.

In the following, n(h) is a random variable expressed

as a function of h, which is the random event. Hermite

PC (HPC) utilizes a series of polynomials, which are

orthogonal with respect to the Gaussian distribution, to

facilitate stochastic analysis [14, 15]. These polynomials

are used as an orthogonal basis to decompose a random

process.

We note that for Gaussian and log-normal distribu-

tions, using Hermite polynomials are the best choice, as

they lead to an exponential convergence rate [14]. For

distributions which are neither Gaussian nor log-normal,

there are other orthogonal polynomials such as Legen-

dre for uniform distribution, Charlier for Poisson dis-

tribution, and Krawtchouk for Binomial distribution, etc

[16, 17].

To simplify the explanation, only one random variable is

considered and the one-dimensional Hermite polynomials

are expressed as follows:

H1
0ðnÞ ¼ 1;H1

1ðnÞ ¼ n;H1
2ðnÞ ¼ n2 � 1;H1

3ðnÞ
¼ n3 � 3n; . . . ð9Þ

The Hermite polynomials are orthogonal with respect to a

Gaussian weighted expectation (the superscript n is

dropped to simplify notation):

hHiðnÞ;HjðnÞi ¼ hH2
i ðnÞidij; ð10Þ

where dij is the Kronecker delta and h�; �i denotes an inner

product, defined as:

hf ðnÞ; gðnÞi ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
ð2pÞn

p
Z

f ðnÞgðnÞe�1
2
nTndn: ð11Þ

Given a random variable v(n), where n ¼ ½n1; . . .; nn�
denotes a vector of orthonormal Gaussian random

variables with zero mean, the random variable can be

approximated using a truncated Hermite PC expansion

[14]:

vðnÞ �
XP

k¼0

akHn
k ðnÞ; ð12Þ

where n is the number of independent random variables,

Hn
k ðnÞ are n-dimensional Hermite polynomials, and ak are

the deterministic coefficients. The number of terms, P, is

given by

P ¼
Xp

k¼0

ðn� 1þ kÞ!
k!ðn� 1Þ! ; ð13Þ

where p is the order of the Hermite PC. According to the

Galerkin method, the truncation error is minimized [14]

when

hvðnÞ;HkðnÞi ¼ h
XP

j¼1

ajHjðnÞ;HkðnÞi: ð14Þ

Based on the orthogonality of Hermite polynomials, the

right part of the above equation equals zero when j = k.

The coefficients, ak, can then be represented as:

akðtÞ ¼
hvðnÞ;HkðnÞ[

\H2
k ðnÞi

; 8k 2 f0; . . .;Pg: ð15Þ

The key issue is to compute the coefficients ak(t) with an

efficient numerical integration method, which is discussed

in the next section.

4 New statistical inductance extraction method—

statHenry

In this section, we present the new statistical inductance

extraction method—statHenry. The new method is based

on stochastic analysis method where the integration of (11)

in (15) is computed via an improved numerical quadrature

method. Our new method is based on the efficient multi-

dimensional numerical Gaussian quadrature. We will first

review the numerical Gaussian quadrature method, fol-

lowed by the improved Smolyak quadrature.

4.1 Gaussian quadrature technique

The Gaussian quadrature method is an efficient numerical

method for computing the definite integral of a function
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[18]. Using this method, we can compute the coefficients

ak(t) in (15). Next, we will review this method, which uses

the Hermite polynomial shown below.

Our goal is to determine the numerical solution to the

integral equation hx(n), Hj(n)i . In our problem, this is a

one-dimensional numerical quadrature problem based on

Hermite polynomials [18]. Thus, we have

hxðnÞ;HkðnÞi ¼
1ffiffiffiffiffiffiffiffiffi
ð2pÞ

p
Z

xðnÞHkðnÞe�
1
2
n2

dn

�
XP

i¼0

xðniÞHiðniÞwi

ð16Þ

Here we have only a single random variable n. ni and wi are

Gaussian Hermite quadrature abscissas (quadrature points)

and weights.

The Quadrature rule states that if we select the roots of

the Pth Hermite Polynomial as the quadrature points, the

quadrature is exact for all polynomials of degree 2P - 1 or

less for (16). This is called (P - 1)-level accuracy of the

Gaussian-Hermite quadrature.

For multiple random variables, a multi-dimensional

quadrature is required. The traditional way of computing a

multi-dimensional quadrature is to use a direct tensor

product based on one dimensional Gaussian Hermite

quadrature abscissas and weights [19]. With this method,

the number of quadrature points needed for n-dimensions

at level P is about (P ? 1)n, which is well known as the

curse-of-dimensionality.

4.2 Sparse grid technique

Smolyak quadrature [19], also known as sparse grid

quadrature, is used as an efficient method to reduce

the number of quadrature points. Let us define a one-

dimensional sparse grid quadrature point set HP
1 ¼

fc1; c2; . . .; cPg; which uses P ? 1 points to achieve degree

2P ? 1 of exactness. The sparse grid for an n-dimensional

quadrature at degree P chooses points from the following

set:

HP
n ¼ [

Pþ1� jij �Pþn
Hi1

1 	 . . .	Hin
1

� �
ð17Þ

where jij ¼
Pn

j¼1 ij: The corresponding weight is:

wi1...in
ji1 ...jin

¼ ð�1ÞPþn�jij n� 1

nþ P� jij

� �
P
m

wim
jim

ð18Þ

where
n� 1

nþ P� jij

� �
is the combinatorial number and w is

the weight for the corresponding quadrature points. It has

been shown that interpolation on a Smolyak grid ensures a

bound for the mean-square error [19]

jEPj ¼ O Nr
PðlogNPÞðrþ1Þðn�1Þ

� �
;

where NP is the number of quadrature points and k is the

order of the maximum derivative that exist for the delay

function. The number of quadrature points increases as

O nP

ðPÞ!

� �
:

It can be shown that a sparse grid of at least level P is

required for an order P representation. The reason is that

the approximation contains order P polynomials for both

x(n) and Hj (n). Thus, there exists x(n)Hj (n) with order 2P,

which requires a sparse grid of at least level P with an

exactness degree of 2P ? 1.

Therefore, level 1 and level 2 sparse grids are required

for linear and quadratic models, respectively. The number

of quadrature points is about 2n for the linear model, and

2n2 for the quadratic model. The time cost is about the

same as the Taylor-conversion method, while keeping the

accuracy of homogenous chaos expansion.

In addition to the sparse grid technique, we also employ

several accelerating techniques. Firstly, when n is too

small, the number of quadrature points for sparse grid may

be larger than that of direct tensor product of a Gaussian

quadrature. For example, if there are only 2 variables, the

number is 5 and 15 for level 1 and 2 sparse grid, compared

to 4 and 9 for direct tensor product. In this case, the sparse

grid will not be used. Secondly, The set of quadrature

points (17) may contain the same points with different

weights. For example, the level 2 sparse grid for 3 variables

contain 4 instances of the point (0,0,0). Combining these

points by summing the weights reduces the computational

cost of xðciÞ:

4.3 Variable decoupling and reduction

Even with sparse grid quadrature, the number of sampling

points still grow quadratically with the number of vari-

ables. As a result, we should further reduce the number of

variables by exploiting the spatial correlations of the given

random width and height parameters of wires.

We start with independent random variables as the input

of the spectral stochastic method. Since the height and

width variable of all wires are correlated, this correlation

should be removed before using the spectral stochastic

method. We first present the following result as our theo-

retical basis for decoupling the correlation of those vari-

ables [20].

Proposition 1 For a set of zero-mean Gaussian distrib-

uted variables n* whose covariance matrix is Dn; if there is

a matrix L satisfying Dn ¼ LLT ; then n* can be represented

by a set of independent standard normal distributed vari-

ables n as n* = Ln.
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Note that the solution for decoupling is not unique. For

example, Cholesky decomposition can be used to seek L

since the covariance matrix Dn is always a semi-positive

definite matrix. However Cholesky decomposition cannot

reduce the number of variables. Principle factor analysis

(PFA) [10] can substitute Cholesky decomposition when

variable reduction is needed. Eigen-decomposition on the

covariance matrix yields:

Dn ¼ LLT ; L ¼
ffiffiffiffiffi
k1

p
e1; . . .;

ffiffiffiffiffi
kn

p
en

� �
; ð19Þ

where {ki} are eigenvalues in order of descending magni-

tude, and {ei} are corresponding eigenvectors. PFA reduces

the number of components in n by truncating L using the

first k items.

The error of PFA can be controlled by k:

err ¼

Pn
i¼kþ1

ki

Pn
i¼1

ki

; ð20Þ

where bigger k leads to a more accurate result. PFA is

efficient, especially when the correlation length is large. In

our experiments, we set the correlation length being 8

times of width of wires. As a result, PFA can reduce the

number of variables from 40 to 14 with an error of about

1% in an example with 20 parallel wires.

4.4 Variable reduction by weighted PFA

Principle factor analysis for variable reduction considers

only the spatial correlation between wires, while ignoring

the influence of the inductance itself. One idea is to con-

sider the importance of the outputs during the reduction

process. We follow the recently proposed weighted PFA

(wPFA) technique to seek better variable reduction effi-

ciency [21].

If a weight is defined for each physical variable ni, to

reflect its impact on the output, then a set of new variables

n* are formed:

n� ¼ Wn ð21Þ

where W ¼ diagðw1;w2; . . .;wnÞ is a diagonal matrix of

weights. As a result, the covariance matrix of n�;Dnðn�Þ;
now contains the weight information and performing PFA

on Dnðn�Þ leads to the weighted variable reduction.

Specifically, we have

Dnðn�Þ ¼ EðWnðWnÞTÞ ¼ WDnðnÞWT ð22Þ

and denote its eigenvalues and eigenvectors by k�i and e�i :

Then, the variables n can be approximated by the linear

combination of a set of independent dominant variables f� :

n ¼ W�1n� � W�1
Xk

i¼1

ffiffiffiffiffi
k�i

q
e�i f
�
i : ð23Þ

The error controlling process is similar to (20), but using

the weighted eigenvalues k�i : For inductance extraction, we

take the partial inductance of the deterministic structure as

the weight, since this normal structure reflects an approx-

imate equality of inductance compared with the variational

structure. By performing wPFA in the same example with

20 parallel wires, 40 variables can now be reduced to 8

rather than 14 when using PFA (more details in the

experimental results).

4.5 New extraction algorithm: statHenry

After introducing all the important pieces from related

works, we are now ready to present our new algorithm—

statHenry. Figure 1 is a flowchart of the proposed

algorithm.

5 Experimental results

In this section, we compare the results of the proposed

statHenry method against the Monte Carlo method and a

simple orthogonal polynomial based spectral stochastic

collocation method with the sparse grid technique but

without variable reduction, called HPC. The proposed

method statHenry has been implemented in Matlab 8.0. All

the experimental results were obtained using a computer

with a 1.6 GHz Intel Quad Core i7-720 and 4 GB memory

running Microsoft Windows 7 Ultimate operating system.

We use FastHenry [6, 13] to do inductance extraction for

each sample and the version of FastHenry is 3.0.

In our experiment, we set up four test casts to examine

our algorithm: 2 parallel wires, 5 parallel wires, 10 parallel

wires and 20 parallel wires (shown in Fig. 2). In all four

models, all of the wires have a width of 1 lm, length of

Algorithm: STATHENRY

Input: Wires with variational width and heights
Output: The Hermite polynomial coefficients of the partial or loop
inductance values of the wires, L ξ

1. Perform variable reduction based on weighted PFA.
2. Generate the n-dimensional Smolyak quadrature point sets of sec-

ond order Θ2
n and corresponding weight set wn.

3. For i = 1 to size(Θ2
n)

4. Perform FastHenry for each sample.
5. end
6. Compute the coefficients of Hermite polynomials for the partial

or loop inductance values d ξ

Fig. 1 The proposed statHenry algorithm
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6 lm, and pitch between them of 1 lm. The unit of the

inductances in the experiment results is pico-henry (pH).

We set the standard deviation as 10% of the wire widths

and wire heights and the correlation length g being 8 lm to

indicate a strong correlation.

First, we compare the accuracy of the three methods in

terms of the mean and standard deviations of loop/partial

inductances. The results are summarized in Table 1. In the

table we report the results from four test cases as men-

tioned. In each case, we report the results for partial self

inductance on wire 1 (L11p), and loop inductance between

wire 1 and 2 (L12l). Columns 3–4 are the mean value,

standard deviation value for the Monte-Carlo method

(MC). And columns 5–12 are the mean value, standard

deviation value and their errors comparing with Monte

Carlo method for the simple orthogonal polynomial based

method (HPC) and the new method. The average error of

the mean and standard deviation of HPC method is 0.05

and 2.01% compared with Monte Carlo method while that

of statHenry method is 0.05 and 2.06%, respectively. The

Monte Carlo results comes from 10,000 FastHenry runs.

It can be seen that statHenry is very accurate for both

mean and standard deviation compared with the HPC

method and Monte Carlo method. We observe that a 10%

standard deviation for the width and height results in

variations from 2.73 to 5.10% for the partial and loop

inductances, which is significant for timing.

Next, we show the CPU time speedup of the proposed

method. The results are summarized in Table 2. It can be

seen that statHenry can be about two orders of magnitude

faster than the Monte Carlo method. The average speedup

of the HPC method and statHenry method are 54.1 and

349.7 compared with Monte Carlo method. We notice that

with more wires, the speedup goes down. It is expected as

more wires leads to more variables, even after the variable

reduction. And the number of samplings in the collocation

method are O(m2) for second-order Hermit polynomials,

where m is the number of variables. As a result, the

speedup goes down as more samplings are needed to

compute the coefficients while Monte-Carlo has the fixed

number of samplings (10,000 for all cases).

Table 3 shows the reduction effects using PFA and

wPFA for all the cases under the same errors. We can see

that with weighted PFA (wPFA), we can achieve lower

reduced variable number and fewer quadrature points for

sampling thus better efficiency for the entire extraction

algorithm.

Finally, we study the variational impacts of partial and

loop inductances under different variabilities for width and

height using statHenry and the MC method.

The variation statistics are summarized in Table 4. Here

we report the results for standard deviations from 10 to

30% for width and height for statHenry method and Monte

Carlo method for 10 parallel wire case. As the variation

due to process imperfections grow as the technology

advances, we can see that inductance variation will also

grow. Considering a typical 3r range for variation, a 30%

standard deviation means that width and height changes

can reach 90% of their values. It can be seen that with the

increasing variations of width and height (from 10 to 30%),

the std/mean of partial inductance grows from 2.75 to

8.65% while that of loop inductance grows from 5.10 to

15.9%, which can significantly impact the noise and delay

of the wires. The average error of mean and standard

deviation of statHenry is 0.33 and 1.75% compared with

Monte Carlo for all variabilities of width and height. From

Fig. 2 Four test structures used for comparison

Table 1 Accuracy comparison (mean and variance values of inductances) among Monte Carlo, HPC and statHenry

Wires Inductance Monte Carlo HPC Error statHenry Error

Mean (pH) Std (pH) Mean (pH) Std (pH) Mean (%) Std (%) Mean (pH) Std (pH) Mean (%) Std (%)

2 L11p 2.851 0.080 2.850 0.078 0.02 2.31 2.850 0.078 0.03 2.47

2 L12l 3.058 0.158 3.057 0.156 0.05 1.50 3.056 0.155 0.06 2.21

5 L11p 2.849 0.078 2.851 0.078 0.08 0.86 2.851 0.078 0.07 0.24

5 L12l 3.054 0.155 3.058 0.156 0.11 1.01 3.058 0.156 0.11 0.70

10 L11p 2.852 0.079 2.853 0.078 0.01 1.23 2.853 0.078 0.02 1.37

10 L12l 3.059 0.159 3.060 0.156 0.05 1.55 3.060 0.156 0.05 1.74

20 L11p 2.852 0.081 2.853 0.078 0.03 3.74 2.853 0.078 0.03 3.82

20 L12l 3.059 0.163 3.060 0.156 0.04 3.88 3.060 0.156 0.05 3.96

8 Analog Integr Circ Sig Process (2012) 73:3–11

123



this, we can see that the results of statHenry agree closely

with MC under different variations.

Figures 3 and 4 show the loop (for wire 1 and wire 2,

L12l) and partial inductance distributions (for wire 1 itself,

L11p) under 30% deviations of width and heights for the 10

parallel wire case.

6 Conclusion

In this paper, we have proposed a new statistical induc-

tance extraction method, called statHenry, for intercon-

nects considering process variations with spatial

correlation. This new method is based on the collocation-

based spectral stochastic method where orthogonal poly-

nomials are used to represent the variational geometrical

parameters in a deterministic way. Statistical inductance

values are then computed using a fast multi-dimensional

Gaussian quadrature method with sparse grid technique.

Then, to further improve the efficiency of the proposed

method, a random variable reduction scheme based on

weighted principle factor analysis is applied. Experimental

results show that our method is orders of magnitudes faster

than the Monte Carlo method with very small errors for

several practical interconnect structures. We also show that

both partial and loop inductance variations can be signifi-

cant for the typical 10–30% standard variations of width

and heights of interconnect wires.
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